欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1525-1539.doi: 10.3724/SP.J.1006.2024.32036

• 耕作栽培·生理生化 • 上一篇    下一篇

侧深施控释氮肥运筹方式对水稻产量、NH3挥发和温室气体排放的影响

郭松1(), 郭慧婷2, 张裕梁2, 钱紫慧2, 王子君1, 路佳明2, 汪源2, 赵灿2, 王维领2, 张洪程2, 杨凤萍1,*(), 霍中洋2,*()   

  1. 1扬州大学生物科学与技术学院行为生态学实验室, 江苏扬州 225009
    2江苏省作物遗传生理国家重点实验室培育点, 江苏扬州 225009
  • 收稿日期:2023-09-13 接受日期:2024-01-31 出版日期:2024-06-12 网络出版日期:2024-02-27
  • 通讯作者: * 杨凤萍, E-mail: fpyang@yzu.edu.cn;霍中洋, E-mail: huozy69@163.com
  • 作者简介:E-mail: 1004751420@qq.com
  • 基金资助:
    江苏省农业科技自主创新资金(CX(22)1001);江苏省碳达峰碳中和科技创新专项(BE2022424)

Effects of side deep placement of controlled release nitrogen management on rice yield, NH3, and greenhouse gas emissions

GUO Song1(), GUO Hui-Ting2, ZHANG Yu-Liang2, QIAN Zi-Hui2, WANG Zi-Jun1, LU Jia-Ming2, WANG Yuan2, ZHAO Can2, WANG Wei-Ling2, ZHANG Hong-Cheng2, YANG Feng-Ping1,*(), HUO Zhong-Yang2,*()   

  1. 1Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Jiangsu Province Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, Jiangsu, China
  • Received:2023-09-13 Accepted:2024-01-31 Published:2024-06-12 Published online:2024-02-27
  • Contact: * E-mail: fpyang@yzu.edu.cn;E-mail: huozy69@163.com
  • Supported by:
    Jiangsu Province Agricultural Science and Technology Independent Innovation Fund Project(CX(22)1001);Jiangsu Province Carbon Peak Carbon Neutral Science and Technology Innovation Special Fund Project(BE2022424)

摘要:

为建立机插稻高产低碳减排的控释氮肥施用技术, 以迟熟中粳南粳9108、泰香粳1402为材料, 选用控释期100 d、43%树脂包膜缓释氮肥与46%速效尿素为氮肥, 分别设置基穗氮肥比例为10:0 (NM1)、8:2 (NM2)、7:3 (NM3)与6:4 (NM4)不同运筹方式处理, 基肥采用侧深施肥方法, 控释氮肥与速效尿素比例均为5:5, 穗氮肥为尿素, 并设置常规施肥(FFT)与不施氮肥(0N)对照处理, 研究不同氮肥运筹方式对水稻产量、NH3挥发和温室气体排放的影响。结果表明: 与FFT处理相比, 侧深施控释氮肥推迟NH3挥发峰值出现, 避免分蘖期NH3挥发峰值产生, 穗期追施尿素后的NH3挥发通量和平均NH3挥发通量显著降低, NH3累积损失总量降低25.33%~48.76%, NH3排放系数降低29.14%~60.81%, 单位产量NH3排放强度显著降低29.60%~56.01%。与FFT处理相比, 侧深施控释氮肥分蘖期和抽穗后的CH4排放通量显著降低, 搁田期和穗期追施尿素后的N2O排放通量显著降低, CH4排放累积总量降低20.20%~55.04%, CH4减排率随基穗氮肥比例变小而降低, N2O排放累积总量降低25.56%~61.56%, N2O减排率表现为NM1>NM3>NM2>NM4, GWP和GHGI分别降低20.96%~53.35%、25.91%~55.40%。品种间NH3挥发和温室气体规律一致, 减排效果均表现为NM1>NM3>NM2>NM4。综合考虑经济、生态效益, NM1处理氨挥发和温室气体减排效果最佳, 且比NM3和FFT处理减少施肥次数1~2次, 利于水稻绿色轻简规模化生产; NM3处理增产率最高且NH3挥发和温室气体减排效果仅次NM1, 实现丰产减排协同进行。综上, 本文探索出一套适配迟熟中粳减排增产的控释氮肥施肥方式, 重点发现“轻简+减排”型施肥方式NM1和“丰产+减排”型施肥方式NM3。

关键词: 控释氮肥, 运筹方式, NH3挥发, CH4, N2O, 减排

Abstract:

The objective of this study is to establish controlled-release nitrogen fertilization technology for achieving high yield and reduce carbon emissions. Two late-maturing medium japonica rice varieties, Nanjing 9108 and Taixiangjing 1402, were selected in this study. The controlled-release fertilizer with resin-coated urea (N 43%, the longevity was 100 d) and common urea (46% N) were used as nitrogen fertilizers. Different ratios of basal and panicle nitrogen fertilizers were set for different treatments of 10 : 0 (NM1), 8 : 2 (NM2), 7 : 3 (NM3), and 6 : 4 (NM4). The basal fertilizer was applied using the side-deep fertilization method, with a ratio of 5:5 for resin-coated urea and common urea. The panicle nitrogen fertilizer was common urea. Conventional fertilization (FFT) and no nitrogen fertilizer (0N) control treatments were also included. The effect of different nitrogen fertilizer application methods on rice yield, NH3 volatilization, and greenhouse gas emissions were investigated. The results showed that the side-deep application of controlled-release nitrogen fertilizer delayed the peak of NH3 volatilization, preventing it from occurring at tillering stage compared to the FFT treatment. In addition, the flux of NH3 volatilization and the average flux after topdressing were significantly reduced by the side-deep application of controlled-release nitrogen fertilizer. The NH3 emission accumulation, NH3 emission factor, and NH3 emission intensity were reduced by 25.33%-48.76%, 29.14%-60.81%, and 29.60%-56.01%, respectively. Furthermore, the CH4 emission fluxes were significantly reduced at tillering stage and after heading stage. The N2O emission fluxes were also significantly reduced during the shelving and heading period. The CH4 and N2O emission accumulation were reduced by 20.20%-55.04% and 25.56%-61.56%, respectively. The CH4 emission reduction rate decreased as the proportion of basal and panicle fertilizer decreased. The N2O emission reduction rate followed the order of NM1 > NM3 > NM2 > NM4. The GWP and GHGI were reduced by 20.96%-53.35% and 25.91%-55.40%, respectively. Considering the economic and ecological benefits, NM1 treatment had the best effect on the reduction of NH3 volatilization and greenhouse gas emissions. NM1 treatment reduced the number of fertilization times 1-2 compared with the NM3 and FFT treatments, which was advantageous for achieving green, simple, and large-scale rice production. NM3 treatment exhibited the highest increase in yield, and its impact on reducing NH3 volatilization and greenhouse gas emissions was second only to NM1 treatment. In summary, the present study explored a set of controlled-release nitrogen fertilization method (NM1 and NM3 focused on “light and simple + emission reduction” and “high yield + emission reduction”, respectively) suitable for reducing emission and increasing yield of late-maturing medium japonica rice.

Key words: controlled-release nitrogen fertilizer, fertilization technology, NH3 volatilization, CH4, N2O, emission reduction

表1

试验处理"

处理
Treatment
基肥 Base fertilizer 分蘖肥
(普通尿素)
Tillering fertilizer
(common urea)
(%)
穗肥
(普通尿素)
Spike fertilizer
(common urea)
(%)
总氮肥
Total N
(kg hm-2)
基肥比
Proportion of base fertilizer (%)
缓速比
Ratio of controlled-release nitrogen fertilizer to available nitrogen
fertilizer
不施肥处理0N 0 / 0 0 0
农民施肥FFT 35 / 35% 30 270
100%基肥NM1 100 5 : 5 0 0 270
80%基肥+20%穗肥NM2 80 5 : 5 0 20 270
70%基肥+30%穗肥NM3 70 5 : 5 0 30 270
60%基肥+40%穗肥NM4 60 5 : 5 0 40 270

图1

氨挥发吸收装置"

图2

不同处理的NH3挥发通量动态变化特征 处理同表1。误差线均表示标准偏差。"

表2

不同施肥时期的NH3排放通量峰值"

处理
Treatment
南粳9108 Nanjing 9108 泰香粳1402 Taixiangjing 1402
基肥
Basic fertilizer
分蘖肥
Tillering fertilizer
穗肥
Spike fertilizer
基肥
Basic fertilizer
分蘖肥
Tillering fertilizer
穗肥
Spike fertilizer
0N 0.22±0.00 f 0.30±0.02 e 0.14±0.00 f 0.12±0.00 f 0.31±0.02 d 0.28±0.00 f
FFT 8.82±0.00 a 9.75±0.01 a 7.96±0.01 a 9.42±0.00 a 10.05±0.02 a 5.56±0.01 a
NM1 7.98±0.01 b 0.93±0.05 b 0.47±0.06 e 7.68±0.01 d 1.93±0.05 b 0.41±0.00 e
NM2 7.83±0.08 c 0.81±0.05 c 4.10±0.02 d 8.70±0.09 c 0.57±0.00 c 4.04±0.01 d
NM3 7.39±0.01 d 0.54±0.00 d 4.38±0.02 c 7.12±0.01 e 0.54±0.00 c 4.37±0.00 c
NM4 5.92±0.01 e 0.90±0.01 b 5.82±0.02 b 8.94±0.08 b 0.05±0.03 e 4.61±0.01 b

表3

不同处理在水稻各生育期的NH3积累损失量"

品种
Variety
处理
Treat-
ment
移栽-拔节期T-J 拔节期-抽穗期J-H 抽穗-成熟期H-M 移栽-成熟期T-M
NEA
(kg N hm-2)
RNE
(%)
NEA
(kg N hm-2)
RNE
(%)
NEA
(kg N hm-2)
RNE
(%)
NEA
(kg N hm-2)
RNE
(%)
南粳9108
Nanjing
9108
0N 9.38±0.02 f 7.24±0.11 f 9.58±0.27 d 26.20±0.36 f
FFT 73.55±0.50 a 46.25±0.06 a 9.40±0.52 d 129.21±0.03 a
NM1 40.48±0.18 b 44.97 14.09±0.71 e 69.53 12.00±0.29 ab -27.57 66.57±0.59 e 48.48
NM2 34.69±0.75 c 52.83 29.32±0.06 c 36.60 12.73±0.02 a -35.31 76.74±0.67 c 40.61
NM3 31.74±0.08 e 56.84 26.54±0.14 d 42.61 11.62±0.01 bc -23.59 69.91±0.07 d 45.90
NM4 33.10±0.31 d 55.00 36.99±0.74 b 20.02 10.88±0.22 c -15.68 80.97±0.65 b 37.33
泰香梗1402
Taixiang-
jing 1402
0N 5.20±0.35 e 4.82±0.13 f 5.04±0.12 e 15.06±0.59 f
FFT 65.80±0.15 a 45.05±0.30 a 4.35±0.45 f 115.20±0.90 a
NM1 39.47±0.67 b 40.01 10.51±0.19 e 76.68 9.05±0.29 d -108.14 59.03±0.57 e 48.76
NM2 37.18±0.29 c 43.49 28.48±0.11 c 36.78 16.65±0.20 b -283.05 82.32±0.37 c 28.54
NM3 31.21±0.09 d 52.56 26.24±0.65 d 41.76 10.47±0.56 c -140.74 67.91±0.18 d 41.04
NM4 36.72±0.21 c 44.19 31.77±0.00 b 29.47 17.52±0.20 a -303.04 86.01±0.41 b 25.33

图3

不同处理的NH3排放系数与单位产量NH3排放强度 处理同表1。不同小写字母表示不同处理间在0.05概率水平差异显著。误差线均表示标准偏差。"

图4

不同处理的CH4排放通量变化特征 处理同表1。误差线均表示标准偏差。"

表4

不同处理的CH4排放通量峰值及平均值"

处理
Treatment
南粳9108 Nanjing 9108 泰香粳1402 Taixiangjing 1402
第1峰值
First peak
(mg m-2 h-1)
第2峰值
Second peak
(mg m-2 h-1)
第3峰值
Third peak
(mg m-2 h-1)
平均CH4
放通量
Average CH4 emission flux
(mg m-2 h-1)
第1峰值
First peak
(mg m-2 h-1)
第2峰值
Second peak
(mg m-2 h-1)
第3峰值
Third peak
(mg m-2 h-1)
平均CH4排放通量
Average CH4
emission flux
(mg m-2 h-1)
CK 13.70±0.13 e 19.23±0.20 d 2.41±0.01 e 3.41±0.02 f 32.34±0.01 f 28.45±0.14 c 4.45±0.14 f 4.51±0.05 f
FFT 69.43±0.73 a 17.34±0.01 e 9.56±0.36 a 10.58±0.02 a 101.25±2.76 a 42.52±0.00 a 13.31±0.06 a 15.70±0.12 a
NM1 42.51±0.27 d 12.95±0.55 f 7.48±0.06 b 6.00±0.02 e 51.48±0.06 d 23.32±0.01 e 12.23±0.13 b 6.88±0.04 e
NM2 56.70±0.19 b 23.04±0.04 c 5.28±0.03 d 6.92±0.01 d 42.75±0.65 e 15.32±0.30 f 9.08±0.01 c 7.37±0.01 d
NM3 43.98±1.21 d 28.21±0.21 a 6.21±0.21 c 7.11±0.07 c 63.38±0.02 c 27.29±0.50 d 7.72±0.02 d 7.90±0.07 c
NM4 53.24±0.18 c 25.38±0.03 b 2.53±0.13 e 7.97±0.01 b 72.23±0.76 b 38.40±0.09 b 7.42±0.04 e 8.47±0.06 b

图5

不同处理的N2O排放通量变化特征 处理同表1。误差线均表示标准偏差。"

表5

不同时期的N2O排放峰值及平均N2O排放通量"

品种
Variety
处理Treatment N2O排放通量峰值 Peak value of N2O emission flux (µg m-2 h-1) 平均N2O排放通量
Average N2O
emission flux
(µg m-2 h-1)
基肥
Base fertilizer
分蘖肥
Tillering fertilizer
搁田期
Field drying stage
穗肥
Earing fertilizer
南粳9108
Nanjing 9108
CK 16.99±1.04 f 41.29±0.54 de 207.17±4.24 f 21.66±0.29 f 35.42±0.56 f
FFT 356.59±1.15 c 266.47±3.23 a 732.37±0.49 a 1986.04±3.14 a 303.15±0.38 a
NM1 420.58±0.46 a 76.98±3.94 c 654.80±4.14 b 107.53±0.39 e 132.34±0.31 e
NM2 386.11±4.16 b 46.89±5.64 d 536.76±0.30 d 645.20±4.12 d 161.63±0.21 c
NM3 341.11±2.34 d 35.46±1.93 e 503.78±2.11 e 712.09±1.65 c 147.00±0.17 d
NM4 285.58±2.35 e 94.81±4.23 b 645.25±0.30 c 908.12±4.59 b 184.99±0.78 b
泰香梗1402 Taixiangjing 1402 CK 19.36±0.07 f 26.95±2.47 d 136.71±3.85 f 49.11±0.04 f 45.34±0.21 f
FFT 523.90±3.01 c 432.79±2.15 a 620.62±2.18 a 1570.49±2.96 a 260.39±0.51 a
NM1 752.41±1.43 a 65.86±1.53 b 577.67±1.29 b 73.47±0.25 e 161.83±0.04 d
NM2 656.35±0.21 b 68.84±0.91 b 458.90±1.29 c 599.67±2.64 d 179.30±0.10 c
NM3 413.74±1.53 d 48.79±1.44 c 413.85±0.56 e 682.65±3.54 c 164.93±0.25 e
NM4 326.92±1.34 e 66.47±2.46 b 437.41±0.89 d 1294.49±5.58 b 194.43±0.03 b

表6

不同处理全生育期的CH4、N2O排放累积量及减排率"

品种
Variety
处理
Treatment
CH4累积排放量
CH4 emission
accumulation
(kg hm-2)
CH4减排率
CH4 emission
reduction rate
(%)
N2O累积排放量
N2O emission
accumulation
(kg hm-2)
N2O减排率
N2O emission
reduction rate
(%)
南粳9108
Nanjing 9108
CK 75.96±0.03 f 0.88±0.01 f
FFT 275.97±0.57 a 7.94±0.01 a
NM1 156.15±0.05 e 43.42 3.05±0.01 e 61.56
NM2 169.78±0.18 d 38.48 3.95±0.00 c 50.22
NM3 174.03±1.70 c 36.94 3.57±0.01 d 55.07
NM4 200.11±0.12 b 27.49 4.55±0.01 b 42.66
泰香粳1402
Taixiangjing 1402
CK 105.43±1.34 e 1.18±0.01 f
FFT 351.19±2.79 a 6.61±0.02 a
NM1 157.88±1.05 d 55.04 3.76±0.01 e 43.09
NM2 192.21±0.02 c 45.27 4.18±0.00 c 36.74
NM3 192.90±1.59 c 45.07 4.01±0.01 d 39.41
NM4 280.27±0.36 b 20.20 4.92±0.00 b 25.56

图6

不同处理下的增温潜势与排放强度 处理同表1。不同小写字母表示不同处理间在0.05概率水平差异显著。误差线均表示标准偏差。GPW: 增温潜势; GHGI: 温室气体排放强度。"

[1] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径. 作物学报, 2022, 48: 930-941.
doi: 10.3724/SP.J.1006.2022.12073
Yan S J, Deng A X, Shang Z Y, Tang Z W, Chen C Q, Zhang J, Zhang W J. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production. Acta Agron Sin, 2022, 48: 930-941. (in Chinese with English abstract)
[2] Michelozzi P, De' Donato F. IPCC Sixth Assessment Report: stopping climate change to save our planet. Epidemiol Prev, 2021, 45: 227-229.
[3] 蔡延江, 丁维新, 项剑. 农田土壤N2O和NO排放的影响因素及其作用机制. 土壤, 2012, 44: 881-887.
Cai Y J, Ding W X, Xiang J. Factors controlling N2O and NO emissions from agricultural soils and their influencing mechanisms. Soils, 2012, 44: 881-887. (in Chinese with English abstract)
[4] Linquist B, van Groenigen K J, Adviento-Borbe M A, Pittelkow C, van Kessel C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol, 2012, 18: 194-209.
[5] Heffer P, Gruère A, Roberts T. Assessment of Fertilizer Use by Crop at the Global Level. Paris, France: International Fertilizer Industry Association, 2013.
[6] 张惠, 杨正礼, 罗良国, 张晴雯, 易军, 杨世琦, 陈媛媛, 王明. 黄河上游灌区稻田N2O排放特征. 生态学报, 2011, 31: 6606-6615.
Zhang H, Yang Z L, Luo L G, Zhang J W, Yi J, Yang S Q, Chen Y Y, Wang M. The feature of N2O emission from a paddy field in irrigation area of the Yellow River. Acta Ecol Sin, 2011, 31: 6606-6615. (in Chinese with English abstract)
[7] Behera S N, Sharma M, Aneja V P, Balasubramanian R. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res Int, 2013, 20: 8092-8131.
[8] Izquieta R S, López A M, Irigoyen J J, Santamaría J M, Santamaría C, Lasheras E, Ochoa H R, Elustondo D. Eco-physiological response of Hypnum cupressiforme Hedw. to increased atmospheric ammonia concentrations in a forest agrosystem. Sci Total Environ, 2018, 619-620: 883-895.
[9] Pan Y, Tian S, Zhao Y, Zhang L, Zhu X, Gao J, Huang W, Zhou Y, Song Y, Zhang Q, Wang Y. Identifying ammonia hot spots in China using a national observation network. Environ Sci Technol, 2018, 52: 3926-3934.
[10] 王书伟, 林静慧, 吴正贵, 陈吉, 潘云俊, 盛雪雯. 氮肥深施对太湖地区稻田氨挥发的影响. 中国生态农业学报, 2021, 29: 2002-2012.
Wang S W, Lin J H, Wu Z G, Chen J, Pan Y J, Sheng X W. The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China. Chin J Eco-Agric, 2021, 29: 2002-2012. (in Chinese with English abstract)
[11] 肖其亮, 朱坚, 彭华, 简燕, 纪雄辉. 秸秆与缓控释肥配施对双季稻田氨挥发的控制效果. 农业环境科学学报, 2021, 40: 2788-2800.
Xiao Q L, Zhu J, Peng H, Jian Y, Ji X H. Effects of controlled release fertilizer combined with rice straw on ammonia volatilization from double-cropping rice fields. J Agro-Environ Sci, 2021, 40: 2788-2800. (in Chinese with English abstract)
[12] 彭世彰, 杨士红, 徐俊增. 节水灌溉稻田氨挥发损失及影响因素. 农业工程学报, 2009, 25(8): 35-39.
Peng S Z, Yang S H, Xu J Z. Ammonia volatilization and its influence factors of paddy field under water-saving irrigation. Trans CSAE, 2009, 25(8): 35-39. (in Chinese with English abstract)
[13] 张文学, 孙刚, 何萍, 梁国庆, 王秀斌, 刘光荣, 周卫. 脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响. 植物营养与肥料学报, 2013: 1411-1419.
Zhang W X, Sun G, He P, Liang G Q, Wang X B, Liu G R, Zhou W. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields. J Plant Nutr Fert, 2013: 1411-1419. (in Chinese with English abstract)
[14] 陈苇, 卢婉芳, 段彬伍, Wassmann R, Lantin R S. 稻草还田对晚稻稻田甲烷排放的影响. 土壤学报, 2002, 39: 170-176.
Chen W, Lu W F, Duan B W, Wassmann R, Lantin R S. Effects of rice straw returning on methane emission in late rice paddy field. Acta Pedol Sin, 2002, 39: 170-176 (in Chinese with English abstract).
[15] 侯会静, 杨雅琴, 韩正砥, 李占超, 杨士红. 节水灌溉的稻田温室气体排放研究综述. 江苏农业学报, 2019, 47: 19-24.
Hou H J, Yang Y Q, Han Z D, Li Z C, Yang S H. Summarization of research on greenhouse gas emissions from paddy fields with water-saving irrigation. Jiangsu J Agric Sci, 2019, 47: 19-24. (in Chinese with English abstract)
[16] 吴家梅, 纪雄辉, 彭华, 谢运河, 官迪, 田发祥, 朱坚, 霍莲杰. 不同有机肥对稻田温室气体排放及产量的影响. 农业工程学报, 2018, 34(4): 162-169.
Wu J M, Ji X H, Peng H, Xie Y H, Guan D, Tian F X, Zhu J, Huo L J. Effects of different organic fertilizers on greenhouse gas emissions and yield in paddy fields. Trans CSAE, 2018, 34(4): 162-169. (in Chinese with English abstract)
[17] 李熠凡, 李烙布, 李伏生. 不同灌溉施氮模式对稻田甲烷和氧化亚氮排放的影响. 灌溉排水学报, 2021, 40(12): 44-53.
Li Y F, Li L B, Li F S. Effects of different irrigation and nitrogen application modes on methane and nitrous oxide emissions from paddy fields. J Irrig Drain, 2021, 40(12): 44-53. (in Chinese with English abstract)
[18] 郭腾飞, 梁国庆, 周卫, 刘东海, 王秀斌, 孙静文, 李双来, 胡诚. 施肥对稻田温室气体排放及土壤养分的影响. 植物营养与肥料学报, 2016, 22: 337-345.
Guo T F, Liang G Q, Zhou W, Liu D H, Wang X B, Sun J W, Li S L, Hu C. Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil. Plant Nutr Fert Sci, 2016, 22: 337-34.. (in Chinese with English abstract)
[19] 黄恒, 姜恒鑫, 刘光明, 刘嘉琦, 汪源, 王维领, 霍中洋. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232-2249.
doi: 10.3724/SP.J.1006.2021.02086
Huang H, Jiang H X, Liu G M, Liu X Q, Wang Y, Wang W L, Huo Z Y. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232-2249. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02086
[20] 纪雄辉, 郑圣先, 聂军, 戴平安, 郑颖俊. 稻田土壤上控释氮肥的氮素利用率与硝态氮的淋溶损失. 土壤通报, 2007, 38: 467-471.
Ji X H, Zheng S X, Nie J, DAI P A, Zheng Y J. Nitrogen recovery and nitrate leaching from a controlled release nitrogen fertilizer in an irrigated paddy soil. Chin J Soil Sci, 2007, 38: 467-471. (in Chinese with English abstract)
[21] 朱从桦, 张玉屏, 向镜, 张义凯, 武辉, 王亚梁, 朱德峰, 陈惠哲. 侧深施氮对机插水稻产量形成及氮素利用的影响. 中国农业科学, 2019, 52: 4228-4239.
doi: 10.3864/j.issn.0578-1752.2019.23.004
Zhu C H, Zhang Y P, Xiang J, Zhang Y K, Wu H, Wang Y L, Zhu D F, Chen H Z. Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice. Sci Agric Sin, 2019, 52: 4228-4239. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.23.004
[22] 侯朋福, 薛利祥, 俞映倞, 薛利红, 范立慧, 杨林章. 缓控释肥侧深施对稻田氨挥发排放的控制效果. 环境科学, 2017, 38: 5326-5332.
Hou P F, Xue L X, Yu Y L, Xue L H, Fan L H, Yang L Z. Control effect of side deep fertilization with slow-release fertilizer on ammonia volatilization from paddy fields. Environ Sci, 2017, 38: 5326-5332. (in Chinese with English abstract)
[23] 侯坤, 荣湘民, 韩磊, 潘治宇, 彭建伟, 张玉平, 谢桂先, 田昌, 韩永亮. 速效氮与缓控释氮配比一次性侧深施对双季稻产量、氮素利用率及氮素损失的影响. 农业环境科学学报, 2021, 40: 1923-1934.
Hou K, Rong X M, Han L, Pan Z Y, Peng J W, Zhang Y P, Xie G X, Tian C, Han Y L. Effects of one-time deep application of available nitrogen and slow and controlled-release nitrogen on rice yield, nitrogen use efficiency, and nitrogen loss. J Agric Environ Sci, 2021, 40: 1923-1934 (in Chinese with English abstract).
[24] 田昌, 周旋, 黄思怡, 袁浩凌, 谢桂先, 刘强, 彭建伟. 控释尿素减施对稻田CH4和N2O排放及经济效益的影响. 生态环境学报, 2019, 28: 2223-2230.
doi: 10.16258/j.cnki.1674-5906.2019.11.011
Tian C, Zhou X, Huang S Y, Yuan H L, Xie G X, Liu Q, Peng J W. Effects of controlled-release urea reduction on CH4 and N2O emissions and its economic benefits in double cropping paddy fields. Ecol Environ Sci, 2019, 28: 2223-2230. (in Chinese with English abstract)
[25] 郭晨. 缓/控释尿素施用对作物产量、氮肥利用率及温室气体排放的影响. 华中农业大学博士学位论文,湖北武汉, 2018.
Guo C. Effects of Slow/Controlled Release Urea Application on Crop Yield, Nitrogen Use Efficiency and Greenhouse Gas Emissions. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022. (in Chinese with English abstract)
[26] 易琼, 逄玉万, 杨少海, 卢钰升, 付弘婷, 李苹, 蒋瑞萍, 唐拴虎. 施肥对稻田甲烷与氧化亚氮排放的影响. 生态环境学报, 2013, 22: 1432-1437.
Yi Q, Pang Y W, Yang S H, Lu Y S, Fu H T, Li P, Jiang R P, Tang S H. CH4 and N2O emissions in paddy field as influenced by fertilization. Ecol Environ Sci, 2013, 22: 1432-1437. (in Chinese with English abstract)
[27] 朱从桦, 李旭毅, 陈惠哲, 武辉, 欧阳裕元, 余俊奇, 黄豹明, 罗粞. 侧深施氮对机械直播水稻产量及氮素利用的影响. 核农学报, 2020, 34: 2051-2058.
doi: 10.11869/j.issn.100-8551.2020.09.2051
Zhu C H, Li X Y, Chen H Z, Ou-Yang Y Y, Yu J Q, Huang B M, Luo X. Effects of side deep placement of nitrogen fertilizer on yield and nitrogen utilization efficiency of mechanized direct-seeded rice. Acta Agric Nucl Sin, 2020, 34: 2051-2058. (in Chinese with English abstract)
[28] Dun C P, Wang R, Mi K L, Zhang Y T, Zhang H P, Cui P Y, Guo Y L, Lu H, Zhang H C. One-time application of controlled- release bulk blending fertilizer enhanced yield, quality and photosynthetic efficiency of late japonica rice. J Integr Agric, 2023 (in Press).
[29] 马畅, 杜萌, 杨世宽, 林艳芝. 缓释肥与速效氮肥配比施用对滨海盐碱稻区水稻产量及生长发育的影响. 北方水稻, 2020, 50(2): 7-10.
Ma C, Du M, Yang S K, Lin Y Z. Effect of sustained release fertilizer and available nitrogen ration application on yield and growth development of rice in coastal saline soil. Nor Rice, 2020, 50(2): 7-10. (in Chinese with English abstract)
[30] 邢晓鸣, 李小春, 丁艳锋, 王绍华, 刘正辉. 缓控释肥组配对机插常规粳稻群体物质生产和产量的影响. 中国农业科学, 2015, 48: 4892-4902.
doi: 10.3864/j.issn.0578-1752.2015.24.004
Xing X M, Li X C, Ding Y F, Wang S H, Liu Z H. Effects of slow and controlled release fertilizer combination on population matter production and yield of mechanically transplanted conventional japonica rice. Sci Agric Sin, 2015, 48: 4892-4902. (in Chinese with English abstract)
[31] 杨梢娜, 范国灿, 杨飞, 杨佳恒. 施肥对滨海平原单季稻秀水134产量和经济效益的影响. 浙江农业科学, 2020, 61: 637-639.
Yang S N, Fan G C, Yang F, Yang J H. Effects of fertilization on yield and economic benefit of single cropping rice Xiushui 134 in coastal plain. Zhejiang Agric Sci, 2020, 61: 637-639. (in Chinese with English abstract)
[32] 魏海燕, 李宏亮, 程金秋, 张洪程, 戴其根, 霍中洋, 许轲, 郭保卫, 胡雅杰, 崔培媛. 缓释肥类型与运筹对不同穗型水稻产量的影响. 作物学报, 2017, 43: 730-740.
doi: 10.3724/SP.J.1006.2017.00730
Wei H Y, Li H L, Cheng J Q, Zhang H C, Dai Q G, Huo Z Y, Xu K, Guo B W, Hu Y J, Cui P Y. Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicles. Acta Agron Sin, 2017, 43: 730-740. (in Chinese with English abstract)
[33] Zhong X M, Zhou X, Fei J C, Huang Y, Wang G, Kang, X R, Hu, W F, Zhang H R, Rong X M, Peng J W. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine- transplanted rice with side-deep fertilization in a double-cropping rice system in southern China. Agric Ecosyst Environ, 2021, 306: 107, 183.
[34] 田昌, 周旋, 黄思怡, 袁浩凌, 谢桂先, 刘强, 彭建伟. 控释尿素减施对稻田CH4和N2O排放及经济效益的影响. 生态环境学报, 2019, 28: 2223-2230.
doi: 10.16258/j.cnki.1674-5906.2019.11.011
Tian C, Zhou X, Huang S Y, Yuan H L, Xie G X, Liu Q, Peng J W. Effects of controlled-release urea reduction on CH4 and N2O emissions and its economic benefits in double cropping paddy fields. Ecol Environ Sci, 2019, 28: 2223-2230. (in Chinese with English abstract)
[35] 王霞, 崔键, 周静. 典型红壤区稻田树脂包膜控释氮肥氨挥发研究. 土壤, 2011, 43: 56-59.
Wang X, Cui J, Zhou J. Ammonia volatilization of controlled-release urea enveloped with colophony from paddy field in typical red soil. Soils, 2011, 43: 56-59. (in Chinese with English abstract)
[36] Yao Y L, Zhang M, Tian Y H, Zhao M, Zhang B W, Zeng K, Zhao M, Yin B. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crops Res, 2018, 218: 254-266.
[37] Dong Y B, Wu Z, Zhang X, Feng L, Xiong Z. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system. Field Crops Res, 2019, 241: 107568.
[38] Liu T Q, Fan D J, Zhang X X, Chen J, Li C F, Cao C G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res, 2015, 184: 80-90.
[39] 肖其亮, 朱坚, 彭华, 李胜男, 纪雄辉. 稻田氨挥发损失及减排技术研究进展. 农业环境科学学报, 2021, 40: 16-25.
Xiao Q L, Zhu J, Peng H, Li S N, Ji X H. Ammonia volatilization loss and emission reduction measures in paddy fields. J Agro- Environ Sci, 2021, 40: 16-25. (in Chinese with English abstract)
[40] Pan B B, Lam S K, Mosier A, Luo Y, Chen D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric Ecosyst Environ, 2016, 232: 283-289.
[41] 武岩, 红梅, 林立龙, 美丽, 张建强. 不同施肥措施对河套灌区盐化潮土氨挥发及氧化亚氮排放的影响. 土壤, 2017, 49: 745-752.
Wu Y, Hong M, Lin L L, Mei L, Zhang J Q. Influence of different fertilization measures on NH3 volatilization and N2O emission in salined flavo-aquic soil of Hetao irrigation area. Soils, 2017, 49: 745-752. (in Chinese with English abstract)
[42] 彭世彰, 李道西, 徐俊增, 丁加丽, 何岩, 郁进元. 节水灌溉模式对稻田CH4排放规律的影响. 环境科学, 2007, 28: 9-13.
Peng S Z, Li D X, Xu J Z, Ding J L, He Y, Yu J Y. Effect of water-saving irrigation on the law of CH4 emission from paddy field. Environ Sci, 2007, 28: 9-13. (in Chinese with English abstract)
[43] 李晶, 王明星, 陈德章. 水稻田甲烷的减排方法研究及评价. 大气科学, 1998, (3): 99-107.
Li J, Wang M X, Chen D Z. Studies on mitigation methods of methane emission from rice paddies. Atmos Sci, 1998, (3): 99-107. (in Chinese)
[44] 周文鳞, 娄运生. 控释氮肥对抗除草剂转基因水稻田土壤甲烷排放的影响. 生态学报, 2014, 34: 4555-4560.
Zhou W L, Lou Y S. Effect of controlled-release nitrogen fertilizer on CH4 emission in transgenic rice from a paddy soil. Acta Ecol Sin, 2014, 34: 4555-4560. (in Chinese with English abstract)
[45] Schütz H, Holzapfel P A, Conrad R, Rennenberg H, Seiler W. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res-Atmos, 1989, 94: 16405-16416.
[46] 樊代佳. 氮肥深施对免耕稻田土壤有机质特性、甲烷排放及微生物群落的影响机制. 华中农业大学博士学位论文,湖北武汉, 2020.
Fan D J. Effects of Nitrogen Fertilizer Deep Placement on Organic Matter Properties, Methane Emissions and Microbial Communities in No Tillage Paddy Soil. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022. (in Chinese with English abstract)
[47] 尉海东. 稻田甲烷排放研究进展. 中国农学通报, 2013, 29(18): 6-10.
Wei H D. Research progress about methane emission from paddy fields. Chin Agric Sci Bull, 2013, 29(18): 6-10. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2012-4076
[48] 张怡, 吕世华, 马静, 徐华, 袁江, 董瑜皎. 控释肥料对覆膜栽培稻田N2O排放的影响. 应用生态学报, 2014, 25: 769-775.
pmid: 24984495
Zhang Y, Lyu S H, Ma J, Xu H, Yuan J, Dong Y J. Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation. Chin J Appl Ecol, 2014, 25: 769-775. (in Chinese with English abstract)
pmid: 24984495
[49] 纪洋, 张晓艳, 马静, 李小平, 徐华, 蔡祖聪. 控释肥及其与尿素配合施用对水稻生长期N2O排放的影响. 应用生态学报, 2011, 22: 2031-2037.
Ji Y, Zhang X Y, Ma J, Li X P, Xu H, Cai Z C. Effects of applying controlled-release fertilizer and its combination with urea on nitrous oxide emission during rice growth period. Chin J Appl Ecol, 2011, 22: 2031-2037. (in Chinese with English abstract)
[50] Yan X, Shi S, Du L, Xing G. Pathways of N2O emission from rice paddy soil. Soil Biol Biochem, 2000, 32: 437-440.
[51] 李香兰, 徐华, 曹金留, 蔡祖聪, 八木一行. 水分管理对水稻生长期N2O排放的影响. 土壤, 2006, 38: 703-707.
Li X L, Xu H, Cao J L, Cai J Z, Kazuyuki Y G. Effect of water management on N2O emission in rice-growing season. Soils, 2006, 38: 703-707. (in Chinese with English abstract)
[1] 王谢, 杨琴, 刘禹池, 李芹, 杨勤, 陈冠陶, 岳丽杰, 张建华, 陈新平, 刘永红. 中国西南地区旱坡地碳减排研究进展与展望[J]. 作物学报, 2024, 50(7): 1635-1646.
[2] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[3] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[4] 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372-1382.
[5] 武文明,陈洪俭,李金才,魏凤珍,王世济,周向红. 氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响[J]. 作物学报, 2012, 38(06): 1088-1096.
[6] 李学刚, 宋宪亮, 孙学振, 陈二影, 张美玲, 赵庆龙. 控释氮肥对棉花纤维品质、产量与氮肥利用效率的影响[J]. 作物学报, 2011, 37(10): 1910-1915.
[7] 武文明, 李金才, 陈洪俭, 魏凤珍, 王世济. 氮肥运筹方式对孕穗期受渍冬小麦穗部结实特性与产量的影响[J]. 作物学报, 2011, 37(10): 1888-1896.
[8] 唐海明, 肖小平, 汤文光, 杨光立. 双季稻区冬季覆盖作物残茬还田对稻田甲烷和氧化亚氮排放的影响[J]. 作物学报, 2011, 37(09): 1666-1675.
[9] 陈明霞, 黄见良, 崔克辉, 聂立孝, 彭少兵. 不同氮效率基因型水稻植株氨挥发速率及其与氮效率的关系[J]. 作物学报, 2010, 36(05): 879-884.
[10] 杨兰芳;蔡祖聪;祁士华. 大豆和玉米生长对土壤N2O排放的影响[J]. 作物学报, 2007, 33(05): 861-865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .