欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1178-1188.doi: 10.3724/SP.J.1006.2025.44146

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花60K功能位点基因芯片的制备及应用

王亚雯1,戚正阳1,尤佳琦1,聂新辉2,曹娟3,杨细燕1,涂礼莉1,张献龙1,王茂军1,2,*   

  1. 1华中农业大学作物遗传改良全国重点实验室, 湖北武汉430070; 2石河子大学, 新疆石河子832000; 3新疆塔里木河种业股份有限公司, 新疆阿拉尔843300
  • 收稿日期:2024-09-05 修回日期:2025-01-23 接受日期:2025-01-23 出版日期:2025-05-12 网络出版日期:2025-02-11
  • 基金资助:
    本研究由湖北省支持种业高质量发展专项课题项目(HBZY2023B002-5)和农业生物育种国家科技重大专项(2023ZD0403801, 2023ZD0403901)资助。

Preparation of cotton 60K functional locus gene chip and its application to genetic research

WANG Ya-Wen1,QI Zheng-Yang1,YOU Jia-Qi1,NIE Xin-Hui2,CAO Juan3,YANG Xi-Yan1,TU Li-Li1,ZHANG Xian-Long1,WANG Mao-Jun1,2,*   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 2 Shihezi University, Shihezi 83200, Xinjiang, China; 3 Xinjiang Tarim River Seed Industry Co., Ltd., Alar 843300, Xinjiang, China
  • Received:2024-09-05 Revised:2025-01-23 Accepted:2025-01-23 Published:2025-05-12 Published online:2025-02-11
  • Supported by:
    This study was supported by the Special Project for Supporting High Quality Development of Seed Industry in Hubei Province (HBZY2023B002-5) and the National Science and Technology Major Project of Agricultural Biological Breeding in China (2023ZD0403801, 2023ZD0403901).

摘要:

棉花是最重要的天然纺织纤维来源,同时是重要的油料来源。功能位点基因芯片作为一种可以提高育种值评估准确性和育种效率的工具,在棉花中应用较少。本研究制备了一棉花60K功能位点基因芯片。该芯片制备基于已获得的棉花不同品种的Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)Chromatin Immunoprecipitation sequencing (ChIP-seq)High-throughput Chromosome Conformation Capture (Hi-C)等组学数据,相较棉花领域已有的基因芯片,包含更多经过多维组学数据注释的功能遗传变异的位点,所携带的有效功能信息更多。本研究将该芯片应用于棉花群体的全基因组关联分析中,鉴定到40个与棉纤维品质性状相关的显著SNP位点,其中纤维伸长率(FE)相关显著位点共25个,马克隆值(FM)相关显著位点共l5个,纤维强度(FS)相关显著位点共2个,纤维长度(FL)相关显著位点共4个,纤维整齐度(FU)相关显著位点共4个。本研究中棉花60K功能位点基因芯片可应用于棉花种质资源评价、遗传定位及全基因组选择育种等方面,助力棉花基因组育种。

关键词: 棉花育种, 基因芯片, 棉花60K功能位点基因芯片, 全基因组关联分析, 驯化选择

Abstract:

Cotton is the leading source of natural textile fiber and an important source of oil. However, functional locus gene chips, which can significantly improve the accuracy of breeding value assessments and breeding efficiency, remain underutilized in cotton research. In this study, we developed a 60K functional locus gene chip for cotton, leveraging high-throughput sequencing datasets, including Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq) and High-throughput Chromosome Conformation Capture (Hi-C) data from diverse cotton varieties. Compared to existing cotton gene chips, this newly developed chip incorporates a higher number of functionally annotated loci with genetic variations derived from multi-dimensional data, offering richer insights into gene function. Using this gene chip in a genome-wide association study (GWAS) of cotton fiber quality traits, we identified 40 significant single nucleotide polymorphisms (SNPs) linked to fiber quality. These include 25 SNPs associated with fiber elongation rate (FE), five with fiber micronaire value (FM), two with fiber strength (FS), four with fiber length (FL), and four with fiber uniformity (FU). The 60K functional locus gene chip provides a powerful tool for the evaluation of cotton germplasm resources, genetic mapping, and genome-wide selection breeding. This advancement holds great promise for accelerating genomic breeding efforts, ultimately driving improvements in cotton production and quality.

Key words: cotton breeding, gene chip, cotton 60K functional locus gene chip, genome-wide association analysis, domestication selection

[1] Billings G T, Jones M A, Rustgi S, Bridges W C Jr, Holland J B, Hulse-Kemp A M, Campbell B T. Outlook for implementation of genomics-based selection in public cotton breeding programs. Plants (Basel), 2022, 11: 1446.

[2] Yang Z E, Gao C X, Zhang Y H, Yan Q D, Hu W, Yang L, Wang Z, Li F G. Recent progression and future perspectives in cotton genomic breeding. J Integr Plant Biol, 2023, 65: 548–569.

[3] Huang G, Huang J Q, Chen X Y, Zhu Y X. Recent advances and future perspectives in cotton research. Annu Rev Plant Biol, 2021, 72: 437–462.

[4] Yu H H, Xie W B, Li J, Zhou F S, Zhang Q F. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014, 12: 28–37.

[5] Tung C W, Zhao K Y, Wright M H, Ali M L, Jung J, Kimball J, Tyagi W, Thomson M J, McNally K, Leung H, et al. Development of a research platform for dissecting phenotype–genotype associations in rice (Oryza spp.). Rice, 2010, 3: 205–217.

[6] Singh N, Jayaswal P K, Panda K, Mandal P, Kumar V, Singh B, Mishra S, Singh Y, Singh R, Rai V, et al. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep, 2015, 5: 11600.

[7] Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One, 2011, 6: e28334.

[8] Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom T M, Fries R, Pausch H, et al. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics, 2014, 15: 823.

[9] Lee Y G, Jeong N, Kim J H, Lee K, Kim K H, Pirani A, Ha B K, Kang S T, Park B S, Moon J K, et al. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J, 2015, 81: 625–636.

[10] Vos P G, Uitdewilligen J G A M L, Voorrips R E, Visser R G F, van Eck H J. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet, 2015, 128: 2387–2401. 

[11] Cavanagh C R, Chao S, Wang S C, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057–8062.

[12] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947–951.

[13] Pandey M K, Agarwal G, Kale S M, Clevenger J, Nayak S N, Sriswathi M, Chitikineni A, Chavarro C, Chen X P, Upadhyaya H D, et al. Development and evaluation of a high density genotyping Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep, 2017, 7: 40577.

[14] Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J, Polley A, Luerßen H, Wieckhorst S, Mascher M, et al. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet, 2016, 129: 317–329.

[15] 李双双, 陈丽丽, 拉毛杰布, 九麦扎西, 勒毛才让, 马毅. 基因芯片在奶牛遗传育种中的应用. 中国畜禽种业, 2024, 20(8): 5362.

Li S S, Chen L L, Lamao J B, Jiumai Z X, Lemao C R, Ma Y. The application of gene chips in genetic breeding of dariry cattle. Chin Livest Poult Breed, 2024, 20(8): 5362 (in Chinese with English abstract).

[16] Tan Z D, Han X, Dai C, Lu S P, He H Z, Yao X, Chen P, Yang C, Zhao L, Yang Q Y, et al. Functional genomics of Brassica napus: progresses, challenges, and perspectives. J Integr Plant Biol, 2024, 66: 484–509.

[17] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, . 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983–3004.

Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, et al. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983–3004 (in Chinese with English abstract).

[18] Cai C P, Zhu G Z, Zhang T Z, Guo W Z. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017, 18: 654.

[19] Hulse-Kemp A M, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang D D, Frelichowski J, Giband M, Hague S, Hinze L L, et al. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 Genes Genom Genet, 2015, 5: 1187–1209.

[20] Si Z F, Jin S K, Li J Y, Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation, and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629.

[21] Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet, 2021, 53: 1385–1391.

[22] He S P, Sun G F, Geng X L, Gong W F, Dai P H, Jia Y H, Shi W J, Pan Z E, Wang J D, Wang L Y, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet, 2021, 53: 916–924.

[23] Yuan D J, Grover C E, Hu G J, Pan M Q, Miller E R, Conover J L, Hunt S P, Udall J A, Wendel J F. Parallel and intertwining threads of domestication in allopolyploid cotton. Adv Sci, 2021, 8: 2003634.

[24] You J Q, Liu Z P, Qi Z Y, Ma Y Z, Sun M L, Su L, Niu H, Peng Y B, Luo X X, Zhu M M, et al. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nat Genet, 2023, 55: 1987–1997.

[25] Lappalainen T, MacArthur D G. From variant to function in human disease genetics. Science, 2021, 373: 1464–1468.

[26] Finucane H K, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P R, Anttila V, Xu H, Zang C Z, Farh K, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet, 2015, 47: 1228–1235.

[27] Xiang R D, Berg I V D, MacLeod I M, Hayes B J, Prowse-Wilkins C P, Wang M, Bolormaa S, Liu Z Q, Rochfort S J, Reich C M, et al. Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. Proc Natl Acad Sci USA, 2019, 116: 19398–19408.

[28] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224–229.

[29] 房嫌嫌, 吴大鹏, 陈进红, 祝水金. 陆地棉半野生种系的遗传多样性和亲缘关系分析. 棉花学报, 2011, 23(2): 99–105.
Fang X X, Wu D P, Chen J H, Zhu S J. Diversity and genetic relationship among the semi-cultivars of G.hirsutum L.Races using SSR markers. Cotton Sci, 2011, 23(2): 99–105 (in Chinese with English abstract).

[30] Viot C R, Wendel J F. Evolution of the cotton genus, Gossypium, and its domestication in the Americas. Crit Rev Plant Sci, 2023, 42: 1–33.

[31] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739–748.

[32] Chen X Y, Hu X B, Li G, Grover C E, You J Q, Wang R P, Liu Z P, Qi Z Y, Luo X X, Peng Y B, et al. Genetic regulatory perturbation of gene expression impacted by genomic introgression in fiber development of allotetraploid cotton. Adv Sci, 2024, 11: e2401549.

[1] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[2] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
[3] 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394.
[4] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[5] 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102.
[6] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[7] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[8] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[9] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[10] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[11] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[12] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[13] 阳世杰, 王华智, 潘怡敏, 黄蕊, 侯森, 秦慧彬, 穆志新, 王海岗. 山西谷子种质资源株高全基因组关联分析[J]. 作物学报, 2024, 50(12): 2984-2997.
[14] 鲁宗辉, 司二静, 叶霈颖, 汪军成, 姚立蓉, 马小乐, 李葆春, 王化俊, 尚勋武, 孟亚雄. 大麦籽粒β-葡聚糖含量的全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(10): 2483-2492.
[15] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .