欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 273-284.doi: 10.3724/SP.J.1006.2025.43010

• 研究简报 • 上一篇    

玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响

钱玉平1(), 宿兵兵2, 高吉星1, 阮粉花1, 李亚伟3,*(), 茅林春1,4   

  1. 1滇西应用技术大学普洱茶学院, 云南普洱 665000
    2兰州交通大学环境与市政工程学院, 甘肃兰州 730070
    3甘肃省农业科学院作物研究所,甘肃兰州 730070
    4浙江大学生物系统工程与食品科学学院, 浙江杭州 310000
  • 收稿日期:2024-03-12 接受日期:2024-09-18 出版日期:2025-01-12 网络出版日期:2024-10-10
  • 通讯作者: 李亚伟
  • 作者简介:E-mail: qyp2810@163.com
  • 基金资助:
    滇西应用技术大学普洱茶学院项目(2023YJXM04);云南省地方高校联合面上项目(202301BA070001-066)

Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region

QIAN Yu-Ping1(), SU Bing-Bing2, GAO Ji-Xing1, RUAN Fen-Hua1, LI Ya-Wei3,*(), MAO Lin-Chun1,4   

  1. 1Pu’er Tea College, West Yunnan University of Applied Technology, Pu’er 665000, Yunnan, China
    2School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    3Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    4College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, Zhejiang, China
  • Received:2024-03-12 Accepted:2024-09-18 Published:2025-01-12 Published online:2024-10-10
  • Contact: LI Ya-Wei
  • Supported by:
    Pu’er Tea College, Western Yunnan University of Applied Technology(2023YJXM04);Joint Project of Local Universities in Yunnan Province(202301BA070001-066)

摘要:

为探明喀斯特区玉米大豆带状复合种植对土壤理化性质及微生物群落结构多样性的影响, 本研究设置玉米大豆间作(MSI)、玉米单作(MM)和大豆单作(SM) 3种模式, 采用Biolog-ECO微孔培养法, 旨在揭示玉米大豆种植模式对土壤微生物碳源代谢活性、多样性以及土壤性质的影响及其机制。结果表明, 与MM及SM相比, MSI土壤微生物群落丰富度指数(McIntosh index)分别显著提高了11.90%和58.40%, 平均颜色变化率(average well color development, AWCD)分别显著增加了24.50%和80.10%, 羧酸类、氨基酸类和酚酸类碳源的平均相对吸光度分别显著提高了34.50%、63.70%和61.80%; 碳源代谢指纹图谱表明, MSI模式中土壤微生物通过提高衣康酸的代谢活性进而增加了对羧酸类碳源的利用, 通过提高L-苯丙氨酸、L-苏氨酸和甘氨酰-L-谷氨酸的代谢活性从而增加了氨基酸类碳源利用, 通过提高吐温40、吐温80和肝糖的代谢活性从而增加了对多聚类碳源的利用; 同时, MSI处理土壤SOC分别较MM和SM显著提高8.50%和72.84%, NH4+-N和TN含量分别较SM处理显著增加46.70%和33.30%; 主成分分析表明, 提取的2个主成分解释了碳源利用总变异的79.69%, 种植模式对碳源代谢的综合利用能力表现为MSI>MM>SM, 其中MSI土壤微生物群落对羧酸类、氨基酸类和多聚类代谢利用能力最强; 冗余分析则表明, 显著影响碳源代谢利用的2个环境因子分别是TN (53.50%)和SOC (30.90%), 其中TN促进了羧酸类和氨基酸类碳源的代谢利用, SOC加强了胺类和酚酸类碳源的利用。综上可见, 玉米大豆间作模式土壤微生物碳代谢的偏好性主要由微生物群落结构多样性引起, 同时又受土壤全氮和有机质含量的调控, 表明微生物群落结构与土壤理化因子间的互作可能是大豆玉米复合种植增产增效的一个关键因素。

关键词: 玉米, 大豆, 土壤微生物, 碳源代谢活性, 土壤理化性质, Biolog-ECO

Abstract:

This study aimed to investigate the effects of corn and soybean belt intercropping on soil physicochemical properties and microbial community structure diversity in a karst area. Three planting models were established: corn and soybean intercropping (MSI), corn monocropping (MM), and soybean monocropping (SM). The Biolog-ECO microplate method was used to explore the impacts of these different planting patterns on the metabolic activity, diversity, and soil properties of soil microbial carbon sources, as well as their underlying mechanisms. The results showed that compared to MM and SM, the MSI model significantly increased the soil microbial community richness index (McIntosh index) by 11.90% (P < 0.05) and 58.40% (P < 0.01), respectively, and the AWCD value by 24.50% and 80.10%, respectively. The relative absorbance of carboxylic acids, amino acids, and phenolic acids increased significantly by 34.50%, 63.70%, and 61.80% on average, respectively. The carbon source metabolic fingerprint revealed that the MSI model enhanced the utilization of p-carboxylic acid carbon sources by increasing the metabolic activity of itaconic acid, and improved the utilization of amino acid carbon sources by boosting the metabolic activity of L-phenylalanine, L-threonine, and glycyl-glutamic acid. Additionally, the MSI model increased the utilization of polymer carbon sources via enhanced metabolic activity of Tween 40, Tween 80, and liver sugar. Furthermore, soil SOC under MSI treatment was significantly higher by 8.50% and 72.84% compared to MM and SM, respectively, while NH4+-N and TN contents were significantly increased by 46.70% and 33.30% compared to SM treatment, respectively. Principal component analysis revealed that the two extracted components explained 79.69% of the total variation in carbon source utilization. The overall carbon source metabolic capacity followed the order MSI > MM > SM, with the MSI soil microbial community demonstrating the strongest metabolic utilization of carboxylic acids, amino acids, and polymers. Redundancy analysis indicated that TN (53.50%) and SOC (30.90%) were the two most significant environmental factors influencing carbon source metabolic utilization. TN promoted the metabolic utilization of carboxylic acid and amino acid carbon sources, while SOC enhanced the utilization of amine and phenolic acid carbon sources. The preferential carbon metabolism observed in maize and soybean intercropping was primarily driven by the diversity of microbial community structure, and was further regulated by soil total nitrogen and organic matter content. These findings suggest that the interaction between microbial community structure and soil physicochemical properties may play a key role in the yield improvement and efficiency of soybean and corn intercropping systems.

Key words: maize, soybean, soil microorganism, metabolic activity of carbon source, physical and chemical properties of soil, Biolog-ECO

图1

作物生育期内试验地的降雨量和日平均温度"

图2

田间种植模式示意图 MM: 玉米单作; MSI: 玉米大豆间作; SM: 大豆单作。"

表1

种植模式对土壤理化因子的影响"

种植模式
Cropping pattern
土壤含水量
SWC (%)
pH 土壤温度
ST (℃)
有机质含量
SOC (g kg-1)
NO3--N
(mg kg-1)
NH4+-N
(mg kg-1)
全氮含量
TN (g kg-1)
MSI 25.64±0.01 b 5.83±0.05 b 24.25±0.31 b 33.15±3.23 a 12.82±1.78 b 38.63±4.08 a 0.88±0.04 a
MM 29.32±0.06 a 5.92±0.09 ab 25.13±0.63 b 30.56±2.56 b 4.98±2.72 c 34.40±8.36 ab 0.80±0.05 a
SM 27.06±0.03 ab 6.13±0.16 ab 26.42±0.85 a 19.18±3.28 c 21.23±1.27 a 26.34±4.27 b 0.66±0.04 b

图3

土壤微生物群落培养168 h后吸光值平均颜色变化率 AWCD value: 平均颜色变化率值。不同小写字母表示利用Duncan进行多重比较时, 不同种植模式的相应指标平均值间存在显著性差异(P < 0.05)。处理同图2。"

图4

不同种植模式下土壤微生物群落对6类碳源代谢利用相对吸光度值的影响 CH: 碳水化合物类; CA: 羧酸; AA: 氨基酸; PM: 多聚类; AM: 胺类; PA: 酚酸。处理同图2。"

表2

不同种植模式下土壤微生物群落6类碳源代谢利用的相对比例"

种植模式
Cropping pattern
碳水化合物类Carbohydrates 羧酸类
CA
氨基酸类
AA
多聚类
PM
胺类
AM
酚酸类
PA
MSI 27.98±2.20 b 21.19±0.69 a 25.71±0.61 a 16.98±0.28 a 5.07±1.88 a 3.07±0.77 b
MM 39.02±2.35 a 20.91±1.77 a 22.77±2.03 a 12.72±2.20 b 2.96±1.99 a 1.62±0.43 c
SM 29.65±1.54 b 22.37±3.43 a 19.71±3.58 a 16.49±1.04 a 6.80±2.19 a 4.98±0.50 a

表3

不同种植模式下土壤微生物群落对6类碳源代谢利用的主成分分析"

主成分数
Principal component number
特征值
Eigenvalue
方差贡献率
Percentage of variance (%)
累计贡献率
Cumulative (%)
1 3.64 60.75 60.75
2 1.14 18.95 79.69
3 0.84 14.06 93.75
4 0.28 4.74 98.49
5 0.08 1.30 99.78
6 0.01 0.22 100.00

图5

种植模式对6类碳源利用特征的主成分分析 PC1: 主成分1; PC2: 主成分2。缩写同图4。"

表4

种植模式对碳源利用特征的主成分得分系数与综合得分"

处理
Treatment
PC1 PC2 综合得分
Synthesis score
排名
Ranking
MSI 2.27 0.42 1.46 1
MM -0.26 -1.13 -0.37 2
SM -2.01 0.71 -1.09 3

图6

不同种植模式下土壤微生物群落对31种单一碳源代谢特征指纹图谱 A3: D-半乳糖酸γ-内酯; A2: β-甲基-D-葡萄糖苷; G1: D-纤维二糖; H1: α-D-乳糖; C2: i-赤藓糖醇; G2: α-D-葡萄糖-1-磷酸; B2: D-木糖; D2: D-甘露醇; E2: N-乙酰-D-葡萄糖胺; H2: D,L-α-磷酸甘油; B3: D-半乳糖醛酸; F2: D-葡萄糖胺酸; B4: L-天门冬酰胺; C4: L-苯基丙氨酸; A4: L-精氨酸; D4: L-丝氨酸; E4: L-苏氨酸; F4: 甘氨酸-L-谷氨酸; E3: γ-羟丁酸; F3: 衣康酸; G3: α-丁酮酸; H3: D-苹果酸; B1: 丙酮酸甲酯; E1: α-环式糊精; F1: 肝糖; C1: 吐温40; D1: 吐温80; C3: 2-羟基苯甲酸; D3: 4-羟基苯甲酸; G4: 苯乙胺; H4: 腐胺。不同小写字母表示利用Duncan法进行多重比较时, 相应指标平均值间的显著性差异(P < 0.05)。处理同图2。"

表5

种植模式对土壤微生物群落结构多样性指数的影响"

处理
Treatment
香农指数
Shannon index
辛普森指数
Simpson index
均匀度指数
Evenness index
丰富度指数
McIntosh index
MSI 3.29±0.073 a 0.96±0.002 a 0.97±0.009 a 5.56±0.096 a
MM 3.12±0.206 a 0.95±0.003 b 0.94±0.046 a 4.97±0.118 b
SM 3.06±0.127 a 0.95±0.004 b 0.95±0.036 a 3.51±0.128 c

图7

土壤理化因子与土壤微生物碳源利用特征及多样性间的相关分析 H: 香农指数; D: 辛普森指数; E: 均匀度指数; U: 丰富度指数。*表示P < 0.05, **表示P < 0.01。缩写同表1和图6。"

图8

土壤理化性质与土壤微生物群落对6类碳源利用特征的冗余分析 红色箭头表示环境因子, 蓝色箭头表示6类碳源。RDA1和RDA2分别表示冗余分析的第1轴和第2轴。每个点代表一个样品, 不同颜色的点属于不同种植模式。处理同图2。缩写同表1和图4。"

[1] Beillouin D, Ben-Ari T, Malézieux E, Seufert V, Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Chang Biol, 2021, 27: 4697-4710.
[2] Philippot L, Chenu C, Kappler A, Rillig M C, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol, 2024, 22: 226-239.
[3] Sokol N W, Slessarev E, Marschmann G L, Nicolas A, Blazewicz S J, Brodie E L, Firestone M K, Foley M M, Hestrin R, Hungate B A, Koch B J, Stone B W, Sullivan M B, Zablocki O, Pett-Ridge J. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat Rev Microbiol, 2022, 20: 415-430.
[4] 宋亚娜, MARSCHNER Petra, 张福锁, 包兴国, 李隆. 小麦/蚕豆, 玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响. 生态学报, 2006, 26: 2268-2274.
Song Y N, Petra M, Zhang F S, Bao X G, Li L. Effect of intercropping on bacterial community composition in rhizoshpere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.). Acta Ecol Sin, 2006, 26: 2268-2274 (in Chinese with English abstract).
[5] 涂勇, 杨文钰, 刘卫国, 雍太文, 江连强, 王小春. 大豆与烤烟不同套作年限对根际土壤微生物数量的影响. 作物学报, 2015, 41: 733-742.
Tu Y, Yang W Y, Liu W G, Yong T W, Jiang L Q, Wang X C. Effects of relay strip intercropping years between flue-cured tobacco and soybean on rhizospheric microbes quantities. Acta Agron Sin, 2015, 41: 733-742 (in Chinese with English abstract).
[6] 郑亚强, 张立敏, 杨进成, 杨坚, 高锐, 陈亮新, 董雪梅, 孙继红, 肖关丽, 李正跃, 陈斌. 甘蔗间作玉米对甘蔗根际微生物代谢功能多样性的影响. 中国生态农业学报, 2016, 24: 618-627.
Zheng Y Q, Zhang L M, Yang J C, Yang J, Gao R, Chen L X, Dong X M, Sun J H, Xiao G L, Li Z Y, Chen B. Effects of sugarcane and maize intercropping on sugarcane rhizosphere microbe metabolic function diversity. Chin J Eco-Agric, 2016, 24: 618-627 (in Chinese with English abstract).
[7] 李鑫, 张会慧, 岳冰冰, 金微微, 许楠, 朱文旭, 孙广玉. 桑树-大豆间作对盐碱土碳代谢微生物多样性的影响. 应用生态学报, 2012, 23: 1825-1831.
Li X, Zhang H H, Yue B B, Jin W W, Xu N, Zhu W X, Sun G Y. Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil. Chin J Appl Ecol, 2012, 23: 1825-1831 (in Chinese with English abstract).
[8] 于海玲, 张晓岩, 李晓宇, 蔡万美, 高强. 种植模式和施肥处理下根际土壤碳源利用能力的研究. 东北师大学报(自然科学版), 2022, 54: 126-133.
Yu H L, Zhang X Y, Li X Y, Cai W M, Gao Q. Effects of planting patterns and fertilization treatments on carbon source utilization capacity of rhizosphere soil. J Northeast Norm Univ (Nat Sci Edn), 2022, 54: 126-133 (in Chinese with English abstract).
[9] 覃潇敏, 郑毅, 汤利, 龙光强. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响. 作物学报, 2015, 41: 919-928.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of maize and potato intercropping on rhizosphere microbial community structure and diversity. Acta Agron Sin, 2015, 41: 919-928 (in Chinese with English abstract).
[10] 马昕伶, 秦文婧, 刘凯, 刘佳, 樊剑波, 李忠佩, 陈晓芬, 吴萌, 江春玉, 刘凯丽, 武志峰, 刘明. 竹豆间种对柑橘园土壤化学性质及微生物碳源代谢特征的影响. 中国土壤与肥料, 2021, (5): 200-206.
Ma X L, Qin W J, Liu K, Liu J, Fan J B, Li Z P, Chen X F, Wu M, Jiang C Y, Liu K L, Wu Z F, Liu M. Effect of bamboo bean intercropping on soil chemical properties and microbial carbon metabolism in Citrus orchard. Soil Fert Sci China, 2021, (5): 200-206 (in Chinese with English abstract).
[11] 林伟伟, 李娜, 陈丽珊, 吴则焰, 林文雄, 沈荔花. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响. 中国生态农业学报(中英文), 2022, 30: 26-37.
Lin W W, Li N, Chen L S, Wu Z Y, Lin W X, Shen L H. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria. Chin J Eco-Agric, 2022, 30: 26-37 (in Chinese with English abstract).
[12] 农业农村部. 农业农村部关于印发《“十四五”全国种植业发展规划》的通知. [2024-07-26], http://www.moa.gov.cn/nybgb/2022/202202/202204/t20220401_6395092.htm. .
Ministry of Agriculture and Rural Affairs. Notice of the Ministry of Agriculture and Rural Affairs on Issuing the “14th Five-Year Plan” National Planting Industry Development Plan. [2024-07-26], http://www.moa.gov.cn/nybgb/2022/202202/202204/t20220401_6395092.htm (in Chinese).
[13] 张晓娜, 陈平, 杜青, 周颖, 任建锐, 金福, 杨文钰, 雍太文. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响. 中国生态农业学报(中英文), 2019, 27: 1183-1194.
Zhang X N, Chen P, Du Q, Zhou Y, Ren J R, Jin F, Yang W Y, Yong T W. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chin J Eco-Agric, 2019, 27: 1183-1194 (in Chinese with English abstract).
[14] 王瑞雪, 苏丽珍, 张连娅, 王思睿, 王景, 肖靖秀, 郑毅, 汤利. 玉米与大豆间作土壤生物学活性对磷有效性影响的定量解析. 中国生态农业学报(中英文), 2022, 30: 1155-1163.
Wang R X, Su L Z, Zhang L Y, Wang S R, Wang J, Xiao J X, Zheng Y, Tang L. Quantitative mechanism analysis of the improved P availability in red soil during maize/soybean intercropping. Chin J Eco-Agric, 2022, 30: 1155-1163 (in Chinese with English abstract).
[15] 李易玲, 彭西红, 陈平, 杜青, 任俊波, 杨雪丽, 雷鹿, 雍太文, 杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响. 中国农业科学, 2022, 55: 1749-1762.
Li Y L, Peng X H, Chen P, Du Q, Ren J B, Yang X L, Lei L, Yong T W, Yang W Y. Effects of reducing nitrogen application on leaf stay-green, photosynthetic characteristics and system yield in maize-soybean relay strip intercropping. Sci Agric Sin, 2022, 55: 1749-1762 (in Chinese with English abstract).
[16] 宁自力, 王贝贝, 谭先明, 滕一鸣, 杨文钰, 杨峰. 玉米行向配置对带状套作大豆光合特性、叶片结构及产量的影响. 中国生态农业学报(中英文), 2023, 31: 1038-1052.
Ning Z L, Wang B B, Tan X M, Teng Y M, Yang W Y, Yang F. Effect of maize row orientation configurations on the photosynthetic characteristics, leaf structure and yield of soybean in relay strip intercropping systems. Chin J Eco-Agric, 2023, 31: 1038-1052 (in Chinese with English abstract).
[17] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响. 作物学报, 2022, 48: 1199-1209.
Peng X H, Chen P, Du Q, Yang X L, Ren J B, Zheng B C, Luo K, Xie C, Lei L, Yong T W, Yang W Y. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean. Acta Agron Sin, 2022, 48: 1199-1209 (in Chinese with English abstract).
[18] 雍太文, 陈平, 刘小明, 周丽, 宋春, 王小春, 杨峰, 刘卫国, 杨文钰. 减量施氮对玉米-大豆套作系统土壤氮素氨化、硝化及固氮作用的影响. 作物学报, 2018, 44: 1485-1495.
Yong T W, Chen P, Liu X M, Zhou L, Song C, Wang X C, Yang F, Liu W G, Yang W Y. Effects of reduced nitrogen on soil ammonification, nitrification, and nitrogen fixation in maize-soybean relay intercropping systems. Acta Agron Sin, 2018, 44: 1485-1495 (in Chinese with English abstract).
[19] 李孟婷, 宋艳宇, 宫超, 高思齐, 刘桢迪, 朱梦圆, 袁佳宝, 刘吉平. 湿地土壤微生物功能多样性及碳氮组分对长期氮输入的响应. 生态学报, 2023, 43: 8544-8555.
Li M T, Song Y Y, Gong C, Gao S Q, Liu Z D, Zhu M Y, Yuan J B, Liu J P. Response of soil microbial functional diversity and soil carbon and nitrogen components to long-term nitrogen input in wetlands. Acta Ecol Sin, 2023, 43: 8544-8555 (in Chinese with English abstract).
[20] Zheng T, Zhou Q X, Ouyang S H. Enhancing function of plant-microbial symbiosis for pollution mitigation and carbon sequestration. Chin Sci Bull, 2023, 68: 3155-3171.
[21] 游川, 杨天杰, 周新刚, 王孝芳, 徐阳春, 沈其荣, 韦中. 连作根系分泌物加剧土传病害的机制和缓解措施研究进展. 土壤学报, 2024, 61: 1201-1211.
You C, Yang T J, Zhou X G, Wang X F, Xu Y C, Shen Q R, Wei Z Z. Research Advances on Mechanisms and Preventions of Soil- borne Diseases Exacerbated by Root Exudates in Continuous Cropping Systems. Acta Pedol Sin, 2024, 61: 1201-1211 (in Chinese with English abstract).
[22] 刘泽琴, 刘宁, 李淑娟, 黄国勤, 周泉. 紫云英与油菜间作模式下根系分泌物对土壤微生物的影响. 华中农业大学学报, 2023, 42(4): 177-184.
Liu Z Q, Liu N, Li S J, Huang G Q, Zhou Q. Effects of root exudates on soil microorganisms under intercropping pattern of Chinese milkvetch and rapeseed. J Huazhong Agric Univ, 2023, 42(4): 177-184 (in Chinese with English abstract).
[23] 白晶芝, 高欢, 杨帆, 周新刚, 刘守伟, 吴凤芝. 分蘖洋葱与番茄伴生根系分泌物对根结线虫的影响. 植物保护, 2021, 47(3): 22-28.
Bai J Z, Gao H, Yang F, Zhou X G, Liu S W, Wu F Z. Effects of root exudates on root-knot nematodes in tomato-potato onion interplant system. Plant Prot, 2021, 47(3): 22-28 (in Chinese with English abstract).
[24] Zhang G Z, Yang H, Zhang W P, Bezemer T M, Liang W J, Li Q, Li L. Interspecific interactions between crops influence soil functional groups and networks in a maize/soybean intercropping system. Agric Ecosyst Environ, 2023, 355: 108595.
[25] 宋瑶, 周斯豪, 牛宏进, 张晓旭, 黄亚丽, 邢明振, 陈晓波. 玉米-大豆复合种植模式下玉米根区细菌群落特征分析. 环境科学, 2024, 45: 4894-4903.
Song Y, Zhou S H, Niu H J, Zhang X X, Huang Y L, Xing M Z, Chen X B. Analysis of bacterial community characteristics in maize root zones under maize-soybean compound planting mode. Environ Sci, 2024, 45: 4894-4903 (in Chinese with English abstract).
[26] 陈一夫. 玉米与大豆单、间作模式下的根际微生物组分析及促生菌群的筛选构建. 西北农林科技大学硕士学位论文, 陕西杨凌, 2023.
Chen Y F. Analysis of Rhizosphere Microbe and Screening and Construction of Growth-promoting Flora under Single and Intercropping Patterns of Maize and Soybean. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[27] 代真林, 汪娅婷, 姚秀英, 张晋豪, 王彦芳, 姚博, 魏兰芳, 姬广海. 玉米大豆间作模式对玉米根际土壤微生物群落特征、玉米产量及病害的影响. 云南农业大学学报(自然科学), 2020, 35: 756-764.
Dai Z L, Wang Y T, Yao X Y, Zhang J H, Wang Y F, Yao B, Wei L F, Ji G H. Effects of maize/soybean intercropping on the microbial community characteristics of maize rhizosphere soil, maize yield and diseases. J Yunnan Agric Univ (Nat Sci), 2020, 35: 756-764 (in Chinese with English abstract).
[28] 孙涛, 冯晓敏, 高新昊, 邓艾兴, 郑成岩, 宋振伟, 张卫建. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响. 中国农业科学, 2023, 56: 2929-2940.
Sun T, Feng X M, Gao X H, Deng A X, Zheng C Y, Song Z W, Zhang W J. Effects of diversified cropping on the soil aggregate composition and organic carbon and total nitrogen content. Sci Agric Sin, 2023, 56: 2929-2940 (in Chinese with English abstract).
[29] Te X, Hassan M J, Cui K S, Xiao J H, Aslam M N, Saeed A, Yang W Y, Ali S. Effect of different planting pattern arrangements on soil organic matter and soil nitrogen content under a maize/soybean strip relay intercropping system. Front Plant Sci, 2022, 13: 995750.
[30] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415 (in Chinese with English abstract).
[31] 彭玺, 冯凯, 厉舒祯, 邓晔. 宏基因组学技术与微生物群落多样性分析方法. 科技导报, 2022, 40(3): 99-111.
Peng X, Feng K, Li S Z, Deng Y. Analytical methods for metagenomic technology and microbial community diversity. Sci Technol Rev, 2022, 40(3): 99-111 (in Chinese with English abstract).
[32] 林婷婷, 郑洁, 朱国繁, 栾璐, 杨叶钰萍, 刘佳, 徐勤松, 孙波, 蒋瑀霁. 有机肥处理对旱地红壤细菌群落及玉米生产力的影响. 环境科学, 2023, 44: 6965-6972.
Lin T T, Zheng J, Zhu G F, Luan L, Yang Y Y P, Liu J, Xu Q S, Sun B, Jiang Y J. Effects of organic fertilization on bacterial community and maize productivity in dryland red soil. Environ Sci, 2023, 44: 6965-6972 (in Chinese with English abstract).
[33] 王顶, 李欢, 伊文博, 陈林康, 赵平, 龙光强. 马铃薯间作对土壤微生物代谢功能多样性的促进效应及其氮素调控作用. 中国生态农业学报(中英文), 2022, 30: 1164-1173.
Wang D, Li H, Yi W B, Chen L K, Zhao P, Long G Q. Promoting effect of potato intercropping on functional diversity of soil microbial metabolism and nitrogen regulation. Chin J Eco-Agric, 2022, 30: 1164-1173 (in Chinese with English abstract).
[1] 郝琪, 陈天陆, 王富贵, 王振, 白岚方, 王永强, 王志刚. 基于无人机多光谱数据和氮素空间分异的玉米冠层氮浓度估算[J]. 作物学报, 2025, 51(1): 189-206.
[2] 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173.
[3] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[4] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[5] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[6] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[7] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[8] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[9] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[10] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[11] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[12] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[13] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[14] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[15] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!