欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2493-2502.doi: 10.3724/SP.J.1006.2024.42007

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

深水稻全生育期耐盐性状的QTL定位

夏秀忠1,**(), 张宗琼1,**(), 农保选1, 冯锐1, 郭辉1, 陈灿1, 梁树辉1, 荘洁1, 廖祖宇1, 宋国显2, 杨行海1,*(), 李丹婷1,*()   

  1. 1广西壮族自治区农业科学院水稻研究所 / 广西水稻遗传育种重点实验室, 广西南宁 530007
    2钦州市农业科学研究所, 广西钦州 535000
  • 收稿日期:2024-01-31 接受日期:2024-06-20 出版日期:2024-10-12 网络出版日期:2024-07-08
  • 通讯作者: *李丹婷, E-mail: ricegl@163.com;杨行海, E-mail: yangxinghai514@163.com
  • 作者简介:夏秀忠, E-mail:xiaxiuzhong@163.com;
    张宗琼, E-mail:zhangzongqiong@gxaas.net
    **同等贡献
  • 基金资助:
    国家重点研发计划项目(2021YFD1200505-2);国家自然科学基金项目(32260487);国家自然科学基金项目(32360519);广西科技重大专项(桂科AA23073004);广西科技计划项目(桂科AB21238009);广西农业科学院基本科研业务专项(桂农科2021YT030)

QTL mapping for salt tolerance traits throughout the entire growth period of deep-water rice

XIA Xiu-Zhong1,**(), ZHANG Zong-Qiong1,**(), NONG Bao-Xuan1, FENG Rui1, GUO Hui1, CHEN Can1, LIANG Shu-Hui1, ZHUANG Jie1, LIAO Zu-Yu1, SONG Guo-Xian2, YANG Xing-Hai1,*(), LI Dan-Ting1,*()   

  1. 1Rice Research Institute, Guangxi Academy of Agricultural Sciences / Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, Guangxi, China
    2Qinzhou Institute of Agricultural Sciences, Qinzhou 535000, Guangxi, China
  • Received:2024-01-31 Accepted:2024-06-20 Published:2024-10-12 Published online:2024-07-08
  • Contact: *E-mail: ricegl@163.com;E-mail: yangxinghai514@163.com
  • About author:
    **(Contributed equally to this work)
  • Supported by:
    National Key Research and Development Program of China(2021YFD1200505-2);National Natural Science Foundation of China(32260487);National Natural Science Foundation of China(32360519);Guangxi Science and Technology Major Program(Gui Ke AA23073004);Guangxi Science and Technology Program(Gui Ke AB21238009);Special Funds of Basic Scientific Research Foundation of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2021YT030)

摘要:

盐胁迫是许多沿海地区水稻生产的主要制约因素, 尤其是沿海地区的咸淡水交汇区域。耐盐性是一种复杂的性状, 可以通过QTL定位来帮助耐盐育种, 以培育更高耐盐性的水稻品种。本研究供体亲本为沿海深水稻品种赤禾, 受体亲本为美国水稻品种Lemont, 杂交获得174份F9代的重组自交系, 在芽期、苗期和生殖生长期分别利用浓度为15 g L-1、5 g L-1和5~6 g L-1的NaCl进行胁迫, 通过芽期相对发芽率、苗期耐盐性评级和生殖生长期的7个表型性状为基础数据, 利用142个SSR分子标记绘制连锁遗传图并进行QTL分析。鉴定结果发现, 赤禾在芽期表现敏盐, 在苗期和生殖生长期表现耐盐; Lemont相反。3个生长时期分别有70.11%、50.57%和60.34%的品系表现为弱耐盐性, 而且耐盐性为弱的负相关。本研究共鉴定出33个LOD值为2.52~10.32的QTL, 解释0.06%~13.68%的表型遗传变异, 解释最大遗传变异的QTL均由耐盐亲本贡献, 其中芽期4个、苗期6个和生殖生长期23个位点, 并在生殖生长期发现4个QTL重叠区域。这些QTL可以进一步研究, 不仅为提高水稻育种的耐盐性提供了新的遗传资源, 还有助于在水稻耐盐育种中, 提高水稻品种的耐盐性。

关键词: 全生育期, 耐盐, 深水稻, 鉴定评价, 数量性状位点

Abstract:

Salinity stress is a major constraint to rice production in many coastal regions, particularly in the salt-fresh water interface areas. Salt tolerance in rice is a complex trait that can be localized through quantitative trait loci (QTL) mapping, which can facilitate the breeding of rice varieties with enhanced salt tolerance. In this study, an F9 mapping population consisting of 174 recombinant inbred lines was developed from a cross between the coastal deep-water rice variety Chihe (donor parent) and the U.S. rice variety Lemont (receptor parent). The population was subjected to salinity stress during the germination, seedling, and reproductive stages with NaCl concentrations of 15 g L-1, 5 g L-1, and 5-6 g L-1, respectively. Data were collected on relative germination rates, seedling salt tolerance grades, and seven phenotypic traits during the reproductive stages. Linkage genetic mapping and QTL mapping were performed using 142 simple sequence repeat (SSR) markers. The results indicated that Chihe was salt-sensitive at the germination stage but exhibited salt tolerance at the seedling and reproductive stages, while Lemont lines were consistently salt-sensitive. Approximately 70.11%, 50.57%, and 60.34% of the lines showed salt sensitivity in the germination, seedling, and reproductive stages, respectively, with a weak negative correlation of salt tolerance across the stages. A total of 33 QTLs were identified, with LOD values ranging from 2.52 to 10.32 and phenotypic variation explained ranging from 0.06% to 13.68%. Specifically, 4 QTLs were identified for the germination stage, 6 for the seedling stage, and 23 for the reproductive stage. Four overlapping QTLs were identified at the reproductive stage, and the QTLs contributing to the largest phenotypic variation were all derived from the salt-tolerant parent. Further investigation of these QTLs can provide new genetic resources for improving salt tolerance in rice breeding, thereby aiding the development of rice varieties with enhanced tolerance to salinity stress.

Key words: whole growth period, salt tolerance, deep-water rice, identification and evaluation, quantitative trait locus (QTL)

图1

174份重组自交系芽期耐盐鉴定结果分布 A: 正常处理与盐胁迫下, 群体发芽率分布小提琴图; B: 芽期耐盐等级评价结果。***代表P < 0.001水平差异显著, 图基检验计算P值。"

图2

174份重组自交系苗期耐盐鉴定结果分布 A: 正常处理与盐胁迫下, 群体苗期株高分布小提琴图; B: 群体在盐胁迫下枯叶率分布直方图; C: 苗期耐盐等级评价结果; ***代表P < 0.001水平差异显著, 图基检验计算P值。"

表1

生殖生长期耐盐性表型统计结果"

处理
Treatment
性状
Trait
亲本Parentage 重组自交系Recombinant inbred lines
赤禾Chihe Lemont 均值
Mean
标准差
SD
变异系数CV 最小值Min. 最大值Max.
正常对照
Control
株高 PH (cm) 224.5 96.8 130.04* 25.28 0.19 83.33 185.00
有效穗 TN 7.6 9.3 10.41 2.44 0.23 6.33 18.00
穗长 SL (cm) 29.5 16.8 26.25 2.93 0.11 18.83 35.67
实粒数 FGN 170.6 115.8 124.32** 127.58 0.34 141.00 801.00
结实率 SSR (%) 89.4 82.5 74.12** 10.96 0.15 44.95 97.95
单株产量 PY (g) 14.7 12.8 7.90** 2.57 0.33 3.10 17.06
千粒重 TGW (g) 23.1 26.8 21.55 3.17 0.15 15.27 30.88
盐胁迫
Salt treatment
株高 PH (cm) 194.6 86.2 123.12 27.94 0.23 67.40 194.60
有效穗 TN 6.4 7.8 10.45 2.44 0.23 5.80 18.40
穗长 SL (cm) 25.7 15.5 26.15 2.91 0.11 17.93 33.27
实粒数 FGN 113.5 53.2 110.70 93.86 0.28 138.00 587.00
结实率 SSR (%) 59.5 37.9 0.69 0.13 0.19 34.46 92.26
单株产量 PY (g) 11.2 3.0 6.87 2.00 0.29 2.45 12.38
千粒重 TGW (g) 19.8 23.2 20.99 3.62 0.17 13.04 38.90

图3

174份重组自交系生殖生长期耐盐鉴定结果分布 A: 正常处理与盐胁迫下, 群体单株产量分布小提琴图; B: 群体耐盐系数分布直方图; C: 耐盐等级评价结果; ***代表P < 0.001水平差异显著。"

图4

142个SSR标记遗传连锁图和耐盐性QTL位置"

表2

3个水稻生育期耐盐性鉴定的关联QTL"

生长期
Growth period
QTL 分子标记
Marker interval
位置
Position (cM)
LOD值
LOD value
加性效应Additive effect 显性效应Dominant effect 贡献率
R2
芽期
Germination stage
qGR-7.1 RM11-RM10 55.17 10.32 1.037 1.914 13.68
qGR-7.2 RM10-RM3826 69.77 7.88 0.923 2.060 11.33
qGR-7.3 RM3286-RM505 73.91 2.55 -0.429 2.134 1.32
qGR-10 RM8201-RM596 38.16 3.29 -0.659 1.206 2.40
苗期
Seedling stage
qSDI-1 RM259-RM572 45.84 3.34 -0.224 -1.206 0.98
qSDI-2 RM525-RM1092 119.43 2.60 0.429 0.575 3.48
qSDI-4 RM335-RM5687 23.30 2.59 0.533 -2.083 5.98
qSDI-7.1 RM125-RM214 30.51 2.96 -0.515 -0.400 5.22
qSDI-7.2 RM8263-RM11 34.50 4.31 -0.683 -0.029 9.65
qSDI-10 RM6128-RM6824 46.81 2.62 0.460 -1.561 4.02
生殖生长期
Reproductive stage
qPH-2 RM3355-RM263 88.53 3.77 0.006 0.174 0.77
qPH-8 RM223-RM210 76.28 3.18 -0.005 0.072 0.59
qPH-9 RM215-RM205 64.98 3.20 -0.010 0.206 2.64
qTN-4 RM5687-RM273 58.40 2.64 -0.029 0.346 4.53
qTN-5.1 RM169-RM289 29.75 3.17 0.006 -0.123 0.20
qTN-5.2 RM274-RM1054 88.17 2.67 -0.044 0.020 8.83
qFGN-5 RM405-RM413 5.92 3.11 0.006 0.191 0.31
qFGN-7 RM505-RM3589 76.91 2.52 0.019 0.063 3.45
qSSR-5 RM413-RM5994 9.92 3.04 -0.005 0.274 0.12
qSSR-10 RM216-RM311 12.17 2.58 -0.031 0.122 5.78
qPY-2 RM5764-RM7581 9.65 2.54 0.029 0.040 4.48
qPY-3 RM16-RM227 108.01 2.68 -0.035 -0.013 6.24
qPY-5 RM413-RM5994 11.92 2.83 -0.012 0.306 0.74
qPY-9 RM201-RM215 57.47 2.61 -0.038 -0.018 8.02
qTGW-2.1 RM5764-RM7581 1.00 3.20 0.021 -0.002 8.01
qTGW-2.2 RM3355-RM263 90.53 2.57 0.001 0.280 0.06
qTGW-3.1 RM545-RM517 5.01 4.78 -0.004 0.219 0.35
qTGW-3.2 RM517-OSR13 11.11 4.14 -0.005 0.281 0.46
qTGW-4 RM5687-RM273 48.40 4.10 0.003 0.280 0.23
qTGW-6 RM3827-RM5371 77.46 2.80 0.004 0.188 0.31
qTGW-12.1 RM19-RM453 20.60 3.76 -0.015 0.088 4.13
qTGW-12.2 RM453-RM7003 27.44 4.47 -0.012 0.143 2.67
qTGW-12.3 RM309-RM235 71.71 2.96 -0.003 0.208 0.15
[1] Hoang T M L, Tran T N, Nguyen T K T, Williams B, Wurm P, Bellairs S, Mundree S. Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy, 2016, 6: 54.
[2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[3] Zhao C Z, Zhang H, Song C P, Zhu J K, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innovation (NY), 2020, 1: 100017.
[4] FAO, ITPS. Status of the World’s Soil Resources (SWSR):Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome: FAO, 2015. p 5.
[5] Thorat B S, Bagkar T A, Raut S M. Responses of rice under salinity stress: a review. Int J Chem Stud, 2018, 6: 1441-1447.
[6] 牛东玲, 王启基. 盐碱地治理研究进展. 土壤通报, 2002, 33: 449-455.
Niu D L, Wang Q J. Research progress on saline-alkali field control. Chin J Soil Sci, 2002, 33: 449-455 (in Chinese with English abstract).
[7] Zeng L, Shannon M C, Grieve C M. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica, 2002, 127: 235-245.
[8] Ganie S A, Molla K A, Henry R J, Bhat K V, Mondal T K. Advances in understanding salt tolerance in rice. Theor Appl Genet, 2019, 132: 851-870.
doi: 10.1007/s00122-019-03301-8 pmid: 30759266
[9] Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot, 2007, 99: 1161-1173.
[10] Singh R K, Flowers T J. The physiology and molecular biology of the effects of salinity on rice. In: Pessarakli M, ed. Handbook of Plant and Crop Stress, 3rd edn. Florida: CRC Press, 2010. pp 899-939.
[11] Singh V, Singh A P, Bhadoria J, Giri J, Singh J, Vineeth T V, Sharma P C. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma, 2018, 255: 1667-1681.
[12] Asch F, Wopereis M C S. Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. Field Crops Res, 2001, 70: 127-137.
[13] Khan M A, Hamid A, Karim M A. Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L.). J Agron Crop Sci, 1997, 179: 163-169.
[14] Khatun S, Flowers T J. Effects of salinity on seed set in rice. Plant Cell Environ, 1995, 18: 61-67.
[15] 井文, 章文华. 水稻耐盐基因定位与克隆及品种耐盐性分子标记辅助选择改良研究进展. 中国水稻科学, 2017, 31: 111-123.
doi: 10.16819/j.1001-7216.2017.6083
Jing W, Zhang W H. Research progress on gene mapping and cloning for salt tolerance and variety improvement for salt tolerance by molecular marker-assisted selection in rice. Chin J Rice Sci, 2017, 31: 111-123 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6083
[16] Batayeva D, Labaco B, Ye C R, Li X L, Usenbekov B, Rysbekova A, Dyuskalieva G, Vergara G, Reinke R, Leung H. Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet, 2018, 19: 2.
doi: 10.1186/s12863-017-0590-7 pmid: 29298667
[17] Li X, Guo D L, Xue M, Li G Z, Yan Q C, Jiang H X, Liu H Q, Chen J X, Gao Y F, Duan L P, Xie L Q. Genome-wide association study of salt tolerance at the seed germination stage in flax (Linum usitatissimum L.). Genes (Basel), 2022, 13: 486.
[18] Le T D, Gathignol F, Vu H T, Nguyen K L, Tran L H, Vu H T T, Dinh T X, Lazennec F, Pham X H, Véry A A, Gantet P, Hoang G T. Genome-wide association mapping of salinity tolerance at the seedling stage in a panel of vietnamese landraces reveals new valuable QTLs for salinity stress tolerance breeding in rice. Plants (Bsael), 2021, 10: 1088.
[19] Chen C, Norton G J, Price A H. Genome-wide association mapping for salt tolerance of rice seedlings grown in hydroponic and soil systems using the Bengal and Assam Aus Panel. Front Plant Sci, 2020, 11: 576479.
[20] Amoah N K A, Akromah R, Kena A W, Manneh B, Dieng I, Bimpong I K. Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’. Euphytica, 2020, 216: 156.
[21] Marè C, Zampieri E, Cavallaro V, Frouin J, Grenier C, Courtois B, Brottier L, Tacconi G, Finocchiaro F, Serrat X, Nogués S, Bundó M, San Segundo B, Negrini N, Pesenti M, Sacchi G A, Gavina G, Bovina R, Monaco S, Tondelli A, Cattivelli L, Valè G. Marker-assisted introgression of the salinity tolerance locus Saltol in temperate japonica rice. Rice (N Y), 2023, 16: 2.
[22] Krishnamurthy S L, Pundir P, Warraich A S, Rathor S, Lokeshkumar B M, Singh N K, Sharma P C. Introgressed Saltol QTL lines improves the salinity tolerance in rice at seedling stage. Front Plant Sci, 2020, 11: 833.
doi: 10.3389/fpls.2020.00833 pmid: 32595689
[23] Nutan K K, Kushwaha H R, Singla-Pareek S L, Pareek A. Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Funct Integr Genomics, 2017, 17: 69-83.
[24] Bonilla P S, Dvorak J, Mackill D J, Deal K, Gregorio G B. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric, 2002, 85: 68-76.
[25] Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141-1146.
[26] Wang Z F, Wang J F, Bao Y M, Wu Y Y, Zhang H S. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 2011, 178: 297-307.
[27] Sayed M A, Maurer A, Schmutzer T, Schnurbusch T, Borner A, Hansson M, Pillen K, Youssef H M. Genome-wide association study of salt tolerance-related traits during germination and seedling development in an intermedium-spike barley collection. Int J Mol Sci, 2022, 23: 11060.
[28] Nakhla W R, Sun W, Fan K, Yang K, Zhang C, Yu S. Identification of QTLs for salt tolerance at the germination and seedling stages in rice. Plants (Basel), 2021, 10: 428.
[29] Yu J, Zhao W, Tong W, He Q, Yoon M Y, Li F P, Choi B, Heo E B, Kim K W, Park Y J. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. Int J Mol Sci, 2018, 19: 3145.
[30] Mondal S, Septiningsih E M, Singh R K, Thomson M J. Mapping QTLs for reproductive stage salinity tolerance in rice using a cross between Hasawi and BRRI dhan28. Int J Mol Sci, 2022, 23: 11376.
[31] Singh R K, Kota S, Flowers T J. Salt tolerance in rice: seedling and reproductive stage QTL mapping come of age. Theor Appl Genet, 2021, 134: 3495-3533.
doi: 10.1007/s00122-021-03890-3 pmid: 34287681
[32] Warraich A S, Krishnamurthy S L, Sooch B S, Vinaykumar N M, Dushyanthkumar B M, Bose J, Sharma P C. Rice GWAS reveals key genomic regions essential for salinity tolerance at reproductive stage. Acta Physiol Plant, 2020, 42: 134.
[33] Mohammadi R, Mendioro M S, Diaz G Q, Gregorio G B, Singh R K. Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). J Genet, 2013, 92: 433-443.
doi: 10.1007/s12041-013-0285-4 pmid: 24371165
[34] 陆岗, 梁耀懋, 黎坤爱, 李丹婷. 深水稻种质资源耐淹性及抗稻纹枯病特性研究. 西南农业学报, 2004, 17: 701-704.
Lu G, Liang Y M, Li K A, Li D T. Studies on resources of deep-water rice varieties. Southwest China J Agric Sci, 2004, 17: 701-704 (in Chinese with English abstract).
[35] 李丹婷, 农保选, 夏秀忠, 曾宇, 刘开强, 刘义明, 林竞鸿, 杨显志, 韩龙植, 张辉, 邓国富. 广西沿海受旱与咸酸田面积的分布与抗旱、耐盐种质资源鉴定. 植物遗传资源学报, 2014, 15: 12-17.
doi: 10.13430/j.cnki.jpgr.2014.01.002
Li D T, Nong B X, Xia X Z, Zeng Y, Liu K Q, Liu Y M, Lin J H, Yang X Z, Han L Z, Zhang H, Deng G F. Distribution of drought disaster area, acid paddy soil area and evaluation of drought resistance, salt tolerance crop resources in Guangxi coastal area. J Plant Genet Resour, 2014, 15: 12-17 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2014.01.002
[36] 陆岗, 李丹婷, 农保选, 夏秀忠, 梁耀懋, 黎坤爱. 深水稻品种赤禾纹枯病抗性QTLs定位. 西南农业学报, 2009, 22: 1577-1580.
Lu G, Li D T, Nong B X, Xia X Z, Liang Y M, Li K A. QTL analysis of sheath blight resistance in deepwater-rice Chihe (Oryza sativa L.). Southwest China J Agric Sci, 2009, 22: 1577-1580 (in Chinese with English abstract).
[37] Moradi F, Ismail A M, Gregorio G B, Egdane J A. Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Indian J Plant Physiol, 2003, 8: 105-116.
[38] Mardani Z, Rabiei B, Sabouri H, Sabouri A. Identification of molecular markers linked to salt-tolerant genes at germination stage of rice. Plant Breed, 2014, 133: 196-202.
[39] Jing W, Deng P, Cao C J, Zhang W H. Fine mapping of qSKC-1, a major quantitative trait locus for shoot K+ concentration, in rice seedlings grown under salt stress. Breed Sci, 2017, 67: 286-295.
[40] Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253-260.
doi: 10.1007/s00122-003-1421-y pmid: 14513218
[41] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta, 1999, 1446: 149-155.
doi: 10.1016/s0167-4781(99)00065-2 pmid: 10395929
[42] Zhou G A, Jiang Y, Yang Q, Wang J F, Huang J, Zhang H S. Isolation and characterization of a new Na+/H+ antiporter gene OsNHA1 from rice (Oryza sativa L.). DNA Seq, 2006, 17: 24-30.
[43] Yamaguchi T, Hamamoto S, Uozumi N. Sodium transport system in plant cells. Front Plant Sci, 2013, 4: 410.
doi: 10.3389/fpls.2013.00410 pmid: 24146669
[44] Koyama M L, Levesley A, Koebner R M, Flowers T J, Yeo A R. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol, 2001, 125: 406-422.
doi: 10.1104/pp.125.1.406 pmid: 11154348
[45] Calapit-Palao C D, Vina C B, Thomson M J, Singh R K. QTL identification for reproductive-stage salinity tolerance in rice (Oryza sativa L.). In:Proceedings of SABRAO 13th Congress and International Conference. Bogor: Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO), 2015. pp 14-16.
[46] Pundir P, Devi A, Krishnamurthy S L, Sharma P C, Vinaykumar N M. QTLs in salt rice variety CSR10 reveals salinity tolerance at reproductive stage. Acta Physiol Plant, 2021, 43: 35.
[47] Haque T, Elias S M, Razzaque S, Biswas S, Khan S F, Jewel G, Rahman M S, Juenger T E, Seraj Z I. Salt tolerance QTLs of an endemic rice landrace, Horkuch at seedling and reproductive stages. Sci Rep, 2022, 12: 17306.
doi: 10.1038/s41598-022-21737-9 pmid: 36243755
[48] Gao Q M, Wang H Y, Yin X L, Wang F C, Hu S C, Liu W H, Chen L B, Dai X J, Liang M Z. Identification of salt tolerance related candidate genes in ‘Sea Rice 86’ at the seedling and reproductive stages using QTL-seq and BSA-seq. Genes (Basel), 2023, 14: 458.
[49] 梁卫红, 毕佳佳, 彭威风, 张帆, 石宏浩, 李莉. 水稻促分裂原活化蛋白激酶基因OsMPK14的克隆及表达分析. 中国水稻科学, 2010, 24: 125-130.
doi: 10.3969/j.issn.1001-7216.2010.02.04
Liang W H, Bi J J, Peng W F, Zhang F, Shi H H, Li L. Cloning and expression analysis of a mitogen-activated protein kinase gene OSMPK14 from rice. Chin J Rice Sci, 2010, 24: 125-130 (in Chinese with English abstract).
[50] 邱生平, 周国安, 陆驹飞, 黄骥, 潘丽娟, 王建飞, 杨清, 张红生. 一个新的水稻液泡膜Na+/H+逆向转运蛋白基因的克隆及表达特征. 中国水稻科学, 2006, 20: 119-124.
Qiu S P, Zhou G A, Lu J F, Huang J, Pan L J, Wang J F, Yang Q, Zhang H S. Molecular cloning and expression analysis of a new vacuolar Na+/H+ antiporter gene in rice (Oryza sativa). Chin J Rice Sci, 2006, 20: 119-124 (in Chinese with English abstract).
[51] Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta, 2011, 233: 175-188.
[52] Lee S K, Kim B G, Kwon T R, Jeong M J, Park S C. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). J Biosci, 2011, 36: 139-151.
[53] Li C H, Wang G, Zhao J L, Zhang L Q, Ai L F, Han Y F, Sun D Y, Zhang S W, Sun Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell, 2014, 26: 2538-2553.
[54] Li D Q, Wu X B, Wang H F, Feng X, Yan S J, Wu S Y, Liu J X, Yao X F, Bai A N, Zhao H. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Mol Plant, 2022, 15: 1638-1639.
[55] Luo J H, Liu H, Zhou T Y, Gu B G, Huang X H, Shangguan Y Y, Zhu J J, Li Y, Zhao Y, Wang Y C, Zhao Q, Wang A, Wang Z Q, Sang T, Wang Z X, Han B. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013, 25: 3360-3376.
[1] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[2] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[3] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[4] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206.
[5] 李航宇, 刘心诚, 贺文婷, 刘可意, 乔振华, 吕品苍, 张献华, 何玉池, 蔡得田, 宋兆建. 四倍体海稻86的诱导、鉴定及其耐盐碱特性评价分析[J]. 作物学报, 2024, 50(4): 914-931.
[6] 李宛鸿, 胡冰霜, 孙晓丽, 才晓溪, 孙明哲. 过表达野生大豆耐盐碱基因GsGSTU13提高了水稻苗期耐盐碱性[J]. 作物学报, 2024, 50(10): 2458-2467.
[7] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[8] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[9] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[10] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[11] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[12] 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183.
[13] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[14] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[15] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李余生;朱镇;张亚东;赵凌;王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析[J]. 作物学报, 2008, 34(10): 1728 -1733 .
[2] 赖仲铭; 杨克诚. 全姊妹轮回选择与混合选择对玉米群体改良效果的初步研究[J]. 作物学报, 1983, 9(01): 7 -16 .
[3] 徐孟亮;陈良碧. 4个水稻高产品种与巴西陆稻的耐旱性比较研究[J]. 作物学报, 2003, 29(06): 903 -907 .
[4] 白琪林;陈绍江;戴景瑞. 我国常用玉米自交系秸秆品质性状及其相关分析[J]. 作物学报, 2007, 33(11): 1777 -1781 .
[5] 张洁夫;戚存扣;浦惠明;陈松;陈锋;高建芹;陈新军;顾慧;傅寿仲. 甘蓝型油菜主要脂肪酸组成的QTL定位[J]. 作物学报, 2008, 34(01): 54 -60 .
[6] 戚存扣; 盖钧镒;傅寿仲;浦惠明;张洁夫;高建琴;陈新军. 甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析[J]. 作物学报, 2004, 30(12): 1274 -1277 .
[7] 程式华;孙宗修;斯华敏;卓丽圣. 不同纬度地区光温生态对水稻光、温敏不育性的选择压研究[J]. 作物学报, 1997, 23(06): 683 -688 .
[8] 蔡一霞;王维;张祖建;夏广宏;张洪熙;杨建昌;朱庆森. 水旱种植下多个品种蒸煮品质和稻米RVA谱的比较性研究[J]. 作物学报, 2003, 29(04): 508 -513 .
[9] 李木英;石庆华;潘晓华;张荣珍;谭雪明. 两系稻结实期胚乳和茎鞘非结构碳水化合物代谢活性的研究[J]. 作物学报, 2002, 28(06): 821 -828 .
[10] 徐阳春;蒋廷惠;张春兰;王义炳;蔡大同. 不同面包小麦品种的产量及蛋白质含量对氮肥用量的反应[J]. 作物学报, 1998, 24(06): 731 -737 .