作物学报 ›› 2010, Vol. 36 ›› Issue (05): 879-884.doi: 10.3724/SP.J.1006.2010.00879
• 研究简报 • 上一篇
陈明霞1,2,黄见良1,*,崔克辉1,聂立孝1,彭少兵3
CHEN Ming-Xia1,2,HUANG Jian-Liang1,*,CUI Ke-Hui1,NIE Li-Xiao1,PENG Shao-Bing3
摘要:
植物组织中氮素气态挥发损失可能与其氮效率密切相关。探讨不同氮效率基因型水稻地上部NH3挥发特征及其与氮效率的关系,可为氮高效基因型的筛选提供理论依据和技术指标。本试验采用4个氮浓度进行盆栽液培,以扬稻6号、BG34-8、武育粳3号和珍汕97B等4个水稻品种为材料,研究水稻NH3挥发速率(ammonia volatilization rate, AVR)与氮利用效率的关系。结果表明,各基因型的AVR在各生育期的变化趋势不完全相同,扬稻6号和武育粳3号在幼穗分化期最高,分别为11.0和10.4 mg N h-1 pot-1,而BG34-8和珍汕97B的AVR在孕穗期最高,分别为22.5和23.4 mg N h-1 pot-1;对相同的基因型,随培养液中氮浓度的增加,植株的AVR增大,氮低效基因型珍汕97B和武育粳3号的增幅大于氮高效基因型扬稻6号和BG34-8;在培养液中氮浓度较高时(80 mg N L-1)植株地上部AVR与氮素积累量、氮素籽粒生产效率、氮肥农学利用率和氮肥生理利用率呈显著或极显著负相关 (r= -0.6768**、-0.6158*、-0.6667**、-0.8353**)。综上所述,水稻植株的AVR存在基因型差异,氮高效基因型的AVR较低;在高氮浓度液培条件下,较低的AVR可作为氮高效材料筛选指标。
[1] Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Challenge and opportunity in improving fertilizer nitrogen use efficiency of irrigated rice in China. Agric Sci China, 2002, 1(7): 776–785 [2] Zhu Z-L(朱兆良). Loss of fertilizer N from plants soil system and the strategies and techniques for its reduction. Soil Environ Sci (土壤与环境), 2000, 9(1): 1–6 (in Chinese with English abstract) [3] Lü S-H(吕世华), Zhang F-S(张福锁), Liu X-J(刘学军), Zeng X-Z(曾祥忠). More attention to the research on new techniques of soil, water and fertilizer resources management to promote the sustainable development of agriculture. Southwest China J Agric Sci (西南农业学报), 1999, 12(special issue): 26–31 (in Chinese with English abstract) [4] Frenev T R, Frevitt A C F, Datta S K, Obcemea W N, Real J G. The interdependence of ammonia volatilization and denitrification as nitrogen loss processes in flooded rice fields in Philippines. Biol Fert Soil, 1990, 9: 31–36 [5] Norman R J , Guindo D , Wells B R , Willson C E. Seasonal accumulation and partitioning of nitrogen in rice. Soil Sci Soc Am J, 1992, 56: 1521–1527 [6] Huang J-L(黄见良), Zou Y-B(邹应斌), Peng S-B(彭少兵), Buresh R J. Nitrogen uptake, distribution by rice and its losses from plant tissues. Plant Nutr Fert Sci (植物营养与肥料学报), 2004, 10(6): 579–583 (in Chinese with English abstract) [7] Wu X-Q(吴小庆), Xu Y-C(徐阳春), Shen Q-R(沈其荣). Progress in research on ammonia volatilization from plant leaves. J Ecol & Rural Environ (生态与农村环境学报), 2006, 22 (2): 80–84 (in Chinese with English abstract) [8] Chen M X, Huang J L, Cui K H, Nie L X, Shan F. Genotypic variations and terms of NH3 volatilization in four rice(Oryza sativa L.) cultivars. Asian J Plant Sci, 2009, 8: 353–360 [9] Broadbent F E, Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron J, 1987, 79: 786–791 [10] Padre A, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at sub-optimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res, 1996, 46: 127–142 [11] Jiang L-G(江立庚), Dai T-B(戴廷波), Wei S-Q(韦善清), Gan X-Q(甘秀芹), Xu J-Y(徐建云), Cao W-X(曹卫星). Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice. Acta Phytoecol Sin (植物生态学报), 2003, 27(4): 466–471 (in Chinese with English abstract) [12] Pu Z-Z(朴钟泽), Han L-Z(韩龙植), Gao X-Z (高熙宗). Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci (中国水稻科学), 2003, 17(4): 233–238 (in Chinese with English abstract) [13] Yoshida S, Coronel V. Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Sci Plant Nutr, 1976, 22: 207–211 [14] Buresh R J, Austin E R, Craswell E T. Analytical methods in 15N research. Fert Res, 1982, 3: 37–62 [15] Liu L-J(刘立军), Sang D-Z(桑大志), Liu C-L(刘翠莲), Wang Z-Q(王志琴), Yang J-C(杨建昌), Zhu Q-S(朱庆森). Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency. Sci Agric Sin (中国农业科学), 2003, 36(12): 1456–1461 (in Chinese with English abstract) [16] Jiang L-G(江立庚), Cao W-X(曹卫星), Gan X-Q(甘秀芹), Wei S-Q(韦善清), Xu J-Y(徐建云), Dong D-F(董登峰), Chen N-P(陈念平), Lu F-Y(陆福勇), Qin H-D(秦华东). Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin (中国农业科学), 2004, 37(4): 490–496 (in Chinese with English abstract) [17] Yu J-R(余家荣), Xiao Z-H(肖枝洪). Application of Probability, Statistics and SAS (概率统计及SAS应用). Wuhan: Wuhan University Press, 2007. pp 116–159 (in Chinese) [18] Huchinson G L, Mosier A R. Nitrous oxide emissions from an irrigated corn field. Science, 1979, 205: 1125-1127 [19] Parton W J, Morgan J A, Altenhofen J M, Harper L A. Ammonia volatilization from spring wheat plant. Agron J, 1988, 80: 419–425 [20] Li S-X(李生秀), Li Z-R(李宗让), Tian X-H(田霄鸿), Wang Z-H(王朝辉). Nitrogen loss from above-ground plants by volatilization. Plant Nutr Fert Sci (植物营养与肥料学报), 1995, 1(2): 18–25 (in Chinese with English abstract) [21] Dasgupta P K, Dong S. Solubility of ammonia in liquid water and generation of trace levels of standard gaseous ammonia. Atmos Environ, 1986, 20: 565–570 [22] Hartwig L H, Jxkman O C. Ammonia exchange crops and air. Norwegian J Agric Sci, 1994, 14(suppl): 5–41 [23] Wu X-Q(吴小庆), Xu Y-C(徐阳春), Shen Q-R(沈其荣), Guo S-W(郭世伟). Ammonia volatilization from shoots of different rice genotypes with different nitrogen use efficiency after flowering. Chin J Rice Sci (中国水稻科学), 2006, 20(4): 429–433 (in Chinese with English abstract) [24] Schjoerring J K, Husted S, Mack G, Nielsen K H, Finnemann J, Mattsson M. Physiological regulation of plant atmosphere ammonia exchange. Plant Soil, 2000, 221: 95–102 [25] Mattsson M, Hausler R E, Leegood R C, Lea P J, Schjoerring J K. Leaf–atmosphere NH3 exchange in barley mutants with reduced activities of glutamine systhetase. Plant Physiol, 1997, 114: 1307–1312 [26] Xu Y-C(徐阳春), Wu X-Q(吴小庆), Guo S-W(郭世伟), Shen Q-R(沈其荣). Nitrogen use efficiency and ammonia volatilization from rice shoot in late growth stages. Plant Nutr Fert Sci (植物营养与肥料学报), 2008, 14(2): 207–212 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|