欢迎访问作物学报,今天是

作物学报

• •    

基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘

李宜谦2,徐守振1,刘萍1,马麒1,谢斌1,陈红1,*   

  1. 1 新疆农垦科学院棉花研究所, 新疆石河子 832000; 2 浙江大学农业与生物技术学院, 浙江杭州 310058
  • 收稿日期:2024-12-03 修回日期:2025-04-27 接受日期:2025-04-27 网络出版日期:2025-05-14
  • 基金资助:
    本研究由科技创新2030-重大项目(2023ZD0404106)资助。

Genome-wide association study of yield components using a 40K SNP array and identification of a stable locus for boll weight in upland cotton (Gossypium hirsutum L.)

LI Yi-Qian2,XU Shou-Zhen1,LIU Ping1,MA Qi1,XIE Bin1,CHEN Hong1,*   

  1. 1 Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, Xinjiang, China; 2 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2024-12-03 Revised:2025-04-27 Accepted:2025-04-27 Published online:2025-05-14
  • Supported by:
    This study was supported by the Science and Technology Innovation 2023-Major Project (2023ZD0404106).

摘要:

棉花经济产量主要受单株铃数、单铃重和衣分等产量构成素的影响,解析棉花产量构成素的遗传机制对指导分子育种具有重要意义。本研究以612份陆地棉品种()构成的自然群体为研究材料,利用基于液相探针杂交的40K SNP芯片进行基因型分型,并在5个自然环境下调查单株铃数、单铃重、衣分及籽棉产量等性状。通过全基因组关联分析共检测到6个显著关联位点,包括与单株铃数相关的2个位点(A03A05染色体)、与单铃重相关的1个位点(A07染色体)、与衣分相关的1个位点(D01染色体)和与籽棉产量相关的2个位点(A05D07染色体)。其中,位于A07染色体89.01~90.45 Mb区间的QTL5个环境与单铃重显著关联(P=5.3646×10?8),表现出较高的稳定性。通过单倍型分析发现该区间存在2个主要单倍型,携带有利单倍型的材料平均单铃重显著增加0.64 g结合深度重测序数据和转录组数据分析,在该区间鉴定到7个候选基因,并确定了可用于分子标记开发的关键SNP位点。本研究不仅丰富了陆地棉产量性状的遗传解析结果,而且为高产育种提供了重要的分子信息。

关键词: 陆地棉, 产量构成要素, 全基因组关联分析, 单铃重, 高产育种

Abstract:

Cotton yield is primarily determined by key yield components, including boll number per plant, boll weight, and lint percentage. Understanding the genetic basis of these traits is essential for advancing molecular breeding strategies. In this study, a natural population of 612 upland cotton (Gossypium hirsutum L.) accessions was genotyped using a 40K SNP array based on liquid-phase probe hybridization technology. Phenotypic data for boll number per plant, boll weight, lint percentage, and seed cotton yield were collected across five different environments. A genome-wide association study (GWAS) identified six significant loci: two associated with boll number per plant (on chromosomes A03 and A05), one with boll weight (on chromosome A07), one with lint percentage (on chromosome D01), and two with seed cotton yield (on chromosomes A05 and D07). Notably, a stable QTL located between 89.01 and 90.45 Mb on chromosome A07 was consistently associated with boll weight across all five environments (P=5.3646×10?8). Haplotype analysis of this region revealed two major haplotypes, with accessions carrying the favorable haplotype exhibiting a significant increase in boll weight of 0.64 g. By integrating whole-genome resequencing and transcriptome data, seven candidate genes were identified within this region, and a key SNP variant was pinpointed for potential use in molecular marker development. These findings enhance our understanding of the genetic architecture of cotton yield traits and offer valuable molecular resources for high-yield cotton breeding programs.

Key words: upland cotton, yield components, GWAS, boll weight, high-yield breeding

[1] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739–748. 

[2] Lam H M, Xu X, Liu X, Chen W B, Yang G H, Wong F L, Li M W, He W M, Qin N, Wang B, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053–1059. 

[3] Fang L, Wang Q, Hu Y, Jia Y H, Chen J D, Liu B L, Zhang Z Y, Guan X Y, Chen S Q, Zhou B L, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet, 2017, 49: 1089–1098. 

[4] Ma Z Y, He S P, Wang X F, Sun J L, Zhang Y, Zhang G Y, Wu L Q, Li Z K, Liu Z H, Sun G F, et al. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet, 2018, 50: 803–813. 

[5] Han Z G, Chen H, Cao Y W, He L, Si Z F, Hu Y, Lin H, Ning X Z, Li J L, Ma Q, et al. Genomic insights into genetic improvement of upland cotton in the world’s largest growing region. Ind Crops Prod, 2022, 183: 114929. 

[6] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127. 

[7] Si Z F, Jin S K, Li J, Y Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation, and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629. 

[8] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015, 33: 531–537. 

[9] Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348–354. 

[10] Wang M J, Tu L L, Lin M, Lin Z X, Wang P C, Yang Q Y, Ye Z X, Shen C, Li J Y, Zhang L, et al. Asymmetric subgenome selection and Cis-regulatory divergence during cotton domestication. Nat Genet, 2017, 49: 579–587. 

[11] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224–229. 

[12] Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet, 2021, 53: 1385–1391. 

[13] Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 2015, 4: 7. 

[14] Wang K, Li M Y, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010, 38: e164. 

[15] Dai F, Chen J D, Zhang Z Q, Liu F J, Li J, Zhao T, Hu Y, Zhang T Z, Fang L. COTTONOMICS: a comprehensive cotton multi-omics database. Database, 2022, 2022: baac080. 

[16] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X X, Wu J Y, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015, 33: 524–530.

[17] Li Y Q, Si Z F, Wang G P, Shi Z L, Chen J W, Qi G A, Jin S K, Han Z G, Gao W H, Tian Y, et al. Genomic insights into the genetic basis of cotton breeding in China. Mol Plant, 2023, 16: 662–677. 

[18] Zhang Y Y, Zhou F W, Wang H, Chen Y N, Yin T M, Wu H T. Genome-wide comparative analysis of the fasciclin-like Arabinogalactan proteins (FLAs) in Salicacea and identification of secondary tissue development-related genes. Int J Mol Sci, 2023, 24: 1481. 

[19] Cagnola J I, Dumont de Chassart G J, Ibarra S E, Chimenti C, Ricardi M M, Delzer B, Ghiglione H, Zhu T, Otegui M E, Estevez J M, et al. Reduced expression of selected fasciclin-like Arabinogalactan protein genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds. Plant Cell Environ, 2018, 41: 661–674. 

[20] Feraru E, Feraru M I, Moulinier-Anzola J, Schwihla M, Ferreira Da Silva Santos J, Sun L, Waidmann S, Korbei B, Kleine-Vehn J. PILS proteins provide a homeostatic feedback on auxin signaling output. Development, 2022, 149: dev200929.

[1] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[2] 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188.
[3] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
[4] 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394.
[5] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[6] 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102.
[7] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[8] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[9] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[10] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[11] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[12] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[13] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[14] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[15] 戎宇轩, 惠留洋, 王沛琦, 孙思敏, 张献龙, 袁道军, 杨细燕. 陆地棉CLE基因家族的鉴定及GhCLE13参与调控棉花抗旱性的功能分析[J]. 作物学报, 2024, 50(12): 2925-2939.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!