欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1597-1607.doi: 10.3724/SP.J.1006.2024.34137

• 耕作栽培·生理生化 • 上一篇    下一篇

盐胁迫对油菜生理特征和菜籽产量品质的影响

王龙(), 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松*()   

  1. 江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 扬州大学农学院, 江苏扬州 225009
  • 收稿日期:2023-08-08 接受日期:2024-01-12 出版日期:2024-06-12 网络出版日期:2024-02-08
  • 通讯作者: * 左青松, E-mail: qszuo@yzu.edu.cn
  • 作者简介:E-mail: dx120210110@yzu.edu.cn
  • 基金资助:
    江苏省高等学校基础科学重大项目(21KJA210003);扬州市现代农业项目(YZ2022055);江苏省作物遗传生理重点实验室开放课题(YCSL201909)

Effects of salt stress on yield, quality, and physiology in rapeseed

WANG Long(), LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song*()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-08-08 Accepted:2024-01-12 Published:2024-06-12 Published online:2024-02-08
  • Contact: * E-mail: qszuo@yzu.edu.cn
  • Supported by:
    Major Project of Basic Science (Natural Science) in Colleges and Universities in Jiangsu Province(21KJA210003);Modern Agriculture Project in Yangzhou City, Jiangsu Province, China(YZ2022055);Open Project from Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology(YCSL201909)

摘要:

为了探明盐胁迫对油菜产量品质和生理特征的影响机制, 本研究以浙油50为材料, 于2020—2022年油菜生长季在盐城大丰盐碱地进行试验, 分别设置低盐和高盐处理, 研究油菜碳氮同化、光合特征、抗逆生理以及菜籽产量品质的变化。结果表明, 相比低盐处理, 高盐处理下油菜初花期各器官干物质积累降低18.46%~35.67%, 成熟期降低20.92%~46.03%; 高盐处理提高了初花期根和叶片的干物质分配比例, 降低了茎枝的分配比例, 提高了成熟期根和茎枝的分配比例, 降低了果壳和籽粒的分配比例。此外, 高盐处理降低初花期和成熟期各器官碳氮积累, 降低了茎枝和叶片的碳氮转运效率, 表明盐胁迫抑制油菜碳氮同化和花后养分转运, 最终导致籽粒产量降低; 另一方面, 高盐处理下各器官C/N显著降低, 表明盐胁迫对碳素同化的抑制程度强于氮素, 导致籽粒品质改变, 使籽粒蛋白质含量提高8.23%, 油分含量降低4.42%。高盐较低盐显著降低初花期叶片净光合速率、气孔导度、蒸腾系数、瞬间羧化效率, 提高胞间CO2浓度和水分利用效率, 表明盐胁迫对油菜光合的影响可能主要归因于非气孔限制。与低盐相比, 高盐下油菜H2O2和MDA含量增加27.41%和42.33%, SOD活性、CAT活性、AsA含量、可溶性蛋白含量和可溶性糖含量分别上升65.54%、22.85%、29.68%、9.75%和16.84%。由此认为, 盐胁迫通过抑制油菜碳氮同化和限制光合, 降低籽粒产量, 改变籽粒品质, 同时油菜可以提高抗氧化和渗透调节能力来适应盐胁迫环境。

关键词: 油菜, 盐胁迫, 碳氮同化, 生理, 产量品质

Abstract:

The objective of this study is to investigate the effects of salt stress on seed yield, quality, and physiological processes in rapeseed. During rapeseed growing season from 2020 to 2022, two different soil salinity levels of low soil salinity (LS) and high soil salinity (HS) were conducted for rapeseed planting in Dafeng city, Jiangsu province, China (33°24′N, 120°35′E). The results indicated that, compared with LS treatment, the biomass accumulation under HS treatment was decreased by 18.46%-35.67% at the early flowering stage, and 20.92%-46.03% at maturity stage, respectively. HS treatment increased the proportion of dry biomass distribution in roots and leaves and decreased the proportion of stem and branch distribution at the early flowering stage, and increased the proportion of root, stem, and branch distribution and decreased the proportion of pod and seed distribution at maturity stage. Moreover, compared with LS treatment, HS treatment decreased the accumulations of carbon (C) and nitrogen (N) in various organs at both early flowering and maturity stages, and decreased the efficiency of C and N translocation in stems, branches, and leaves at reproductive stage, indicating that salt stress inhibited C and N assimilation and translocation, and ultimately led to a decrease in seed yield. Besides, C/N in all organs under HS treatment was lower than that under LS treatment, indicating that the adverse effects of salt stress on C assimilation were more intensive than those on N assimilation, which resulted in the increased seed protein content by 8.23% and decreased oil content by 4.42%. In addition, compared with LS treatment, HS treatment decreased net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and instantaneous carboxylation efficiency (CE); however, it increased intercellular CO2 concentration (Ci) and water use efficiency (WUE), which indicating that the effects of salt stress on rapeseed photosynthesis were mainly attributed to the non-stomatal factors. HS treatment increased peroxide (H2O2) and malondialdehyde (MDA) content by 27.41% and 42.33% compared with LS treatment. The superoxide (SOD) activity, catalase (CAT) activity, ascorbic acid (AsA) content, soluble protein content, and soluble sugar content under HS treatment were increased by 65.54%, 22.85%, 29.68%, 9.75%, and 16.84%, compared with LS treatment, respectively. In conclusion, salt stress decreased the yield and changed quality by inhibiting C and N assimilation and photosynthesis in rapeseed, which could improve the antioxidants and osmotic regulation ability to adapt to salt stress environment.

Key words: rapeseed, salt stress, C and N assimilation, physiology, yield and quality

表1

试验地土壤理化性质"

盐分含量
Salt content
土壤盐离子含量Soil salt-ion content (g kg-1) 有机质
Organic
matter (g kg-1)
pH
K+ Na+ Ca2+ Mg2+ HCO3- Cl- SO42- 总盐
Total salt
低盐LS 0.057 b 0.491 b 0.229 b 0.065 b 0.387 b 0.902 b 0.361 a 2.492 b 15.89 8.01
高盐HS 0.084 a 1.211 a 0.305 a 0.087 a 0.483 a 2.198 a 0.349 a 4.717 a 15.67 8.25

表2

不同土壤盐分含量对油菜籽粒产量和品质的影响"

年份
Year
盐分含量
Salt content
实际产量
Seed yield (kg hm-2)
含油量
Oil content (%)
蛋白质含量
Protein content (%)
2020-2021 低盐LS 2664 b 47.36 a 23.06 b
高盐HS 1514 c 45.38 b 24.88 a
2021-2022 低盐LS 3004 a 47.86 a 23.21 b
高盐HS 1556 c 45.63 b 25.20 a
方差分析ANOVA
盐分含量Salt content (S) ** ** **
年份Year (Y) ** NS NS
盐分含量×年份 S×Y ** NS NS

表3

不同土壤盐分含量对油菜干物质积累的影响"

年份
Year
盐分含量
Salt content
初花期Early flowering stage 成熟期Maturity stage

Root
茎枝
Stem
叶片
Leaf
花前落叶
Pre-anthesis deciduous leaf

Root
茎枝
Stem
花后落叶
Post-anthesis deciduous leaf
果壳
Pod
籽粒
Seed
2020-2021 低盐LS 586 b 2743 b 1363 b 521 b 781 b 3388 b 1282 b 2283 b 2867 b
高盐HS 491 d 1904 d 1072 c 343 d 579 d 2459 d 1056 c 1397 c 1613 c
2021-2022 低盐LS 654 a 3042 a 1528 a 571 a 873 a 3704 a 1481 a 2508 a 3238 a
高盐HS 518 c 2003 c 1119 c 359 c 629 c 2614 c 1123 c 1449 c 1673 c
方差分析ANOVA
盐分含量Salt content (S) ** ** ** ** ** ** ** ** **
年份Year (Y) ** ** ** ** ** ** ** ** **
盐分含量×年份 S×Y ** ** ** ** * * * * **

表4

不同土壤盐分含量对油菜干物质分配的影响"

年份
Year
盐分含量
Salt content
初花期Early flowering stage 成熟期Maturity stage

Root
茎枝
Stem
叶片
Leaf

Root
茎枝
Stem
果壳
Pod
籽粒
Seed
2020-2021 低盐LS 12.49 b 58.45 a 29.05 b 8.38 c 36.36 b 24.50 a 30.76 a
高盐HS 14.18 a 54.92 b 30.90 a 9.58 b 40.66 a 23.09 b 26.67 b
2021-2022 低盐LS 12.52 b 58.23 a 29.25 b 8.46 c 35.88 b 24.29 a 31.37 a
高盐HS 14.23 a 55.04 b 30.73 a 9.89 a 41.07 a 22.77 b 26.27 b
方差分析ANOVA
盐分含量Salt content (S) ** ** ** ** ** ** **
年份Year (Y) NS NS NS ** NS NS NS
盐分含量×年份 S×Y NS NS NS * NS NS NS

表5

不同土壤盐分含量对油菜碳素含量的影响"

年份
Year
盐分含量
Salt content
初花期Early flowering stage 成熟期Maturity stage

Root
茎枝
Stem
叶片
Leaf
花前落叶
Pre-anthesis
deciduous
leaf

Root
茎枝
Stem
花后落叶
Post-anthesis
deciduous
leaf
果壳
Pod
籽粒
Seed
2020-2021 低盐LS 41.03 a 39.38 a 41.14 a 36.43 a 41.06 a 41.33 a 35.26 a 40.82 a 58.14 a
高盐HS 40.59 a 38.23 b 40.19 b 35.65 b 40.46 a 40.88 a 34.65 a 40.16 a 57.18 a
2021-2022 低盐LS 41.18 a 39.43 a 41.16 a 36.96 a 41.06 a 41.42 a 35.71 a 40.84 a 58.12 a
高盐HS 40.67 a 38.21 b 40.17 b 35.71 b 40.46 a 40.85 a 34.76 a 40.15 a 57.20 a
方差分析ANOVA
盐分含量Salt content (S) NS ** ** ** * NS NS * *
年份Year (Y) NS NS NS NS NS NS NS NS NS
盐分含量×年份 S×Y NS NS NS NS NS NS NS NS NS

表6

不同土壤盐分含量对油菜氮素含量的影响"

年份
Year
盐分含量Salt content 初花期Early flowering stage 成熟期Maturity stage

Root
茎枝
Stem
叶片
Leaf
花前落叶
Pre-anthesis
deciduous
leaf

Root
茎枝
Stem
花后落叶
Post-anthesis
deciduous
leaf
果壳
Pod
籽粒
Seed
2020-2021 低盐LS 1.19 b 1.56 b 3.91 b 0.86 b 0.65 b 0.65 b 0.99 b 0.74 b 3.71 b
高盐HS 1.31 a 1.82 a 4.11 a 0.94 a 0.79 a 0.82 a 1.10 a 0.84 a 3.97 a
2021-2022 低盐LS 1.19 b 1.55 b 3.92 b 0.84 b 0.65 b 0.65 b 0.97 b 0.74 b 3.72 b
高盐HS 1.32 a 1.83 a 4.12 a 0.92 a 0.78 a 0.82 a 1.13 a 0.84 a 4.01 a
方差分析ANOVA
盐分含量Salt content (S) ** ** ** ** ** ** ** ** **
年份Year (Y) NS NS NS NS NS NS NS NS NS
盐分含量×年份 S×Y NS NS NS NS NS NS NS NS NS

图1

不同土壤盐分含量对油菜碳氮积累的影响 同一器官不同字母表示在0.05概率水平处理间显著差异。"

表7

不同土壤盐分含量对油菜C/N的影响"

年份
Year
盐分含量
Salt content
初花期Early flowering stage 成熟期Maturity stage

Root
茎枝
Stem
叶片
Leaf
花前落叶
Pre-anthesis
deciduous leaf

Root
茎枝
Stem
花后落叶
Post-anthesis
deciduous leaf
果壳
Pod
籽粒
Seed
2020-2021 低盐LS 34.59 a 25.21 a 10.52 a 42.61 a 63.46 a 63.65 a 35.79 a 55.08 a 15.66 a
高盐HS 30.99 b 20.98 b 9.77 b 37.86 b 51.44 b 49.98 b 31.38 b 47.60 b 14.42 b
2021-2022 低盐LS 34.73 a 25.39 a 10.50 a 44.02 a 63.29 a 63.76 a 36.81 a 55.57 a 15.64 a
高盐HS 30.91 b 20.84 b 9.74 b 38.81 b 51.69 b 49.86 b 30.78 b 47.59 b 14.27 b
方差分析ANOVA
盐分含量Salt content (S) ** ** ** ** ** ** ** ** **
年份Year (Y) NS NS NS * NS NS NS NS NS
盐分含量×年份 S×Y NS NS NS NS NS NS NS NS NS

图2

不同土壤盐分含量对油菜碳氮转运的影响 同一年间同一器官不同字母表示在0.05概率水平处理间显著差异。"

表8

不同土壤盐分含量对油菜光合的影响"

年份
Year
盐分含量
Salt content
净光合速率
Pn
(μmol CO2 m-2 s-1)
气孔导度
Gs
(mol H2O m-2 s-1)
胞间CO2浓度
Ci
(μmol CO2 m-2)
蒸腾系数
Tr
(mmol H2O m-2 s-1)
瞬间羧化效率
CE
水分利用效率
WUE
2020-2021 低盐LS 23.73 a 0.288 a 221 b 5.34 a 0.107 a 4.44 b
高盐HS 21.94 b 0.251 b 252 a 4.50 b 0.087 b 4.88 a
2021-2022 低盐LS 23.92 a 0.293 a 221 b 5.38 a 0.108 a 4.45 b
高盐HS 21.94 b 0.252 b 251 a 4.53 b 0.087 b 4.85 a
方差分析ANOVA
盐分含量Salt content (S) ** ** ** ** ** **
年份Year (Y) NS NS NS NS NS NS
盐分含量×年份 S×Y NS NS NS NS NS NS

图3

不同土壤盐分含量对油菜活性氧含量的影响 不同字母表示在0.05概率水平下处理间显著差异。**表示在0.01概率水平显著相关。"

表9

不同土壤盐分含量对油菜抗氧化和渗透物质的影响"

年份
Year
盐分含量
Salt content
SOD活性
SOD activity
(U g-1 FW)
CAT活性
CAT activity
(U g-1 FW)
抗坏血酸含量
AsA content
(ng g-1 FW)
可溶性蛋白含量
Soluble protein content
(mg g-1 FW)
可溶性糖含量Soluble sugar content
(mg g-1 FW)
2020-2021 低盐LS 485 b 154 b 555 b 151.7 b 8.63 b
高盐HS 791 a 187 a 722 a 168.7 a 10.02 a
2021-2022 低盐LS 479 b 146 b 558 b 156.7 b 8.57 b
高盐HS 806 a 181 a 721 a 169.7 a 10.07 a
方差分析ANOVA
盐分含量Salt content (S) ** ** ** ** **
年份Year (Y) NS * NS NS NS
盐分含量×年份 S×Y NS NS NS NS NS
[1] Shrivastava P, Kumar R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saud J Biol Sci, 2015, 22: 123-131.
[2] Jamil A, Riaz S, Ashraf M, Foolad M R. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci, 2011, 30: 435-458.
[3] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[4] 王萌, 奚钊, 万楚筠, 陈文超, 万霞, 黄凤洪. 微生物发酵在菜籽饼粕饲用品质改良中的应用研究进展. 中国油料作物学报, 2020, 42: 313-324.
Wang M, Xi Z, Wan C Y, Chen W C, Wan X, Huang F H. Research progress on application of microbial fermentation in improving feed quality of rapeseed cake and meal. Chin J Oil Crop Sci, 2020, 42: 313-324. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019194
[5] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价. 作物学报, 2022, 48: 1451-1462.
doi: 10.3724/SP.J.1006.2022.14051
Wang W N, Ge J Z, Yang H C, Yin F T, Huang T L, Kuai J, Wang J, Wang B, Zhou G S, Fu T D. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil. Acta Agron Sin, 2022, 48: 1451-1462. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14051
[6] 刘晓, 刘晓红, 宋姝, 吕婉嘉, 杨新豪, 马云霞, 杨永青. 盐碱胁迫下植物体内离子平衡调控的机制. 植物生理学报, 2023, 59: 715-726.
Liu X, Liu X H, Song S, Lyu W J, Yang X H, Ma Y X, Yang Y Q. Regulation of ion homeostasis for salinity tolerance in plants. Plant Physiol J, 2023, 59: 715-726. (in Chinese with English abstract)
[7] 付海奇, 刘晓, 宋姝, 吕婉嘉, 杨永青. 次生代谢物调控植物抵抗盐碱胁迫的机制. 植物生理学报, 2023, 59: 727-740.
Fu H Q, Liu X, Song S, Lyu W J, Yang Y Q. Mechanisms of secondary metabolites regulating plant resistance to salinity and alkali stress. Plant Physiol J, 2023, 59: 727-740. (in Chinese with English abstract)
[8] 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展. 分子植物育种, 2020, 18: 2741-2746.
Qi Q, Ma S R, Xu W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance. Mol Plant Breed, 2020, 18: 2741-2746 (in Chinese with English abstract).
[9] Yang Y Q, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol, 2018, 217: 523-539.
doi: 10.1111/nph.14920 pmid: 29205383
[10] 蒋家慧. 氮肥运筹对小麦碳素同化、运转和产量的影响. 麦类作物学报, 2004, 24: 69-72.
Jiang J H. Effects of nitrogen application on carbon assimilation, transfer and yield of the wheat. J Triticeae Crops, 2004, 24: 69-72. (in Chinese with English abstract)
[11] Zhang C C, Zhou C Z, Burnap R L, Peng L. Carbon/nitrogen metabolic balance: lessons from cyanobacteria. Trends Plant Sci, 2018, 23: 1116-1130.
[12] Zuo Q S, Liu J Y, Shan J, Zhou J L, Wang L, Yang G, Leng S H, Liu H. Carbon and nitrogen assimilation and partitioning in canola (Brassica napus L.) in saline environment. Commun Soil Sci Plant Anal, 2019, 12: 1700-1709.
[13] 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响. 草业学报, 2023, 32(2): 75-83.
doi: 10.11686/cyxb2022041
Zhou X J, Huang H X, Zhang J X, Ma B D, Lu G, Qi J W, Zhang T, Zhu Z. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings. Acta Pratac Sin, 2023, 32(2): 75-83. (in Chinese with English abstract)
[14] 陈雪, 吉春容, 巴特尔·巴克, 胡启瑞, 杨明凤, 郭燕云, 刘爱琳. 膜下滴灌条件下棉花花铃期光合特征参数对干旱胁迫的响应. 中国农学通报, 2023, 39(19): 1-8.
doi: 10.11924/j.issn.1000-6850.casb2023-0108
Chen X, Ji C R, Bake B, Hu Q R, Yang M F, Guo Y Y, Liu A L. Response of photosynthetic characteristic parameters of cotton at flower and boll stages to drought stress under mulched drip irrigation. Chin Agric Sci Bull, 2023, 39(19): 1-8. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2023-0108
[15] Wang L, Zuo Q S, Zheng J D, You J J, Yang G, Leng S H. Salt stress decreases seed yield and postpones growth process of canola (Brassica napus L.) by changing nitrogen and carbon characters. Sci Rep, 2022, 12: 17884.
[16] 左青松, 蒯婕, 刘浩, 冯倩南, 刘婧怡, 丁立, 杨晨, 杨光, 周广生, 冷锁虎. 土壤盐分对油菜氮素积累、运转及利用效率的影响. 植物营养与肥料学报, 2017, 23: 827-833.
Zuo Q S, Kuai J, Liu H, Feng Q N, Liu J Y, Ding L, Yang C, Yang G, Zhou G S, Leng S H. Effects of soil salt content on accumulation, translocation and utilization efficiency of nitrogen in rapeseed. J Plant Nutr Fert, 2017, 23: 827-833. (in Chinese with English abstract)
[17] 刘浩, 左青松, 刘婧怡, 周佳琳, 丁立, 杨晨. 盐分浓度对油菜干物质积累分配、农艺性状及品质的影响. 中国农学通报, 2017, 33(22): 19-23.
doi: 10.11924/j.issn.1000-6850.casb16070143
Liu H, Zuo Q S, Liu J Y, Zhou J L, Ding L, Yang C. Effects of salt-ion content on dry matter accumulation and distribution, agronomic traits and quality of rapeseed. Chin Agric Sci Bull, 2017, 33(22): 19-23. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16070143
[18] 谷晓博, 李援农, 杜娅丹, 任全茂, 吴国军, 银敏华. 施肥深度对冬油菜产量、根系分布和养分吸收的影响. 农业机械学报, 2016, 47(6): 120-128.
Gu X B, Li Y N, Du Y D, Ren Q M, Wu G J, Yin M H. Effects of fertilization depth on yield, root distribution and nutrient uptake of winter oilseed rape (Brassica napus L.). Trans CSAM, 2016, 47(6): 120-128. (in Chinese with English abstract)
[19] 税红霞, 汤天泽. 油菜器官与产量关系的研究进展. 安徽农学通报, 2007, 13(16): 111-113.
Shui H X, Tang T Z. Progress of study on relationship between organs and yield in rape. Anhui Agric Sci Bull, 2007, 13(16): 111-113. (in Chinese with English abstract)
[20] 李俊, 张春雷, 赵懿, 马霓, 余利平. 油菜短柄叶光合衰退及其对产量的影响. 中国油料作物学报, 2011, 33: 464-469.
Li J, Zhang C L, Zhao Y, Ma N, Yu L P. Short-stalk leaf photosynthesis declining and its effect on rapeseed yield. Chin J Oil Crop Sci, 2011, 33: 464-469. (in Chinese with English abstract)
[21] Farhangi-abriz S, Torabian S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis, 2018, 74: 215-223.
[22] Guo L Y, Lu Y Y, Bao S Y, Zhang Q, Geng Y Q, Shao X W. Carbon and nitrogen metabolism in rice cultivars affected by salt-alkaline stress. Crop Pasture Sci, 2021, 72: 372-382.
[23] Siddiqui M H, Khan M N, Mohammad F, Khan M M A. Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci, 2008, 194: 214-224.
[24] Gupta M, Bhaskar P B, Sriram S, Wang P H. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Rep, 2017, 36: 637-652.
doi: 10.1007/s00299-016-2064-1 pmid: 27796489
[25] Steppuhn H, Falk K C, Zhou R. Emergence, height, grain yield and oil content of camelina and canola grown in saline media. Can J Soil Sci, 2010, 90: 151-164.
[26] 龙卫华, 胡茂龙, 陈松, 高建芹, 浦惠明. 盐地种植对甘蓝型油菜产量和品质性状的影响. 江苏农业科学, 2015, 43(3): 85-87.
Long W H, Hu M L, Chen S, Gao J Q, Pu H M. Effects of soil salt on yield and quality in rapeseed. Jiangsu Agric Sci, 2015, 43(3): 85-87. (in Chinese with English abstract)
[27] Yang N M, Li S, Wang S L, Li Q, Xu F S, Shi L, Wang C, Ye X S, Cai H M, Ding G D. Dynamic transcriptome analysis indicates extensive and discrepant transcriptomic reprogramming of two rapeseed genotypes with contrasting NUE in response to nitrogen deficiency. Plant Soil, 2020, 456: 369-390.
[28] Batool M, El-badri A M, Zhou G S. Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. J Plant Growth Regul, 2023, 42: 21-45.
[29] Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS: scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot, 2007, 99: 1161-1173.
[30] Biswas D K, Ma B L, Morrison M J. Changes in leaf nitrogen and phosphorus content, photosynthesis, respiration, growth, and resource use efficiency of a rapeseed cultivar as affected by drought and high temperatures. Can J Plant Sci, 2019, 99: 488-498.
doi: 10.1139/cjps-2018-0023
[31] 刘自刚, 王志江, 方圆, 孙万仓, 袁金海, 米超, 方彦, 武军艳, 李学才. NaCl胁迫对白菜型冬油菜种子萌发和幼苗生理的影响. 中国油料作物学报, 2017, 39: 351-359.
Liu Z G, Wang Z J, Fang Y, Sun W C, Yuan J H, Mi C, Fang Y, Wu J Y, Li X C. Effect of salt stress on seed germination and seedling physiology of winter rapeseed (Brassica rape L.). Chin J Oil Crop Sci, 2017, 39: 351-359 (in Chinese with English abstract).
[32] 王鲲娇, 任涛, 陆志峰, 鲁剑巍. 不同镁供应浓度对油菜苗期生长和生理特性的影响. 中国农业科学, 2021, 54: 3198-3206.
doi: 10.3864/j.issn.0578-1752.2021.15.005
Wang K J, Ren T, Lu Z F, Lu J W. Effects of different magnesium supplies on the growth and physiological characteristics of oilseed rape in seedling stage. Sci Agric Sin, 2021, 54: 3198-3206. (in Chinese with English abstract)
[33] He Y, Yu C L, Zhou L, Chen Y, Liu A, Jin J H, Hong J, Qi Y H, Jiang D A. Rubisco decrease is involved in chloroplast protrusion and Rubisco-containing body formation in soybean (Glycine max) under salt stress. Plant Physiol Biochem, 2014, 74: 118-124.
[34] 熊大斌, 曹玲珑, 李冬兵, 邓利, 尹钧, 牛洪斌. 脯氨酸对盐胁迫条件下大麦叶片Rubisco酶活性的影响. 河南农业大学学报, 2015, 49: 443-449.
Xiong D B, Cao L L, Li D B, Deng L, Yin J, Niu H B. Effect of proline on Rubisco activity in barley leaves during salinity stress. J Henan Agric Univ, 2015, 49: 443-449. (in Chinese with English abstract)
[35] 张腾国, 胡馨丹, 李萍, 刁志宏, 王娟, 郑晟. 盐及低温胁迫对油菜ROS和抗氧化酶活性的影响. 兰州大学学报(自然科学版), 2019, 55: 497-505.
Zhang T G, Hu X D, Li P, Diao Z H, Wang J, Zheng S. Effects of low temperature and salt stress on the activity of ROS and antioxidant enzymes in Brassica campestris seedlings. J Lanzhou Univ(Nat Sci), 2019, 55: 497-505 (in Chinese with English abstract).
[36] 赖晶, 李巧丽, 张小花, 粱娟红, 张腾国. 外源ATP对盐胁迫下油菜幼苗生长的影响. 生态学杂志, 2020, 39: 1983-1993.
Lai J, Li Q L, Zhang X H, Liang J H, Zhang T G. Effects of exogenous ATP on the growth of Brassica campestris seedlings under salt stress. Chin J Ecol, 2020, 39: 1983-1993. (in Chinese with English abstract)
[1] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[2] 闫子恒, 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生. 油菜籽粒叶绿素降解速率对菜籽油关键品质的影响[J]. 作物学报, 2024, 50(7): 1818-1828.
[3] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[4] 谢雄泽, 谢捷, 褚乾梅, 尹羽丰, 余小红, 王盾, 冯鹏. 长江流域冬油菜需水量及水分盈亏特征分析[J]. 作物学报, 2024, 50(7): 1829-1840.
[5] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[6] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响[J]. 作物学报, 2024, 50(6): 1554-1567.
[7] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[8] 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350.
[9] 王先领, 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响[J]. 作物学报, 2024, 50(5): 1271-1286.
[10] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[11] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[12] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[13] 李航宇, 刘心诚, 贺文婷, 刘可意, 乔振华, 吕品苍, 张献华, 何玉池, 蔡得田, 宋兆建. 四倍体海稻86的诱导、鉴定及其耐盐碱特性评价分析[J]. 作物学报, 2024, 50(4): 914-931.
[14] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[15] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .