作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2483-2492.doi: 10.3724/SP.J.1006.2024.31084
鲁宗辉1,2(
), 司二静1,2, 叶霈颖1,2, 汪军成1,2, 姚立蓉1,2, 马小乐1,2, 李葆春1,3, 王化俊1,2, 尚勋武2, 孟亚雄1,2,*(
)
LU Zong-Hui1,2(
), SI Er-Jing1,2, YE Pei-Yin1,2, WANG Jun-Cheng1,2, YAO Li-Rong1,2, MA Xiao-Le1,2, LI Bao-Chun1,3, WANG Hua-Jun1,2, SHANG Xun-Wu2, MENG Ya-Xiong1,2,*(
)
摘要:
利用高通量SNP芯片对238份不同来源的大麦种质资源进行基因型分析, 并测定2年的籽粒β-葡聚糖含量, 通过基于PCA模型的一般线性模型(general linear model, GLM)进行全基因组关联分析(genome-wide association study, GWAS)。 结果表明, 238份大麦材料的β-葡聚糖含量分布在1.23%~6.55%和1.79%~6.64%之间且均呈正态分布。GWAS分析共检测到19个显著的SNP标记, 分布在1H、2H、3H、4H和5H染色体上, 可解释表型变异的7.39%~10.29%。在显著关联的SNP位点上下游各300 kb范围内进行候选基因挖掘, 共寻找到37个基因, 基于前人研究和BLAST基因注释共筛选到4个最有可能与β-葡聚糖合成相关的候选基因, 在最显著SNP位点B1_1033963上游89 kb处找到候选基因HORVU.MOREX.r3.1HG0000140, 该基因可能是与β-葡聚糖合成过程紧密相关的基因。本研究可为大麦β-葡聚糖含量遗传改良提供理论指导与优异基因资源。
| [1] | Nishantha M D C N, Zhao X, Jeewani D C, Bian J X, Nie X J, Song W N. Direct comparison of β-glucan content in wild and cultivated barley. Int J Food Prop, 2018, 21: 2218-2228. |
| [2] |
田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析. 作物学报, 2023, 49: 1726-1732.
doi: 10.3724/SP.J.1006.2023.21043 |
|
Tian M, Liu X C, Pan J J, Liang L J, Dong L, Liu M C, Feng Z Y. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley. Acta Agron Sin, 2023, 49: 1726-1732 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.21043 |
|
| [3] | Teketa S, You T, Tonooka T, Tsumuraya Y, Inagaki Y, Haruyama N, Larroque O, Jobling S A. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. J Exp Bot, 2012, 63: 381-392. |
| [4] | 王蕾, 王悦, 严宗山, 李润喜, 谢忠清, 张自强, 张想平. 大麦籽粒淀粉和β-葡聚糖积累特性研究. 作物杂志, 2020, 2: 119-124. |
| Wang L, Wang Y, Yan Z S, Li R X, Xie Z Q, Zhang Z Q, Zhang X P. The research of starch and β-glucan accumulating characteristics in grain of different barley varieties. Crops, 2020, 2: 119-124 (in Chinese with English abstract). | |
| [5] | Markovic S M, Dukic N H, Knezevic D, Lekovic S V. Divergence of barley and oat varieties according to their content of β-glucan. J Serb Chem Soc, 2017, 82: 379-388. |
| [6] | Lukinac J, Jukic M. Barley in the production of cereal-based products. Plants, 2022, 11: 3519. |
| [7] | Shu X L, Rasmussen S K. Quantification of amylose amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front Plant Sci, 2014, 5: 197. |
| [8] | Chutimanitsakun Y, Cuesta-Marcos A, Chao S, Corey A, Filichkin T, Fisk S, Kolding M, Meints B, Ong Y, Rey J I, Ross A, Hayes P. Application of marker assisted selection and genome-wide association scanning to the development of winter food barley germplasm resources. Plant Breed, 2013, 132: 563-570. |
| [9] | Mohammadi M, Endelman J B, Nair S, Chao S, Jones S S, Muehlbauer G J, Ullrich S E, Baik B, Wise M L, Smith K P. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol Breed, 2014, 34: 1229-1243. |
| [10] | Gyawali S, Otte M L, Chao S, Jilal A, Jacob D L, Amezrou R, Verma R P S. Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley (Hordeum vulgare L.). J Cereal Sci, 2017, 77: 266-274. |
| [11] | Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington J M, Booth A, Shirley N, Burton R A, Fincher G B, Waugh R. A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row Spring and Winter barleys. Bmc Genom, 2014, 15: 907. |
| [12] | Zhou L H, He T, Guo G M, Li J, Lu R J, Li Y B, Liu C H. Genome-wide identification of candidate genes associated with β-glucan traits in a hulled and hulless barley (Hordeum vulgare L.) population. Phyton Int J Exp Bot, 2020, 89: 987-997. |
| [13] |
耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析. 作物学报, 2021, 47: 1205-1214.
doi: 10.3724/SP.J.1006.2021.01074 |
|
Geng L, Huang Y C, Li M D, Xie S G, Ye L Z, Zhang G P. Genome-wide association study of β-glucan content in barley grains. Acta Agron Sin, 2021, 47: 1205-1214 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01074 |
|
| [14] | 司二静, 孟亚雄, 李葆春, 马小乐, 张宇, 王化俊. 大麦抗条纹病与SSR标记的关联分析. 植物保护学报, 2019, 46: 1073-1085. |
| Si E J, Meng Y X, Li B C, Ma X L, Zhang Y, Wang H J. Association analysis between barley resistance to Pyrenophora graminea and SSR markers. J Plant Protect, 2019, 46: 1073-1085 (in Chinese with English abstract). | |
| [15] | Earl D A, Vonholdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4: 359-361. |
| [16] | Kaur R, Sharma M, Ji X M, Xu M, Agyei D. Structural features, modification, and functionalities of beta-glucan. Fibers, 2020, 8: 1. |
| [17] |
Garcia-Gimenez G, Russell J, Aubert M K, Fincher G B, Burton R A, Waugh R, Tucker K, Houston K. Barley grain (1,3; 1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Sci Rep (UK), 2019, 9: 17250.
doi: 10.1038/s41598-019-53798-8 pmid: 31754200 |
| [18] | Geng L, Li M D, Xie S G, Wu D Z, Ye L Z, Zhang G P. Identification of genetic loci and candidate genes related to β-glucan content in barley grain by genome-wide association study in international barley core selected collection. Mol Breed, 2021, 41: 6. |
| [19] | Neumann K, Kobiljski B, Dencic S, Varshney R K, Borner A. Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed, 2010, 27: 37-58. |
| [20] |
Pasam R K, Sharma R, Malosetti M, Eeuwijk F A, Haseneyer G, Kilian B, Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol, 2012, 12: 16.
doi: 10.1186/1471-2229-12-16 pmid: 22284310 |
| [21] |
Wang M H, Jiang N, Jia T Y, Leach L, Cockram J, Comadran J, Shaw P, Waugh R, Luo Z W. Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet, 2012, 124: 233-246.
doi: 10.1007/s00122-011-1697-2 pmid: 21915710 |
| [22] | Buckeridge M S, Rayon C, Urbanowicz B, Tiné M A S, Carpita N C. Mixed linkage (1→3),(1→4)-β-D-glucans of grasses. Cereal Chem, 2004, 81: 115-127. |
| [23] |
Burton R A, Collins H M, Kibble N A, Smith J A, Shirley N J, Jobling S A, Henderson M, Singh R R, Pettolino F, Wilson S M, Bird A R, Topping D L, Bacic A, Fincher G B. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure. Plant Biotechnol J, 2011, 9: 117-135.
doi: 10.1111/j.1467-7652.2010.00532.x pmid: 20497371 |
| [24] | Burton R A, Jobling S A, Harvey A J, Shirley N J, Mather D E, Bacic A, Fincher G B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol, 2008, 146: 1821-1833. |
| [25] |
Hrmova M, Farkas V, Lahnstein J, Fincher G B. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans. J Biol Chem, 2007, 282: 12951-12962.
doi: 10.1074/jbc.M611487200 pmid: 17329246 |
| [26] |
Hrmova M, Fincher G B. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohyd Res, 2007, 342: 1613-1623.
pmid: 17548065 |
| [27] |
Andrews D L, Beames B, Summers M D, Park W D. Characterization of the lipid acylhydrolase activity of the major potato (Solanum tuberosum) tuber protein, patatin, by cloning and abundant expression in a baculovirus vector. Biochem J, 1988, 252: 199-206.
pmid: 3048246 |
| [28] | Garcia-Gimenez G, Schreiber M, Dimitroff G Z, Little A, Singh R R, Fincher G B, Burton R A, Waugh R, Tucker M R, Houston K. Identification of candidate MYB transcription factors that influence CslF6 expression in barley grain. Front Plant Sci, 2022, 13: 883139. |
| [29] |
Casaretto J A, Ho T H D. Transcriptional regulation by abscisic acid in barley (Hordeum vulgare L.) seeds involves autoregulation of the transcription factor HvABI5. Plant Mol Biol, 2005, 57: 21-34.
doi: 10.1007/s11103-004-6520-x pmid: 15821866 |
| [1] | 何鹏旭, 姚立蓉, 陈远玲, 闫妍, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊. 大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究[J]. 作物学报, 2025, 51(9): 2412-2432. |
| [2] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. |
| [3] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. |
| [4] | 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138. |
| [5] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
| [6] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
| [7] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
| [8] | 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444. |
| [9] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
| [10] | 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188. |
| [11] | 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408. |
| [12] | 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214. |
| [13] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
| [14] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
| [15] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
|
||