• •
王琼1,邹丹霞1,陈兴运1,张威1,张红梅1,刘晓庆1,贾倩茹1,魏利斌2,崔晓艳1,陈新1,王学军2,* ,陈华涛1,*
WANG Qiong1, ZOU Dan-Xia1, CHEN Xing-Yun1, ZHANG Wei1, ZHANG Hong-Mei1, LIU Xiao-Qing1, JIA Qian-Ru1,WEI Li-Bin2,CUI Xiao-Yan1,CEHN Xin1,WANG Xue-Jun2,*, CEHN Hua-Tao1,*
摘要:
大豆是典型的短日照作物,对光周期极为敏感,其栽培和产量均受到田间光周期条件的制约。本研究对264份大豆种质资源的开花时间和成熟期性状进行了考察,分析了开花相关性状与蛋白质含量、含油量、百粒重和株高等农艺性状之间的关系。随后利用全基因组关联分析,鉴定出235个与开花时间和成熟期相关的位点,并预测了14个可能参与调控大豆开花时间和成熟期的候选基因,其中与开花时间相关的候选基因有10个,与成熟期相关的基因有5个,且1个候选基因同时与开花时间和成熟期相关。这些候选基因为进一步解析大豆开花相关性状的调控机制和大豆广适性高效遗传改良奠定了基础。
[1] Almeida Sá A G, Moreno Y M F, Carciofi B A M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci Technol, 2020, 97: 170–184. [2] Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Mon Wea Rev, 1920, 48: 415. [3] Fang C, Du H P, Wang L S, Liu B H, Kong F J. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genom, 2024, 51: 379–393. [4] Bernard R L. Two major genes for time of flowering and maturity in soybeans. Crop Sci, 1971, 11: 242–244. [5] Buzzell R I. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol, 1971, 13: 703–707. [6] McBlain B A, Bernard R L. A new gene affecting the time of flowering and maturity in soybeans. J Hered, 1987, 78: 160–162. [7] Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22: 229–232. [8] Ray J D, Hinson K, Mankono J E B, Malo M F. Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35: 1001–1006. [9] Cober E R, Voldeng H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci, 2001, 41: 698–701. [10] Cober E R, Molnar S J, Charette M, Voldeng H D. A new locus for early maturity in soybean. Crop Sci, 2010, 50: 524–527. [11] Kong F J, Nan H Y, Cao D, Li Y, Wu F F, Wang J L, Lu S J, Yuan X H, Cober E R, Abe J, et al. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci, 2014, 54: 2529–2535. [12] Samanfar B, Molnar S J, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober E R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet, 2017, 130: 377–390. [13] Wang F F, Nan H Y, Chen L Y, Fang C, Zhang H Y, Su T, Li S C, Cheng Q, Dong L D, Liu B H, et al. A new dominant locus, E11, controls early flowering time and maturity in soybean. Mol Breed, 2019, 39: 70. [14] Xia Z J, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lyu S X, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, 109: E2155–E2164. [15] Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, et al. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1220–1231. [16] Sun H B, Jia Z, Cao D, Jiang B J, Wu C X, Hou W S, Liu Y K, Fei Z H, Zhao D Z, Han T F. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One, 2011, 6: e29238. [17] Nan H Y, Cao D, Zhang D Y, Li Y, Lu S J, Tang L L, Yuan X H, Liu B H, Kong F J. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS One, 2014, 9: e97669. [18] Xia Z J, Zhai H, Zhang Y F, Wang Y Y, Wang L, Xu K, Wu H Y, Zhu J L, Jiao S, Wan Z, et al. QNE1 is a key flowering regulator determining the length of the vegetative period in soybean cultivars. Sci China Life Sci, 2022, 65: 2472–2490. [19] Liu W, Jiang B J, Ma L M, Zhang S W, Zhai H, Xu X, Hou W S, Xia Z J, Wu C X, Sun S, et al. Functional diversification of flowering locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol, 2018, 217: 1335–1345. [20] Zhai H, Lyu S X, Liang S, Wu H Y, Zhang X Z, Liu B H, Kong F J, Yuan X H, Li J, Xia Z J. GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One, 2014, 9: e89030. [21] Xu M L, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B H, Yamada T, et al. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol, 2015, 168: 1735–1746. [22] Liu B H, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008, 180: 995–1007. [23] Watanabe S, Hideshima R, Xia Z J, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, et al. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182: 1251–1262. [24] Lin X Y, Dong L D, Tang Y, Li H Y, Cheng Q, Li H, Zhang T, Ma L X, Xiang H L, Chen L N, et al. Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean. Proc Natl Acad Sci USA, 2022, 119: e2208708119. [25] Dong L D, Fang C, Cheng Q, Su T, Kou K, Kong L P, Zhang C B, Li H Y, Hou Z H, Zhang Y H, et al. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun, 2021, 12: 5445 [26] Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Cheng Q, Chen L Y, Su T, Nan H Y, Zhang D, et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52: 428–436. [27] Watanabe S, Xia Z J, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188: 395–407. [28] Dong L D, Hou Z H, Li H Y, Li Z B, Fang C, Kong L P, Li Y L, Du H, Li T, Wang L S, et al. Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity. J Integr Plant Biol, 2022, 64: 1866–1882. [29] 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析. 作物学报, 2022, 48: 812–824. Xu X, Qin C, Zhao T, Liu B, Li H Y, Liu J. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm. Acta Agron Sin, 2022, 48: 812–824(in Chinese with English abstract). [30] Lu S J, Zhao X H, Hu Y L, Liu S L, Nan H Y, Li X M, Fang C, Cao D, Shi X Y, Kong L P, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017, 49: 773–779. [31] Fang X L, Han Y P, Liu M S, Jiang J C, Li X, Lian Q C, Xie X R, Huang Y A, Ma Q B, Nian H, et al. Modulation of evening complex activity enables north-to-south adaptation of soybean. Sci China Life Sci, 2021, 64: 179–195. [32] Bu T T, Lu S J, Wang K, Dong L D, Li S L, Xie Q G, Xu X D, Cheng Q, Chen L Y, Fang C, et al. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc Natl Acad Sci USA, 2021, 118: e2010241118. [33] Jung C H, Wong C E, Singh M B, Bhalla P L. Comparative genomic analysis of soybean flowering genes. PLoS One, 2012, 7: e38250. [34] Lyu J, Cai Z D, Li Y H, Suo H C, Yi R, Zhang S, Nian H. The floral repressor GmFLC-like is involved in regulating flowering time mediated by low temperature in soybean. Int J Mol Sci, 2020, 21: 1322. [35] Zhang W, Xu W J, Zhang H M, Liu X Q, Cui X Y, Li S S, Song L, Zhu Y L, Chen X, Chen H T. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor Appl Genet, 2021, 134: 1329–1341. [36] Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348–354. [37] Li M X, Yeung J M Y, Cherny S S, Sham P C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet, 2012, 131: 747–756. [38] Dong S S, He W M, Ji J J, Zhang C, Guo Y, Yang T L. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief Bioinform, 2021, 22: bbaa227. [39] Wang K, Li M Y, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010, 38: e164. [40] Brummer E C, Graef G L, Orf J, Wilcox J R, Shoemaker R C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci, 1997, 37: 370–378. [41] Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053–1067. [42] Patil G, Mian R, Vuong T, Pantalone V, Song Q J, Chen P Y, Shannon G J, Carter T C, Nguyen H T. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theor Appl Genet, 2017, 130: 1975–1991. [43] Zhang H M, Zhang G W, Zhang W, Wang Q, Xu W J, Liu X Q, Cui X Y, Chen X, Chen H T. Identification of loci governing soybean seed protein content via genome-wide association study and selective signature analyses. Front Plant Sci, 2022, 13: 1045953. [44] Cober E R, Morrison M J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet, 2010, 120: 1005–1012 [45] Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161. [46] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408–414. [47] Wang C, Hao X S, Liu X Q, Su Y Z, Pan Y P, Zong C M, Wang W B, Xing G N, He J B, Gai J Y. An improved genome-wide association procedure explores gene-allele constitutions and evolutionary drives of growth period traits in the global soybean germplasm population. Int J Mol Sci, 2023, 24: 9570. [48] Wang Y, Gu Y Z, Gao H H, Qiu L J, Chang R Z, Chen S Y, He C Y. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol Biol, 2016, 16: 79. [49] Guo S Y, Li Y F, Qiu H M, Hu G Y, Zhao C S, Wang R Z, Zhang H, Tian Y, Li X Y, Liu B, et al. GmAP1d regulates flowering time under long-day photoperiods in soybean. Crop J, 2024, 12: 845–855. [50] Cloix C, Kaiserli E, Heilmann M, Baxter K J, Brown B A, O’Hara A, Smith B O, Christie J M, Jenkins G I. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc Natl Acad Sci USA, 2012, 109: 16366–16370. [51] Yamamoto Y Y, Deng X, Matsui M. Cip4, a new COP1 target, is a nucleus-localized positive regulator of Arabidopsis photomorphogenesis. Plant Cell, 2001, 13: 399–411. [52] González Besteiro M A, Bartels S, Albert A, Ulm R. Arabidopsis MAP kinase phosphatase-1 and its target MAP kinases-3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J, 2011, 68: 727–737. [53] Hori K, Watanabe Y. UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J, 2005, 43: 530–540. [54] Jeong H J, Kim Y J, Kim S H, Kim Y H, Lee I J, Kim Y K, Shin J S. Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense. Plant Cell Physiol, 2011, 52: 2147–2156. [55] Shi C, Baldwin I T, Wu J Q. Arabidopsis plants having defects in nonsense-mediated mRNA decay factors UPF1, UPF2, and UPF3 show photoperiod-dependent phenotypes in development and stress responses. J Integr Plant Biol, 2012, 54: 99–114. |
[1] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
[2] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
[3] | 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556. |
[4] | 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284. |
[5] | 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57. |
[6] | 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102. |
[7] | 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173. |
[8] | 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266. |
[9] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[10] | 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186. |
[11] | 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130. |
[12] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[13] | 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709. |
[14] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[15] | 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad YOUSOF, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103. |
|