欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1584-1596.doi: 10.3724/SP.J.1006.2024.34123

• 耕作栽培·生理生化 • 上一篇    下一篇

密度与氮素对夏播棉氮素吸收利用的影响

徐泽(), 吴莘玲, 刘震宇, 李涵佳, 冷鑫华, 吴天凡, 陈媛, 张祥, 陈德华*()   

  1. 扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2023-07-14 接受日期:2024-01-12 出版日期:2024-06-12 网络出版日期:2024-02-20
  • 通讯作者: * 陈德华, E-mail: cdh@yzu.edu.cn
  • 作者简介:E-mail: 544252305@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0100400);国家重点研发计划项目(2017YFD0201300)

Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton

XU Ze(), WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua*()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-07-14 Accepted:2024-01-12 Published:2024-06-12 Published online:2024-02-20
  • Contact: * E-mail: cdh@yzu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100400);National Key Research and Development Program of China(2017YFD0201300)

摘要:

为明确密度氮素对夏播棉氮素吸收利用的影响, 2019—2020年于扬州大学遗传生理重点实验室以特早熟品种中棉所425为材料, 2019年采用裂区设计, 以密度为主处理, 设60,000株 hm-2、90,000株 hm-2、120,000株 hm-2 3个水平, 以施氮量为副区, 设施纯氮0 kg hm-2、90 kg hm-2、150 kg hm-2、210 kg hm-2 4个水平; 2020年采用单因素随机区组设计, 设置生产对照CK (90,000株 hm-2; 180 kg hm-2氮素), 在120,000株 hm-2密度下, 设施纯氮0 kg hm-2、90 kg hm-2、150 kg hm-2、210 kg hm-2 4个水平, 研究密度与氮素处理对此种植方式下产量及其构成以及氮素吸收利用的影响。结果表明, 在120,000株 hm-2密度下配合施氮150 kg hm-2夏播棉籽棉产量显著提高, 达4147.8~5119.2 kg hm-2; 生殖器官干物重达2605.6~2863.6 kg hm-2且占比达50%以上; 生殖器官氮素积累量显著增加, 达45.97~60.70 kg hm-2; 氮素利用率显著提高, 氮肥回收利用率达42.58%~44.17%, 氮肥农学利用率达7.16~21.34 kg (kg N)-1, 氮素生理利用率达19.16~24.03 kg (kg N)-1, 氮肥偏生产力达21.12~34.13 kg (kg N)-1, 回归分析进一步表明氮肥回收利用率、氮肥农学利用率、氮素生理利用率与产量呈显著以上水平线性正相关; 喷施脱叶催熟剂前吐絮率达43.59%~60.76%, 喷施脱叶催熟剂后可达到正常吐絮的要求。因此, 高密中氮配合有利于夏播棉氮素的吸收利用, 可为棉花高产高效和减氮提供技术支撑。

关键词: 夏播棉, 密度, 氮素, 氮素利用率

Abstract:

In order to clarify the effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton, the CCRI 425 were used as the experimental materials in the Key Laboratory of Genetics and Physiology of Yangzhou University in 2019 and 2020. Density were used as the main treatments in 2019 and three levels of density of 60,000 plants hm-2, 90,000 plants hm-2, and 120,000 plants hm-2 were set. Nitrogen application rate as the secondary treatments and four levels of convention nitrogen application rate (0 kg hm-2, 90 kg hm-2, 150 kg hm-2, and 210 kg hm-2) were conducted. Production application (90,000 plants hm-2, 180 kg hm-2 nitrogen application rate) was used as the CK. Under the density of 120,000 plants hm-2, there were four levels of convention nitrogen application rate (0 kg hm-2, 90 kg hm-2, 150 kg hm-2, and 210 kg hm-2). The results showed that cotton seed yield was increased, reaching 4147.8-5119.2 kg hm-2, at the density of 12×104 plants hm-2 with nitrogen application of 150 kg hm-2. The dry matter of reproductive organs was 2605.6-2863.6 kg hm-2 and accounted for over 50% of the total dry matter weight. Nitrogen accumulation in reproductive organs was significantly increased, reaching 45.97-60.70 kg hm-2. Nitrogen use efficiency was significantly increased, nitrogen recovery efficiency (NRE) was 42.58%-44.17%, agronomic nitrogen use efficiency (aNUE) was 7.16-21.34 kg (kg N)-1, physiological nitrogen use efficiency (pNUE) was 19.16-24.03 kg (kg N)-1, partial productivity of nitrogen fertilizer (NPP) was 21.12-34.13 kg (kg N) -1. Regression analysis further showed that nitrogen recovery efficiency, nitrogen agronomic efficiency, nitrogen physiological efficiency, and physiological efficiency were linearly positively correlated with yield. The percentage of open bolls reached 43.59%-60.76% before spraying defoliation and ripening agent and the normal flocculation rate could be achieved after spraying defoliation and ripening agent. Therefore, high-density with medium nitrogen rate is beneficial to nitrogen absorption and utilization, which provides the technical support for high yield, high efficient production, and nitrogen reduction in cotton.

Key words: summer direct seeded cotton, planting density, nitrogen, nitrogen utilization rate

表1

密度和氮素对夏播棉产量及其构成的影响(2019)"

处理
Treatment
密度
Density
(plant hm-2)
单株成铃数
Bolls per plant
单铃重
Single boll weight (g)
籽棉产量
Seed cotton yield (kg hm-2)
皮棉产量
Lint yield
(kg hm-2)
衣分
Lint percentage
(%)
P1N0 56,415.8 a 7.4 cd 4.8 c 2760.6 ef 911.0 e 33.17 b
P1N1 58,013.7 a 8.9 abc 5.4 ab 2983.6 e 963.4 d 33.41 b
P1N2 56,036.9 a 9.5 ab 5.5 ab 3135.0 de 1061.9 cd 33.87 b
P1N3 57,748.0 a 10.0 a 5.7 a 3420.0 d 1078.3 cd 31.53 b
P2N0 84,812.1 a 6.3 d 4.7 c 2841.1 e 909.2 e 32.47 b
P2N1 85,022.4 a 7.5 cd 5.3 ab 3577.5 c 1308.7 b 36.58 a
P2N2 86,184.3 a 8.2 bc 5.7 a 4206.6 b 1360.7 b 32.35 a
P2N3 85,439.6 a 7.5 cd 5.4 ab 3645.0 c 1288.9 b 35.36 ab
P3N0 118,675.7 a 6.2 de 4.7 c 2818.0 e 1134.4 c 33.25 b
P3N1 116,442.3 a 7.9 cd 5.2 b 4929.6 a 1840.5 a 37.34 a
P3N2 116,574.7 a 7.9 cd 5.4 ab 5119.2 a 1972.8 a 38.54 a
P3N3 117,684.5 a 6.4 d 5.3 ab 4070.4 b 1470.4 b 36.12 a
FF-value
密度处理Density (P) NS 50.94** NS 121.96** 147.43** NS
氮处理Nitrogen (N) NS NS 4.21* 6.81* 6.07* NS
密度处理×氮处理P×N NS NS NS 7.23** 6.77** NS

表2

密度和氮素对夏播棉产量及其构成的影响(2020)"

处理
Treatment
密度
Density
(plants hm-2)
单株成铃数
Bolls per plant
单铃重
Single boll weight (g)
籽棉产量
Seed cotton yield (kg hm-2)
皮棉产量
Lint yield
(kg hm-2)
衣分
Lint percentage
(%)
CK 85,366.4 a 9.1 a 4.5 ab 3685.5 b 1405.9 b 38.15 a
P3N0 117,457.9 a 5.6 d 4.1 b 2755.2 c 1019.7 c 37.01 b
P3N1 115,698.3 a 6.9 bc 4.6 ab 3808.8 ab 1558.4 ab 40.92 a
P3N2 116,637.4 a 7.1 b 4.9 a 4174.8 a 1718.0 a 41.15 a
P3N3 118,547.8 a 6.5 c 4.5 ab 3510.0 b 1325.9 bc 37.77 ab

图1

2019-2020棉花生长期(6月至10月)降水量变化"

表3

密度和氮素对夏播棉烂铃及脱落情况的影响(2019)"

处理
Treatment
烂铃个数
Rotten bolls
烂铃率
Rate of rotten bolls (%)
脱落率
Shedding rate (%)
P1N0 0.5 a 2.6 a 63.2 ab
P1N1 0.4 a 1.9 a 57.1 b
P1N2 0.4 a 2.5 a 61.3 ab
P1N3 0.3 ab 2.4 a 58.8 b
P2N0 0.3 ab 1.9 a 63.6 ab
P2N1 0.4 a 1.8 a 68.2 a
P2N2 0.3 ab 1.5 a 65.6 ab
P2N3 0.3 ab 1.5 a 65.5 ab
P3N0 0.3 ab 1.4 a 71.4 a
P3N1 0.2 ab 1.1 b 72.2 a
P3N2 0.2 ab 1.1 b 70.1 a
P3N3 0.3 ab 1.4 a 69.5 a
FF-value
密度处理Density (P) NS NS 13.56*
氮处理Nitrogen (N) NS NS NS
密度处理×氮处理P×N NS NS NS

表4

密度和氮素对夏播棉烂铃及脱落情况的影响(2020)"

处理
Treatment
烂铃个数
Rotten bolls
烂铃率
Rate of rotten bolls (%)
脱落率
Shedding rate (%)
CK 0.3 a 1.5 a 65.5 a
P3N0 0.2 a 1.3 a 67.4 a
P3N1 0.2 a 1.8 a 62.7 a
P3N2 0.2 a 1.7 a 69.5 a
P3N3 0.3 a 2.2 a 65.3 a

表5

密度和氮素对夏播棉生殖器官干物质积累量的影响(2019)"

处理
Treatment
日期Date (month/day)
7/30 8/15 8/30 9/20
P1N0 17.5 cd 164.1 f 1196.8 cd 1857.9 e
P1N1 19.6 c 196.4 d 1348.6 b 2203.4 c
P1N2 20.8 c 239.0 cd 1567.0 b 2290.8 c
P1N3 25.4 bc 257.0 bcd 1609.4 ab 2668.8 b
P2N0 19.4 c 180.9 e 1205.8 c 2021.7 d
P2N1 25.8 bc 224.4 cd 1533.2 b 2269.8 c
P2N2 32.0 bc 356.0 bc 1500.4 b 2507.0 bc
P2N3 34.2 ab 271.4 bcd 1476.6 b 2824.6 a
P3N0 18.6 c 176.1 e 1208.6 c 2064.9 d
P3N1 36.2 ab 390.2 b 1744.5 ab 2848.8 a
P3N2 44.6 a 588.4 a 1955.5 a 2863.6 a
P3N3 35.4 ab 191.2 d 1156.4 c 1940.4 de
FF-value
密度处理Density (P) 20.71** 314.05** 49.90** 269.40**
氮处理Nitrogen (N) NS 17.08** 14.51** 11.14**
密度处理×氮处理P×N 3.82* 17.75** 12.83** 9.79**

表6

密度和氮素对夏播棉生殖器官干物质积累量的影响(2020)"

处理
Treatment
日期Date (month/day)
7/30 8/15 8/30 9/20
CK 29.0 b 235.6 b 1671.7 b 2079.9 ab
P3N0 18.2 d 205.9 d 1314.0 c 1593.6 b
P3N1 31.3 b 283.0 ab 1722.6 ab 2392.9 ab
P3N2 38.1 a 331.7 a 1922.6 a 2605.6 a
P3N3 30.3 b 200.1 c 1438.8 c 1896.3 b

图2

密度和氮素对生殖器官干物重所占比例的影响 处理同表1和表2。"

表7

密度和氮素对夏播棉氮素积累量的影响(2019)"

处理
Treatment
营养器官Nutritive organ 生殖器官Reproductive organ
7/30 8/15 8/30 9/20 7/30 8/15 8/30 9/20
P1N0 24.76 f 58.54 c 59.82 d 65.27 bc 3.37 cd 6.80 ef 23.05 e 28.18 e
P1N1 36.97 d 57.92 c 68.54 c 69.69 b 3.69 c 10.28 e 24.87 e 34.02 de
P1N2 39.67 d 63.53 c 72.79 c 73.35 b 3.99 c 10.62 e 31.13 d 41.71 cd
P1N3 46.15 c 66.57 c 75.86 c 78.50 b 4.17 c 12.38 de 34.10 cd 42.04 cd
P2N0 23.46 f 51.3 cd 56.86 de 74.35 b 3.41 cd 7.75 ef 28.96 de 34.40 de
P2N1 55.62 b 77.28 b 89.55 b 98.10 a 5.68 b 14.15 cd 34.73 cd 44.68 c
P2N2 59.07 b 77.60 b 93.65 ab 99.86 a 6.64 ab 16.27 bc 38.59 bc 45.67 c
P2N3 60.32 b 81.11 b 96.98 ab 100.46 a 6.21 ab 15.86 c 35.85 cd 45.32 c
P3N0 27.07 e 42.56 d 65.43 cd 75.23 b 2.53 d 9.43 e 24.69 e 38.92 d
P3N1 81.64 a 91.98 a 105.82 ab 110.95 a 6.98 ab 18.32 b 44.14 ab 52.35 bc
P3N2 80.80 a 90.97 a 104.39 ab 107.32 a 8.07 a 20.42 a 45.71 a 60.70 a
P3N3 83.71 a 95.21 a 109.41 a 113.39 a 6.80 ab 16.36 bc 40.71 abc 54.80 b
FF-value
密度处理Density (P) 111.07** 168.49** 342.37** NS 594.45** 664.34** 482.56** 1248.50**
氮处理Nitrogen (N) 69.14** 38.46** 34.45** 17.43* 43.41** 374.36** 257.34** 47.17**
密度处理×氮处理P×N 21.75** 34.64** 26.38** NS 22.17** 38.16** 45.60** 16.49**

表8

密度和氮素对夏播棉氮素积累量的影响(2020)"

处理
Treatment
营养器官Nutritive organ 生殖器官Reproductive organ
7/30 8/15 8/30 9/20 8/15 8/30 9/20
CK 43.18 ab 71.62 bc 91.28 a 109.33 a 17.10 ab 26.33 a 34.98 b
P3N0 27.59 c 61.20 c 75.12 b 86.59 b 13.89 b 18.72 b 25.24 d
P3N1 45.90 ab 88.53 ab 93.20 a 110.91 a 19.17 a 27.17 a 43.89 ab
P3N2 37.55 b 70.98 bc 86.81 ab 107.13 a 19.80 a 31.36 a 45.97 a
P3N3 49.09 a 90.60 a 100.65 a 112.23 a 14.04 b 24.82 a 32.60 bc

图3

不同生育期生殖器官氮素积累量与籽棉产量的关系"

表9

密度和氮素对氮肥利用率的影响(2019)"

处理
Treatment
氮肥回收利用率
NRE (%)
氮肥农学利用率
aNUE (kg kg-1N)
氮素生理利用率
pNUE (kg kg-1N)
氮肥偏生产力
NPP (kg kg-1N)
P1N1 14.41 d 2.48 de 10.26 d 33.15 bc
P1N2 12.90 de 2.50 de 15.61 cde 20.90 d
P1N3 11.40 e 3.14 d 17.09 cd 16.29 de
P2N1 37.81 b 8.18 bc 18.03 c 39.75 b
P2N2 24.52 c 9.10 b 20.78 b 28.04 c
P2N3 17.63 cd 3.83 d 17.03 cd 17.36 d
P3N1 35.72 bc 23.46 a 21.70 b 54.77 a
P3N2 42.58 a 21.34 ab 24.03 a 34.13 bc
P3N3 30.50 bc 5.96 c 16.56 cd 19.38 d
FF-value
密度处理Density (P) 262.64** 693.04** 90.25** 41.93**
氮处理Nitrogen (N) 42.92** 108.94** 51.24** 726.10**
密度处理×氮处理P×N 62.92** 503.38** 31.32** 56.97**

表10

密度和氮素对氮肥利用率的影响(2020)"

处理
Treatment
氮肥回收利用率
NRE (%)
氮肥农学利用率
aNUE (kg kg-1N)
氮素生理利用率
pNUE (kg kg-1N)
氮肥偏生产力
NPP (kg kg-1N)
CK 18.34 bc 3.80 b 15.09 b 15.43 c
P3N1 54.28 a 8.72 a 15.79 b 32.00 a
P3N2 44.17 a 7.16 ab 19.16 a 21.12 b
P3N3 22.61 b 2.74 b 12.55 b 12.71 d

表11

氮肥利用率与籽棉产量的关系"

年份
Year
氮肥利用率
Nitrogen use efficiency
与籽棉产量的回归关系
Correlation between nitrogen use efficiency and seed cotton yield
相关系数
Correlation coefficient
2019 氮肥回收利用率Nitrogen recovery efficiency y = 0.0128x-24.508 0.8104**
氮肥农学利用率Agronomic nitrogen use efficiency y = 0.01x-29.964 0.9291**
氮素生理利用率Physiological nitrogen use efficiency y = 0.0048x-0.6406 0.8938**
氮肥偏生产力Partial productivity of nitrogen fertilizer y = 0.0086x-4.3975 0.2627
2020 氮肥回收利用率Nitrogen recovery efficiency y = 1028.5x+3439.9 0.6343*
氮肥农学利用率Agronomic nitrogen use efficiency y = 69.857x+3403.2 0.7026**
氮素生理利用率Physiological nitrogen use efficiency y = 102.4x+2192.4 0.9989**
氮肥偏生产力Partial productivity of nitrogen fertilizer y = 14.479x+3500.6 0.4453*

表12

密度和氮素对夏播棉吐絮率的影响"

处理
Treatment
2019 2020
喷施前
Before application of harvest aid
喷施后
After application of
harvest aid
喷施前
Before application of harvest aid
喷施后
After application of
harvest aid
P1N0 58.23 b 81.02 a
P1N1 60.95 ab 83.01 a
P1N2 69.97 a 85.28 a
P1N3 64.96 ab 81.73 a
P2N0 56.54 b 76.47 ab
P2N1 57.29 b 80.95 a
P2N2 60.12 ab 84.96 a
P2N3 58.90 b 82.11 a
P3N0 51.25 bc 74.18 ab 35.60 b 69.97 ab
P3N1 53.28 bc 73.57 ab 43.62 ab 68.08 ab
P3N2 60.76 ab 81.83 a 43.59 ab 78.95 a
P3N3 59.25 ab 82.41 a 42.48 ab 75.53 a
CK 49.58 a 83.22 a
[1] 汪宏伟. 我国棉花产业现状及长江流域棉区转型升级的思考. 棉花科学, 2019, 41(3): 2-5.
Wang H W. The current situation of China’s cotton industry and reflections on the transformation and upgrading of cotton areas in the Yangtze River Basin. Cotton Sci, 2019, 41(3): 2-5. (in Chinese with English abstract)
[2] Luo Z, Liu H, Li W P, Zhao Q, Dai J L, Tian L W, Dong H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res, 2018, 218: 150-157.
[3] 王雷山. 播期和密度对夏直播棉花氮代谢的影响. 华中农业大学硕士学位论文,湖北武汉, 2016.
Wang L S. Effect of Sowing Date and Planting Density on Nitrogen Metabolism of Cotton under Summer Direct Sowing. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[4] 姬攀攀, 李洪菊, 罗冬玉, 侯玲, 罗艳萍, 杨芳, 王富, 吴吉平, 周家华. 种植密度对夏直播棉花生长及产量的影响. 湖北农业科学, 2019, 58(12): 31-33.
Ji P P, Li H J, Luo D Y, Hou L, Luo Y P, Yang F, Wang F, Wu J P, Zhou J H. Effects of planting density on growth and yield of summer direct-seeding cotton. Hubei Agric Sci, 2019, 58(12): 31-33. (in Chinese with English abstract)
[5] Dai J L, Li W J, Tang W, Zhang D M, Li Z H, Lu H Q, Egrinya E A, Dong H Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Res, 2015, 180: 207-215.
[6] 王子胜, 吴晓东, 郭文琦, 徐敏, 那艳斌, 张雷, 周治国. 种植密度对东北特早熟棉区棉花生物量和氮素累积的影响. 棉花学报, 2012, 24: 35-43.
doi: 10.11963/cs120105
Wang Z S, Wu X D, Guo W Q, Xu M, Na Y B, Zhang L, Zhou Z G. Effects of planting density on biomass and nitrogen accumulation in cotton, northeast China. Cotton Sci, 2012, 24: 35-43. (in Chinese with English abstract)
[7] 娄善伟, 高云光, 郭仁松, 赵强, 张巨松. 不同栽培密度对棉花植株养分特征及产量的影响. 植物营养与肥料学报, 2010, 16: 953-958.
Lou S W, Gao Y G, Guo R S, Zhao Q, Zhang J S. Effects of planting density on nutrition characteristics and yield of cotton. Plant Nutr Fert Sci, 2010, 16: 953-958. (in Chinese with English abstract)
[8] 李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春. 应用15N研究氮肥运筹对棉花氮素吸收利用及产量的影响. 植物营养与肥料学报, 2015, 21: 590-599.
Li P C, Dong H L, Liu A Z, Liu J R, Li R Y, Sun M, Li Y B, Mao S C. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using 15N trace technique. J Plant Nutr Fert, 2015, 21: 590-599. (in Chinese with English abstract)
[9] Fu Q L, Yu J Y, Chen Y X. Effect of nitrogen applications on dry matter and nitrogen partitioning in rice and nitrogen fertilizer requirements for rice production. J Zhejiang Univ, 2000, 26: 399-403.
[10] 王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46: 395-407.
doi: 10.3724/SP.J.1006.2020.94074
Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020, 46: 395-407. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94074
[11] 张田野. 化肥零增长行动实施效果及问题研究. 中国农业科学院硕士学位论文,北京, 2021.
Zhang T Y. Study on the Effect and Problems of Zero Growth Action of Chemical Fertilizer. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[12] 朱倩倩, 武雪萍, 张淑香, 许咏梅, 吉丽丽, 赵来明, 李小伟, 马文新. 化肥减量有机替代对新疆滴灌棉花产量及土壤养分的影响. 新疆农业科学, 2020, 57: 2135-2143.
doi: 10.6048/j.issn.1001-4330.2020.11.022
Zhu Q Q, Wu X P, Zhang S X, Xu Y M, Ji L L, Zhao L M, Li X W, Ma W X. Effects of reducing chemical fertilizer and organic fertilizer supplement on the yield and soil nutrient of drip irrigation cotton in Xinjiang. Xinjiang Agric Sci, 2020, 57: 2135-2143. (in Chinese with English abstract)
[13] 唐江华, 苏丽丽, 徐文修, 孟令贻, 王晨, 田文强, 张俊尧, 王家勇. 氮肥减施对棉花产量、干物质生产与氮素吸收利用的影响. 干旱地区农业研究, 2023, 41(2): 86-95.
Tang J H, Su L L, Xu W X, Meng L Y, Wang C, Tian W Q, Zhang J Y, Wang J Y. Effects of nitrogen fertilizer reduction on cotton yield, dry matter production and nitrogen uptake and utilization. Agric Res Arid Areas, 2023, 41(2): 86-95. (in Chinese with English abstract)
[14] Zhang D M, Li W J, Xin C S, Tang W, Egrinya E A, Dong H Z. Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crops Res, 2012, 138: 63-70.
[15] 张允昔, 陈宜, 崔爱花, 夏绍南, 杨磊, 鲁速明, 董合林. 不同施氮量对棉花产量和氮肥利用率的影响. 江西农业大学学报, 2014, 36: 1202-1206.
Zhang Y X, Chen Y, Cui A H, Xia S N, Yang L, Lu S M, Dong H L. The effects of different nitrogen application rates on cotton yield and nitrogen use efficiency. Acta Agric Univ Jiangxiensis, 2014, 36: 1202-1206. (in Chinese with English abstract)
[16] 宋兴虎. 氮肥用量对夏直播棉花产量形成和养分利用的影响. 华中农业大学硕士学位论文,湖北武汉, 2017.
Song X H. Effect of N Rate on Yield Formation and Nutrients Utilization of Summer Direct Seeding Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2017. (in Chinese with English abstract)
[17] 刘佳敏, 汪洋, 褚旭, 齐欣, 王慢慢, 赵亚南, 叶优良, 黄玉芳. 种植密度和施氮量对小麦-玉米轮作体系下周年产量及氮肥利用率的影响. 作物杂志, 2021, (1): 143-149.
Liu J M, Wang Y, Chu X, Qi X, Wang M M, Zhao Y N, Ye Y L, Huang Y F. Effects of planting density and nitrogen application rate on annual yield and nitrogen use efficiency of wheat-maize rotation system. Crops, 2021, (1): 143-149. (in Chinese with English abstract)
[18] 薛晓萍, 王建国, 郭文琦, 陈兵林, 尤军, 周治国. 氮素水平对初花后棉株生物量、氮素累积特征及氮素利用率动态变化的影响. 生态学报, 2006, 26: 3631-3640.
Xue X P, Wang J G, Guo W Q, Chen B L, You J, Zhou Z G. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation and nitrogen fertilization recovery rate of cotton after initial flowering. Acta Ecol Sin, 2006, 26: 3631-3640. (in Chinese with English abstract)
[19] 谭京红, 张露萍, 吴启侠, 朱建强, 张在镇. 基于不同肥源的棉花减氮施肥效果比较研究. 作物杂志, 2019, (1): 134-140.
Tan J H, Zhang L P, Wu Q X, Zhu J Q, Zhang Z Z. Comparative research on the effects of reducing nitrogen from different fertilizers on cotton. Crops, 2019, (1): 134-140. (in Chinese with English abstract)
[20] 王士红. 增密减氮对棉花产量品质的影响及氮高效生理基础研究. 山东农业大学博士学位论文,山东泰安, 2019.
Wang S H. Effects of Increasing Plant Density and Decreasing Nitrogen Rate on Yield and Quality of Cotton, and Physiological Mechanisms of Nitrogen Efficient Utilization. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2019. (in Chinese with English abstract)
[21] 刘瑞显, 史伟, 徐立华, 杨长琴, 郭文琦, 张培通. 种植密度对棉花干物质、氮素累积与分配的影响. 江苏农业学报, 2011, 27: 250-257.
Liu R X, Shi W, Xu L H, Yang C Q, Guo W Q, Zhang P T. Effects of planting density on dry matter and nitrogen accumulation and distribution of cotton. Jiangsu J Agric Sci, 2011, 27: 250-257. (in Chinese with English abstract)
[22] 刘瑞显, 史伟, 徐立华, 杨长琴, 郭文琦, 张培通. 长江下游棉区抗虫杂交棉适宜密度研究. 棉花学报, 2010, 22: 634-638.
doi: 10.11963/cs100620
Liu R X, Shi W, Xu L H, Yang C Q, Guo W Q, Zhang P T. Planting density of insect-resistant hybrid cotton in lower reaches of Yangtze River Valley. Cotton Sci, 2010, 22: 634-638. (in Chinese with English abstract)
[23] 支晓宇, 毛树春, 韩迎春, 李亚兵, 杜文丽, 李小新, 王国平, 范正义, 杨北方, 冯璐. 密度对棉花产量及棉铃内部产量构成的影响. 棉花学报, 2015, 27: 216-222.
doi: 10.11963/issn.1002-7807.201503004
Zhi X Y, Mao S C, Han Y C, Li Y B, Du W L, Li X X, Wang G P, Fan Z Y, Yang B F, Feng L. Effects of cultivars and planting density on yield components and seed characteristics in cotton. Cotton Sci, 2015, 27: 216-222. (in Chinese with English abstract)
doi: 10.11963/issn.1002-7807.201503004
[24] 董合林, 李鹏程, 刘爱忠, 王润珍. 华北平原一熟春棉干物质积累与养分吸收特性. 中国棉花, 2012, 39(12): 19-22.
doi: 10.11963/issn.1000-632X.20121206
Dong H L, Li P C, Liu A Z, Wang R Z. Characteristics of dry matter accumulation and nutrients uptake of spring-sown cotton under sole cropping in the north China Plain. China Cotton, 2012, 39(12): 19-22. (in Chinese with English abstract)
[25] 郑剑超, 闫曼曼, 张巨松, 高丽丽, 石洪亮, 郑慧, 张玉玲. 遮荫条件下氮肥运筹对棉花生长和氮素积累的影响. 植物营养与肥料学报, 2016, 22: 94-103.
Zheng J C, Yan M M, Zhang J S, Gao L L, Shi H L, Zheng H, Zhang Y L. Effects of nitrogen application on growth and nitrogen accumulation of cotton under shading condition. Plant Nutr Fert Sci, 2016, 22: 94-103. (in Chinese with English abstract)
[26] Chen W P, Hou Z N, Wu L S, Liang Y C, Wei C Z. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil, 2010, 326: 61-73.
[27] 陈广桂, 韦林洪. 我国化肥产业氮磷污染及防治对策. 农业环境与发展, 2012, 29(5): 63-66.
Chen G G, Wei L H. Nitrogen and phosphorus pollution in China’s fertilizer industry and its prevention and control measures. Agro-Environ Dev, 2012, 29(5): 63-66. (in Chinese with English abstract)
[28] 龚双凤, 马兴旺, 索俊宇, 陈宝燕, 朱靖蓉, 何万义, 杨涛. 氮肥运筹对机采棉养分吸收及产量的影响. 新疆农业科学, 2015, 52: 1216-1223.
Gong S F, Ma X W, Suo J Y, Chen B Y, Zhu J R, He W Y, Yang T. Nitrogen fertilizer management of regulation of cotton yield and nutrient uptake in the machine pick cotton patterns. Xinjiang Agric Sci, 2015, 52: 1216-1223. (in Chinese with English abstract)
[29] Ahmad S. 氮肥和种植密度对晚播棉花根系生长和氮代谢的影响. 华中农业大学硕士学位论文,湖北武汉, 2020.
Ahmad S. Effect of Nitrogen Fertilizer and Planting Density on Root Growth and Nitrogen Metabolism in Late Sown Cotton. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2020. (in Chinese with English abstract)
[30] 平文超, 张永江, 刘连涛, 孙红春, 李存东. 不同密度对棉花根系生长与分布的影响. 棉花学报, 2011, 23: 522-528.
doi: 10.11963/cs110606
Ping W C, Zhang Y J, Liu L T, Sun H C, Li C D. Effects of planting densities on the growth and distribution of root in cotton. Cotton Sci, 2011, 23: 522-528. (in Chinese with English abstract)
[31] 张宸, 梁悦, 殷昊, 张应榕, 陈波浪. 氮肥形态和品种对棉花根系形态与氮素积累的影响. 新疆农业科学, 2023, 60: 823-831.
doi: 10.6048/j.issn.1001-4330.2023.04.005
Zhang C, Liang Y, Yin H, Zhang Y R, Chen B L. Effects of nitrogen forms and varieties on root morphology and nitrogen accumulation of cotton. Xinjiang Agric Sci, 2023, 60: 823-831. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2023.04.005
[1] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[2] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响[J]. 作物学报, 2024, 50(6): 1554-1567.
[3] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[4] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[5] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[6] 聂晓玉, 李真, 王天尧, 周元委, 徐正华, 王晶, 汪波, 蒯婕, 周广生. 种植密度对角果期弱光胁迫油菜籽粒油脂积累的影响[J]. 作物学报, 2024, 50(2): 493-505.
[7] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[8] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[9] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[10] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[11] 吴希, 王家瑞, 郝淼艺, 张宏军, 张仁和. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响[J]. 作物学报, 2023, 49(4): 1065-1078.
[12] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[13] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[14] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[15] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .