欢迎访问作物学报,今天是

作物学报

• •    

大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究

何鹏旭1,2,**,姚立蓉1,2,**,*,闫妍1,2,张宏1,2,汪军成1,2,李葆春1,3,杨轲1,2,司二静1,2,孟亚雄1,2,马小乐1,2,王化俊1,2   

  1. 1 省部共建干旱生境作物学国家重点实验室 / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州730070; 2 甘肃农业大学农学院, 甘肃兰州730070; 3 甘肃农业大学生命科学技术学院, 甘肃兰州730070
  • 收稿日期:2024-11-12 修回日期:2025-06-01 接受日期:2025-06-01 网络出版日期:2025-06-19
  • 基金资助:
    本研究由东西部科技协作专项(25CXNA030), 财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-05-02A-02), 国家重点实验室开放基金项目(GSCS-2021-02), 甘肃省现代农业产业技术体系(麦类作物),甘肃农业大学公招博士科研启动项目(GAU-KYQD-2022-10),甘肃省教育厅产业支撑计划项目(2021CYZC-12), 甘肃农业大学伏羲青年英才计划(GAUfx-04Y011, Gaufx-03Y06)和甘肃省陇原青年英才项目(2023)资助。

Differences and correlations in physiological and molecular mechanisms of barley germination under drought stress

HE Peng-Xu1,2,YAN Yan1,2,ZHANG Hong1,2,WANG Jun-Cheng1,2,LI Bao-Chun1,3,YANG Ke1,2,SI Er-Jing1,2,MENG Ya-Xiong1,2,MA Xiao-Le1,2,WANG Hua-Jun1,2,YAO Li-Rong1,2,*   

  1. 1 State key laboratory of Aridland Crop Science / The State Key Laboratory of Crop Genetic Improvement and Germplasm Innovation of Gansu Province, Lanzhou730070, Gansu, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou730070, Gansu, China; 3 College of Life Science and Technology, Gansu Agricultural University, Lanzhou730070, Gansu, China
  • Received:2024-11-12 Revised:2025-06-01 Accepted:2025-06-01 Published online:2025-06-19
  • Supported by:
    This study was supported by the East West Science and Technology Cooperation Special Project (25CXNA030),the China Agriculture Research System of MOF and MARA (CARS-05-02A-02), the State Key Laboratory of Aridland Crop Science Open Fund (GSCS-2021-02), the Modern Agricultural Industry Technology System in Gansu Province (Triticeae Crops), the Scientific Research Start-up Funds for Openly-recuited Doctors of Gansu Agricultural University (GAU-KYQD-2022-10), the Industrial Support Project of Colleges and Universities in Gansu Province (2021CYZC-12), the Fuxi Young Talents Fund of Gansu Agricultural University (GAUfx-04Y011, Gaufx-03Y06), and the Gansu Province Longyuan Youth Talent Project (2023).

摘要:

干旱是大麦(Hordeum vulgare L.)生长发育中面临的重要逆境,可对种子萌发期、开花期等各个生长阶段造成不可逆影响。为了探究干旱胁迫下不同大麦种质资源的萌发特性,本试验采用蛭石控水法对54份大麦种质资源萌发特性进行研究。将54份种质资源干旱萌发特性分为好、较好、中、较差和差5,干旱萌发特性中等的种质资源占比最高(37.04%)E02703897ZDM54307份干旱萌发特性好的种质资源,种子萌发速度快,出苗整齐且幼苗健壮;08134和资源136-214900586份萌发特性差的种质资源,种子发芽率较低,萌发时间分散,幼苗整齐度差。进一步筛选出干旱萌发特性差异显著的6份种质资源E02703897ZDM54307DCADAZ1920057W、菲特36和资源69-G231M004M进行干旱胁迫下种子萌发过程中生理生化指标、DNA损伤修复分析。结果表明,干旱萌发特性好的大麦种质资源在干旱萌发中期HVFPG基因表达量与干旱萌发前期HVOGG1基因表达量低于干旱萌发特性差的种质资源。萌发特性好的种质资源干旱萌发前期和中期POD活性受干旱影响较小;萌发前期SOD、半胱氨酸蛋白酶活性受干旱影响较小;干旱萌发6 h可溶性糖含量与对照相比无显著差异。萌发特性差的种质资源干旱萌发中期POD活性极显著低于对照,菲特36干旱萌发过程中可溶性糖含量均极显著低于对照。综上结果表明,干旱萌发特性好的种质资源在干旱萌发过程中DNA损伤程度小、抗氧化能力和物质转化能力强,种子萌芽速度快,幼苗生长质量好。

关键词: 大麦, 干旱胁迫, 种子萌发, DNA修复能力, 物质转化, 抗氧化能力

Abstract:

Drought is a major abiotic stress affecting the growth and development of barley (Hordeum vulgare L.), with potentially irreversible impacts across all growth stages, including seed germination and flowering. To investigate the germination responses of diverse barley germplasm under drought stress, this study employed a vermiculite-based water control method to evaluate the germination characteristics of 54 barley germplasm accessions. Based on drought tolerance during germination, the accessions were classified into five categories: excellent, good, moderate, poor, and very poor, with the highest proportion (37.04%) falling into the moderate group. Seven accessions with strong drought tolerance during germination, such as E0270389 and ZDM5430, exhibited rapid germination, uniform emergence, and vigorous seedling growth. In contrast, six accessions with poor drought tolerance, including 08J134 and ZY136-21490058, showed low germination rates, asynchronous emergence, and poor seedling uniformity. Six representative accessions (E0270389, ZDM5430, 7DCADA, Z1920057W, FT36, and ZY69-G231M004M) with significantly different drought germination characteristics were further analyzed for physiological and biochemical parameters, as well as DNA damage repair mechanisms during germination under drought conditions. The results revealed that accessions with good drought tolerance had lower expression of HvFPG during mid-germination and lower HvOGG1 expression during early germination compared to drought-sensitive accessions. In addition, these drought-tolerant accessions maintained higher peroxidase (POD) activity during early and middle germination stages, and showed less reduction in superoxide dismutase (SOD) and cysteine protease activities before germination. Soluble sugar content at 6 hours after drought induction did not differ significantly from the control. In contrast, drought-sensitive accessions exhibited significantly reduced POD activity during mid-germination and a marked decrease in soluble sugar content, as observed in FT36. In summary, barley germplasm with good drought tolerance during germination demonstrated enhanced DNA repair capacity, antioxidant activity, and metabolic adaptability under drought stress, leading to faster germination and healthier seedling development.

Key words: barley, drought stress, seed germination, DNA repair capacity, material transformation, antioxidant capacity

[1] Abdelrady W A, Ma Z X, Elshawy E E, Wang L L, Askri S M H, Ibrahim Z, Dennis E, Kanwal F, Zeng F R, Shamsi I H. Physiological and biochemical mechanisms of salt tolerance in barley under salinity stress. Plant Stress, 2024, 11: 100403.

[2] Akbari M, Sabouri H, Sajadi S J, Yarahmadi S, Ahangar L. Classification and prediction of drought and salinity stress tolerance in barley using GenPhenML. Sci Rep, 2024, 14: 17420.

[3] Sabouri H, Pezeshkian Z, Taliei F, Akbari M, Kazerani B. Detection of closely linked QTLs and candidate genes controlling germination indices in response to drought and salinity stresses in barley. Sci Rep, 2024, 14: 15656.

[4] Bykova N V, Hu J J, Ma Z G, Igamberdiev A U. The role of reactive oxygen and nitrogen species in bioenergetics, metabolism, and signaling during seed germination. Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Cham: Springer International Publishing, 2015. pp 177–195.

[5] Ahmad P, Sarwat M, Sharma S. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol, 2008, 51: 167–173.

[6] Chen H H, Chu P, Zhou Y L, Li Y, Liu J, Ding Y, Tsang E W T, Jiang L W, Wu K Q, Huang S Z. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. J Exp Bot, 2012, 63: 4107–4121.

[7] El-Maarouf-Bouteau H, Mazuy C, Corbineau F, Bailly C. DNA alteration and programmed cell death during ageing of sunflower seed. J Exp Bot, 2011, 62: 5003–5011.

[8] Kowalik S, Groszyk J. Profiling of barley, wheat, and rye FPG and OGG1 genes during grain germination. Int J Mol Sci, 2023, 24: 12354.

[9] Murphy T M, Gao M J. Multiple forms of formamidopyrimidine-DNA glycosylase produced by alternative splicing in Arabidopsis thaliana. J Photochem Photobio B, 2001, 61: 87–93.

[10] Córdoba-Cañero D, Roldán-Arjona T, Ariza R R. Arabidopsis ZDP DNA 3′‐phosphatase and ARP endonuclease function in 8-oxoG repair initiated by FPG and OGG1 DNA glycosylases. Plant J, 2014, 79: 824–834.

[11] García-Ortiz M V, Ariza R R, Roldán-Arjona T. An OGG1 orthologue encoding a functional 8-oxoguanine DNA glycosylase/lyase in Arabidopsis thaliana. Plant Mol Biol, 2001, 47: 795–804.

[12] Chiara F, Ajay S, Anjali S, Alma B, Vishal P, Anca M. Medicago truncatula Hydropriming and Biopriming Improve Seed Germination and Upregulate DNA Repair and Antioxidant Genes. Genes, 2020, 11: 242.

[13] Li B B, Zhang S B, Lyu Y Y, Wei S, Hu Y S. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One, 2022, 17: e0263553.

[14] 李婉玲, 陈晓龙, 蔡立群, 王正伟, 张军. PEG模拟干旱胁迫对玉米种子萌发的影响. 干旱地区农业研究, 2022, 40(5): 32–41.

Li W L, Chen X L, Cai L Q, Wang Z W, Zhang J. Effects of PEG simulated drought stress on maize seed germination. Agric Res Arid Areas, 2022, 40(5): 32–41 (in Chinese with English abstract).

[15] 赵慧, 宋利强, 张娜, 张玮, 李俊明, 纪军. 欧山羊草6Ub染色体附加对小麦萌发期抗旱性的改良作用. 麦类作物学报, 2019, 39: 639–644.

Zhao H, Song L Q, Zhang N, Zhang W, Li J. Improvement of drought resistance of wheat (Triticum aestivum L.) at seed germination stage by addition of 6Ub chromosome from Aegilops biuncialis. J Triticeae Crops, 2019, 39: 639–644 (in Chinese with English abstract).

[16] 黄万里, 王建平, 刘宁, 卜登攀. 不同水培时间下大麦苗的营养价值及CNCPS组分. 草业科学. 2019, 36: 1811–1818.

Huang W L, Wang J P, Liu N, Bu D P. Determination of nutritive value and analysis of the CNCPS contents in barley grass cultivated using a hydroponic system. Pratac Sci, 2019, 36: 1811–1818 (in Chinese with English abstract).

[17] Andriotis V M E, Rejzek M, Rugen M D, Svensson B, Smith A M, Field R A. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism. Biochem Soc Trans, 2016, 44: 159–165.

[18] Hu S M, Qin Q Q, Zhang C, Yu J H, Huang S L, Liu J, Yang Z X. The effect of L-cysteine on starch and protein degradation during barley germination. Biotechnol Lett, 2024, 46: 861–870.

[19] Shi C, Xu L L. Characters of cysteine endopeptidases in w heat endosperm during seed germination and subsequent seedling growth. J Integr Plant Biol, 2009, 51: 52–57.

[20] Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Großkinsky D K, Albacete A A, Stabentheiner E, Franzaring J, et al. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. J Exp Bot, 2015, 66: 5531–5542.

[21] 马雪丽. 不同区域生产的小麦种子活力差异及生理基础研究. 山东农业大学硕士学位论文, 山东泰安, 2016.

Ma X L. Research of Difference in Vigor and Physiological of Wheat Seed Produced in Different Region. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).

[22] 曲思泛. 玉米正反交组合种子活力差异机理解析. 山东农业大学硕士学位论文, 山东泰安, 2021.

Qu S F. Seed Vigour Comparison of Reciprocal Crosses Hybrid on Maize Inbred Lines. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2021 (in Chinese with English abstract).

[23] 陈蕾太. 逆境条件下小麦种子活力与主要相关酶活性及其基因表达的关系. 山东农业大学硕士学位论文, 山东泰安, 2016.

Chen L T. Relation of Wheat Seed Vigor and Main Related Enzyme Activities and Gene Expression under Stress Conditions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).

[24] Ansari O, Azadi M S, S harif-Zade h F, Younesi, E. Effect of hormone priming on germination characteristics and enzyme activity of mountain rye (Secale montanum) seeds under drought stress conditions. J Stress Physiol Biochem, 2013, 9(3): 61–71.

[25] 乔志新,张杰道,王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究. 作物学报. 2024, 50: 1568‒1583.

Qiao Z X, Zhang J D, Wang Y, Guo Q F, Liu Y J, Chen R, Hu W H, Sun A Q. Difference in germination characteristics of different winter wheat cultivars under drought stress. Acta Agron Sin. 2024, 50: 1568–1583 (in Chinese with English abstract).

[26] 韩家帆. 野大麦种质资源鉴定与评价. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2023.

Han J F. Identification and Evaluation of Germplasm Resources of Hordeum Brevisubulatium. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).

[27] 鞠乐. 大麦萌发期抗旱的生理机理及差异表达基因的筛选. 石河子大学硕士学位论文, 新疆石河子, 2013.

Ju L. Physiological and Biochemical Mechanism of Drought Stress of Barley During Seed Germination Period and Screening Differentially Expressed Genes. MS Thesis of Shihezi University, Shihezi, Xinjiang, 2013 (in Chinese with English abstract).

[28] 刘瑞, 周贵兰, 洪越, 路振宗, 袁雪, 王晔, 李润枝. 低温对小麦种子萌发不同阶段生理特性的影响. 北京农学院学报. 2024, 39(3): 32–38.

Liu R, Zhou G L, Hong Y, Lu Z Z, Yuan X, Wang Y, Li R Z. Effect of low temperature on physiological characteristics of wheat seeds at different stages of germination. J Beijing Univ Agric. 2024, 39(3): 32–38 (in Chinese with English abstract).

[29] Lindahl T. Instability and decay of the primary structure of DNA. Nature, 1993, 362: 709–715.

[30] Waterworth W M, Bray C M, West C E. The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot, 2015, 66: 3549–3558.

[31] Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem, 2012, 60: 196–206.

[32] 李淑梅,董丽平,王付娟. PEG模拟干旱胁迫对大麦种子萌发及生理特性的响应. 种子. 2016, 35(10): 99–101.

Li S M, Dong L P, Wang F J. The response of PEG simulated drought stress to germination and physiological features of barley seed. Seed, 2016, 35(10): 99–101 (in Chinese with English abstract).

[33] 宋松泉, 唐翠芳, 程红焱, 舒凯. 种子萌发调控的研究进展. 中国科学:生命科学. 2024, 54: 1226–1253.

Song S Q, Tang C F, Cheng H Y, Shu K. Research progress in regulation of seed germination. Sci Sin (Vitae), 2024, 54: 1226–1253 (in Chinese with English abstract).

[34] 李小东, 李倩, 张悦瑶, 于章龙, 蔡岳, 刘瑞, 孙元琳. 发芽对黑小麦营养成分的影响. 中国粮油学报, 2025, 40(2):58–67.

Li X D, Li Q, Zhang Y Y, Yu Z L, Cai Y, Liu R, Sun Y L. Effect of germination on nutritional components of black wheat. J Chin Cereals Oils Assoc, 2025, 40(02):58–67 (in Chinese with English abstract).

[35] 徐托明, 田斌强, 孙智达, 谢笔钧. 燕麦发芽过程中三大营养素的变化. 天然产物研究与开发, 2011, 23: 534–537.

Xu T M, Tian B Q, Sun Z D, Xie B J. Changes of three main nutrient during oat germination. Nat Prod Res Dev. 2011, 23: 534–537 (in Chinese with English abstract).

[36] Zhao M, Zhang H X, Yan H, Qiu L, Baskin C C. Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. Front Plant Sci. 2018, 9: 234.

[1] 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214.
[2] 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887.
[3] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[4] 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102.
[5] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[6] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[7] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[8] 孙曼, 安朝丹, 高广奇, 郭杰, 杨平, 蒋枞璁. 大麦稃壳白化突变性状的遗传解析[J]. 作物学报, 2024, 50(12): 3046-3054.
[9] 郑广杰, 叶昌, 徐春梅, 陈松, 褚光, 陈里鹏, 章秀福, 王丹英. 低温胁迫对水稻胚芽中葡萄糖和水分状态的影响及其与种子出苗成活间的关系[J]. 作物学报, 2024, 50(12): 3055-3068.
[10] 王子然, 鲁一薇, 杨婧怡, 王成龙, 宋亚萍, 马金虎. 外源水杨酸对镉胁迫下大豆生理特性和抗逆基因表达的影响[J]. 作物学报, 2024, 50(11): 2883-2895.
[11] 鲁宗辉, 司二静, 叶霈颖, 汪军成, 姚立蓉, 马小乐, 李葆春, 王化俊, 尚勋武, 孟亚雄. 大麦籽粒β-葡聚糖含量的全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(10): 2483-2492.
[12] 湛潇潇, 冯举伶, 张震欢, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊, 姚立蓉. 大麦HvMBF1c耐盐机制分析[J]. 作物学报, 2024, 50(10): 2503-2514.
[13] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[14] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[15] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!