欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1178-1188.doi: 10.3724/SP.J.1006.2025.44146

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花60K功能位点基因芯片的制备及应用

王亚雯1(), 戚正阳1, 尤佳琦1, 聂新辉2, 曹娟3, 杨细燕1, 涂礼莉1, 张献龙1, 王茂军1,2,*()   

  1. 1华中农业大学作物遗传改良全国重点实验室, 湖北武汉 430070
    2石河子大学, 新疆石河子 832000
    3新疆塔里木河种业股份有限公司, 新疆阿拉尔 843300
  • 收稿日期:2024-09-05 接受日期:2025-01-23 出版日期:2025-05-12 网络出版日期:2025-02-11
  • 通讯作者: *王茂军, E-mail: mjwang@mail.hzau.edu.cn
  • 作者简介:E-mail: ywwang@webmail.hzau.edu.cn
  • 基金资助:
    湖北省支持种业高质量发展专项课题项目(HBZY2023B002-5);农业生物育种国家科技重大专项(2023ZD0403801);农业生物育种国家科技重大专项(2023ZD0403901)

Preparation of cotton 60K functional locus gene chip and its application to genetic research

WANG Ya-Wen1(), QI Zheng-Yang1, YOU Jia-Qi1, NIE Xin-Hui2, CAO Juan3, YANG Xi-Yan1, TU Li-Li1, ZHANG Xian-Long1, WANG Mao-Jun1,2,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Shihezi University, Shihezi 832000, Xinjiang, China
    3Xinjiang Tarim River Seed Industry Co., Ltd., Alar 843300, Xinjiang, China
  • Received:2024-09-05 Accepted:2025-01-23 Published:2025-05-12 Published online:2025-02-11
  • Contact: *E-mail: mjwang@mail.hzau.edu.cn
  • Supported by:
    Special Project for Supporting High Quality Development of Seed Industry in Hubei Province(HBZY2023B002-5);National Science and Technology Major Project of Agricultural Biological Breeding in China(2023ZD0403801);National Science and Technology Major Project of Agricultural Biological Breeding in China(2023ZD0403901)

摘要:

棉花是最重要的天然纺织纤维来源, 同时是重要的油料来源。功能位点基因芯片作为一种可以提高育种值评估准确性和育种效率的工具, 在棉花中应用较少。本研究制备了一款棉花60K功能位点基因芯片。该芯片制备基于已获得的棉花不同品种的Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)、Chromatin Immunoprecipitation sequencing (ChIP-seq)、High-throughput Chromosome Conformation Capture (Hi-C)等组学数据, 相较棉花领域已有的基因芯片, 包含了更多经过多维组学数据注释的功能遗传变异的位点, 所携带的有效功能信息更多。本研究将该芯片应用于棉花群体的全基因组关联分析中, 鉴定到40个与棉花纤维品质性状相关的显著SNP位点, 其中与纤维伸长率(FE)相关的显著位点共25个, 与马克隆值(FM)相关的显著位点共5个, 与纤维强度(FS)相关的显著位点共2个, 与纤维长度(FL)相关的显著位点共4个, 与纤维整齐度(FU)相关的显著位点共4个。本研究中棉花60K功能位点基因芯片可应用于棉花种质资源评价、遗传定位及全基因组选择育种等方面, 助力棉花基因组育种。

关键词: 棉花育种, 基因芯片, 棉花60K功能位点基因芯片, 全基因组关联分析, 驯化选择

Abstract:

Cotton is the leading source of natural textile fiber and an important source of oil. However, functional locus gene chips, which can significantly improve the accuracy of breeding value assessments and breeding efficiency, remain underutilized in cotton research. In this study, we developed a 60K functional locus gene chip for cotton, leveraging high-throughput sequencing datasets, including Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq) and High-throughput Chromosome Conformation Capture (Hi-C) data from diverse cotton varieties. Compared to existing cotton gene chips, this newly developed chip incorporates a higher number of functionally annotated loci with genetic variations derived from multi-dimensional data, offering richer insights into gene function. Using this gene chip in a genome-wide association study (GWAS) of cotton fiber quality traits, we identified 40 significant single nucleotide polymorphisms (SNPs) linked to fiber quality. These include twenty-five SNPs associated with fiber elongation rate (FE), five with fiber micronaire value (FM), two with fiber strength (FS), four with fiber length (FL), and four with fiber uniformity (FU). The 60K functional locus gene chip provides a powerful tool for the evaluation of cotton germplasm resources, genetic mapping, and genome-wide selection breeding. This advancement holds great promise for accelerating genomic breeding efforts, ultimately driving improvements in cotton production and quality.

Key words: cotton breeding, gene chip, cotton 60K functional locus gene chip, genome-wide association analysis, domestication selection

附表1

供试棉花材料信息"

栽培棉 Cultivars of G. hirsutum L.
序号
No.
材料名称
Accession name
序号
No.
材料名称
Accession name
序号
No.
材料名称
Accession name
S5 鄂棉11 Emian 11 S130 源棉10 Yuanmian 10 S255 邯7860 Han 7860
S7 Mei87-22 S133 39-38 S274 新陆中48 Xinluzhong 48
S9 晋棉17 Jinmian 17 S137 466 S275 晋棉21 Jinmian 21
S10 中植棉2 Zhongzhimian 2 S139 斯字棉4 Stoneville 4 S279 n2
S11 苏棉11 Sumian 11 148 C-450-555 280 新陆早39 Xinluzao 39
S12 泗棉3 Simian 3 S151 P09 S297 SCK321
S17 岱红岱 Daihongdai S152 Beiersinuo S298 光叶大籽Guangyedazimian
S18 豫棉8 Yumian 8 S154 鄂棉21 Emian 21 S300 LL
S21 斯字棉2B Stoneville 2B S160 Zhangyang 1 S307 皖棉17 Wanmian 17
S25 鄂光棉 Eguangmian S161 新陆中32 Xinluzhong 32 S310 黑山棉1 Heishanmian 1
S27 Nantongbian 3 S162 辽96-103 Liao 96-103 S322 晋棉29 Jinmian 29
S32 新陆中1 Xinluzhong 1 S163 陕棉1 Shaanmian 1 S323 HMJ wu
S40 陕2786 Shaan 2786 S169 敦煌77-116 Dunhuang 77-116 S324 邯109 Han 109
S42 农大94-7 Nongda 94-7 S174 大铃棉69 Dalingmian 69 S335 HC03
S44 辽金棉5 Liaojinmian 5 S176 K1543 S336 豫棉19 Yumian 19
S48 Duangguozhi 8-9 S177 新陆中75 Xinluzhong75 S337 Bawangbian
S51 陕3619 Shaan 3619 S182 晋棉20 Jinmian 20 S340 盐棉1 Yanmian 1
S52 Dunn18 S189 塔什干2 Tashigan 2 S350 华棉4 Huamian 4
S60 鄂抗棉33 Ekangmian 33 S192 晋棉13 Jinmian 13 S401 新陆中68 Xinluzhong 68
S71 豫棉5 Yumian 5 S194 Gailiangkezimian S402 陕棉9 Shaanmian 9
S79 川7327 Chuan 7327 S198 P24 S403 岱字棉14 Deltapine cotton 14
S90 新陆早36 Xinluzao36 S204 Hopical 130263 S404 豫棉14 Yumian 14
S93 科遗181 Keyi 181 S205 鲁棉研32 Lumianyan 32 S405 苏联8908 Sulian 8908
S97 鄂抗棉7 Ekangmian 7 S208 罗甸铁籽Luodiantiezi S406 源棉5 Yuanmian 5
S99 苏抗191 Sukang 191 S209 宾川373 Binchuan 373 S407 宁棉1 Ningmian 1
S102 中棉所19 Zhongmiansuo 19 S216 苏棉20 Sumian 20 S408 鄂抗棉33 Ekangmian 33
S107 豫棉15 Yumian 15 S217 晋棉26 Jinmian 26 S409 石远321 Shiyuan 321
S109 Pengzeyahuang S221 HC01 S410 471guangzi
S110 益棉8 Yimian 8 S222 中25 Zhong 25 S411 商丘24 Shangqiu 24
S111 川棉98 Chuanmian 98 S224 中棉所45 Zhongmiansuo 45 S412 新陆中48 Xinluzao 48
S113 Gz Nn S225 华东6 Huadong 6 S413 渤棉2 Bomian 2
S116 中棉所32 Zhongmiansuo 32 S235 Lixiandatao S414 Dunn18
S117 源棉8 Yuanmian8 S244 13P041 S415 新陆早31 Xinluzao31
S121 晋棉2 Jinmian 2 S253 沙农6 Shanong 6 S416 陆长丰 Luchangfeng
半野生棉 Semi-wild accessions of G. hirsutum L.
序号
No.
材料名称
Accession name
序号
No.
材料名称
Accession name
序号
No.
材料名称
Accession name
S1387 尖斑棉1103 Jianbanmian 1103 S1419 莫利尔194 Molier 194 S1559 雷奇蒙地281 Leiqimengdi 281
S1388 尖斑棉1108K Jianbanmian 1108K S1421 莫利尔255 Molier 255 S1560 雷奇蒙地461 Leiqimengdi 461
S1390 尖斑棉144 Jianbanmian 144 S1423 帕默尔1045A Pamoer 1045A S1561 玛利加郎特1259
Malijialangte 1259
S1393 尖斑棉488 Jianbanmian 488 S1424 帕默尔11 Pamoer 11 S1563 玛利加郎特2304C
Malijialangte 2304C
S1395 尖斑棉94 Jianbanmian 94 S1430 尤卡坦1039A Youkatan 1039A S1564 玛利加郎特246 Malijialangte 246
S1397 阔叶棉177 Kuoyemian 177 S1431 尤卡坦1046 Youkatan 1046 S1565 玛利加郎特368 Malijialangte 368
S1399 阔叶棉21 Kuoyemian 21 S1432 尤卡坦1236 Youkatan 1236 S1566 玛利加郎特883A
Malijialangte 883A
S1400 阔叶棉221 Kuoyemian 221 S1434 尤卡坦2094 Youkatan 2094 S1567 玛利加郎特904 Malijialangte 904
S1402 阔叶棉482 Kuoyemian 482 S1539 尖斑棉1103 Jianbanmian 1103 S1568 莫利尔131X Molier131X
S1403 雷奇蒙地1102 Leiqimengdi 1102 S1540 尖斑棉1108K Jianbanmian 1108K S1569 莫利尔133 Molier 133
S1404 雷奇蒙地145 Leiqimengdi 145 S1541 尖斑棉114 Jianbanmian 114 S1571 莫利尔194 Molier 194
S1407 雷奇蒙地281 Leiqimengdi 281 S1542 尖斑棉144 Jianbanmian 144 S1573 莫利尔255 Molier 255
S1411 玛利加郎特2304C
Malijialangte 2304C
S1544 尖斑棉27 Jianbanmian 27 S1575 帕默尔1045A Pamoer 1045A
S1413 玛利加郎特368 Malijialangte 368 S1545 尖斑棉488 Jianbanmian 488 S1576 帕默尔11 Pamoer 11
S1414 玛利加郎特883A
Malijialangte 883A
S1547 尖斑棉94 Jianbanmian 94 S1582 尤卡坦1039A Youkatan 1039A
S1415 玛利加郎特904 Malijialangte 904 S1552 阔叶棉221 Kuoyemian 221 S1583 尤卡坦1046 Youkatan 1046
S1416 莫利尔131X Molier 131X S1554 阔叶棉482 Kuoyemian 482 S1584 尤卡坦1236 Youkatan 1236
S1417 莫利尔133 Molier 133 S1555 雷奇蒙地1102 Leiqimengdi 1102 S1586 尤卡坦2094B Youkatan 2094B
S1418 莫利尔137X Molier 137X S1556 雷奇蒙地145 Leiqimengdi 145 S1587 尤卡坦2094D Youkatan 2094D

附表2

主成分分析结果和各所属类群对应的半野生棉"

序号
No.
材料名称
Accession name
所属类群
Category
序号
No.
材料名称
Accession name
所属类群
Category
序号
No.
材料名称
Accession name
所属类群
Category
S1561 玛利加郎特1259
Malijialangte1259
Cluster 4 S1411 玛利加郎特2304C
Malijialangte 2304C
Cluster 1 S1402 阔叶棉482
Kuoyemian 482
Cluster 1
S1414 玛利加郎特883A
Malijialangte 883A
Cluster 4 S1566 玛利加郎特883A
Malijialangte 883A
Cluster 1 S1552 阔叶棉221
Kuoyemian 221
Cluster 1
S1563 玛利加郎特2304C
Malijialangte 2304C
Cluster 4 S1430 尤卡坦1039A
Youkatan 1039A
Cluster 1 S1413 玛利加郎特368
Malijialangte 368
Cluster 1
S1587 尤卡坦2094D
Youkatan 2094D
Cluster 4 S1582 尤卡坦1039A
Youkatan 1039A
Cluster 1 S1564 玛利加郎特246
Malijialangte 246
Cluster 1
S1418 莫利尔137X
Molier 137X
Cluster 4 S1434 尤卡坦2094
Youkatan 2094
Cluster 1 S1423 帕默尔1045A
Pamoer 1045A
Cluster 3
S1567 玛利加郎特904
Malijialangte 904
Cluster 4 S1586 尤卡坦2094B
Youkatan 2094B
Cluster 1 S1575 帕默尔1045A
Pamoer 1045A
Cluster 3
S1547 尖斑棉94
Jianbanmian 94
Cluster 2 S1416 莫利尔131X
Molier 131X
Cluster 1 S1388 尖斑棉1108K
Jianbanmian 1108K
Cluster 3
S1545 尖斑棉488
Jianbanmian 488
Cluster 2 S1569 莫利尔133
Molier 133
Cluster 1 S1539 尖斑棉1103
Jianbanmian 1103
Cluster 3
S1540 尖斑棉1108K
Jianbanmian 1108K
Cluster 2 S1417 莫利尔133
Molier 133
Cluster 1 S1565 玛利加郎特368
Malijialangte 368
Cluster 3
S1554 阔叶棉482
Kuoyemian 482
Cluster 2 S1568 莫利尔131X
Molier 131X
Cluster 1 S1395 尖斑棉94
Jianbanmian 94
Cluster 3
S1431 尤卡坦1046
Youkatan 1046
Cluster 2 S1559 雷奇蒙地281
Leiqimengdi 281
Cluster 1 S1403 雷奇蒙地1102
Leiqimengdi 1102
Cluster 3
S1583 尤卡坦1046
Youkatan 1046
Cluster 2 S1432 尤卡坦1236
Youkatan 1236
Cluster 1 S1421 莫利尔255
Molier 255
Cluster 3
S1399 阔叶棉21
Kuoyemian 21
Cluster 2 S1584 尤卡坦1236
Youkatan 1236
Cluster 1 S1573 莫利尔255
Molier 255
Cluster 3
S1390 尖斑棉144
Jianbanmian 144
Cluster 2 S1419 莫利尔194
Molier 194
Cluster 1 S1393 尖斑棉488
Jianbanmian 488
Cluster 3
S1397 阔叶棉177
Kuoyemian 177
Cluster 2 S1571 莫利尔194
Molier 194
Cluster 1 S1404 雷奇蒙地145
Leiqimengdi 145
Cluster 3
S1556 雷奇蒙地145
Leiqimengdi 145
Cluster 2 S1424 帕默尔11
Pamoer 11
Cluster 1 S1387 尖斑棉1103
Jianbanmian 1103
Cluster 3
S1541 尖斑棉114
Jianbanmian 114
Cluster 2 S1576 帕默尔11
Pamoer 11
Cluster 1 S1544 尖斑棉27
Jianbanmian 27
Cluster 3
S1542 尖斑棉144
Jianbanmian 144
Cluster 2 S1407 雷奇蒙地281
Leiqimengdi 281
Cluster 1 S1400 阔叶棉221
Kuoyemian 221
Cluster 3
S1415 玛利加郎特904
Malijialangte 904
Cluster 1 S1560 雷奇蒙地461
Leiqimengdi 461
Cluster 1 S1555 雷奇蒙地1102
Leiqimengdi 1102
Cluster 3

表1

功能元件信息统计"

试验数据
Experimental data
组织
Tissue
峰值
Peak number
H3K27ac 下胚轴 Hypocotyl 39,663
H3K27ac 子叶 Cotyledon 37,635
H3K4me3 胚珠 Ovule 53,993
H3K4me3 胚根 Radicle 42,671
H3K4me3 下胚轴 Hypocotyl 40,116
H3K4me3 叶片 Leaf 59,619
ATAC 子叶, 胚珠, 胚根, 下胚轴, 叶片 Cotyledon, ovule, radicle, hypocotyl, leaf 219,379

表2

变异注释信息权重表"

变异种类
Variation category
权重分数
Weighting
score
变异种类
Variation category
权重分数
Weighting
score
下游区间 Downstream 1 未知类型 Unknown 1
基因间区 Intergenic 1 上游区间 Upstream 1
内含子区 Intronic 1 上下游区间 Upstream, downstream 1
非同义变异 Nonsynonymous SNV 2 3'非翻译区 3' untranslated regions (UTR3) 4
剪接位点区域 Splicing 5 5'非翻译区 5' untranslated regions (UTR5) 4
终止密码子获得 Stopgain
4 5'和3'非翻译区
5' untranslated regions (UTR5); 3' untranslated regions (UTR3)
4
终止密码子丢失 Stoploss 4 染色质开放区/染色质免疫共沉淀ATAC/ChIP 3
同义变异 Synonymous SNV 3 GWAS和eQTL位点 GWAS-associated and eQTL loci 30

图1

挑选的功能位点在棉花参考基因组上的分布密度示意图 该分析以40 kb的滑动窗口来统计窗口包含的功能SNP个数。"

图2

挑选的功能位点与不同类型功能元件交集分析示意图"

图3

不同棉花品种的检出率"

图4

主成分分析结果"

图5

群体遗传结构 该分析利用Admixture软件, 计算K为2~10时的交叉验证误差。当K = 4时, 交叉验证误差最小。"

图6

不同棉纤维品质性状的曼哈顿图与Quantile-Quantile Plot (Q-Q plot)图 曼哈顿图对应的棉纤维品质性状从上到下依次为纤维伸长率、马克隆值、纤维强度、纤维长度及纤维整齐度。"

表3

不同棉纤维品质性状的显著关联SNP位点"

性状
Trait
SNP位点
SNP loci
染色体
Chromosome
物理位置
Position (bp)
P
P-value
纤维伸长率
Fiber elongation rate
A06_30632495 A06 30,632,495 1.93E-05
A06_29826691 A06 29,826,691 2.72E-05
A06_29886743 A06 29,886,743 2.72E-05
A06_29911584 A06 29,911,584 2.72E-05
A06_29998092 A06 29,998,092 2.72E-05
A06_30075108 A06 30,075,108 2.72E-05
A06_30090240 A06 30,090,240 2.72E-05
A06_30183612 A06 30,183,612 2.72E-05
A06_30360014 A06 30,360,014 2.72E-05
A06_30395423 A06 30,395,423 2.72E-05
A06_30481656 A06 30,481,656 2.72E-05
A06_30521701 A06 30,521,701 2.72E-05
A06_30540961 A06 30,540,961 2.72E-05
A06_30729030 A06 30,729,030 2.72E-05
A06_30804606 A06 30,804,606 2.72E-05
A06_30822647 A06 30,822,647 2.72E-05
A06_30882123 A06 30,882,123 2.72E-05
A06_31067102 A06 31,067,102 2.72E-05
A06_31179803 A06 31,179,803 2.72E-05
A06_31422198 A06 31,422,198 2.72E-05
A06_31452632 A06 31,452,632 2.72E-05
A06_31542493 A06 31,542,493 2.72E-05
A06_34928645 A06 34,928,645 2.72E-05
A06_35040024 A06 35,040,024 2.72E-05
A06_30414712 A06 30,414,712 9.08E-05
马克隆值
Fiber micronaire value
A06_114669594 A06 114,669,594 3.05E-05
D12_54915368 D12 54,915,368 3.65E-05
D11_58293439 D11 58,293,439 4.67E-05
D11_58625039 D11 58,625,039 4.67E-05
A06_114526277 A06 114,526,277 5.84E-05
纤维强度
Fiber strength
A10_69492454 A10 69,492,454 2.43E-05
D07_58335177 D07 58,335,177 4.74E-05
纤维长度
Fiber length
A11_19546832 A11 19,546,832 1.32E-05
A11_19343086 A11 19,343,086 1.96E-05
A07_1121676 A07 1,121,676 4.18E-05
A10_69492454 A10 69,492,454 5.73E-05
纤维整齐度
Fiber uniformity
D09_810409 D09 810,409 4.85E-06
A05_21431509 A05 21,431,509 4.37E-05
D11_28341684 D11 28,341,684 4.60E-05
A06_30632495 A06 30,632,495 6.19E-05

表4

驯化过程中受到定向选择的纤维品质显著SNP位点"

SNP位点
SNP loci
性状
Trait
基因型频率Genotype frequency FST值
Fixation index
遗传多样性比率
Genetic diversity ratio (πwc)
栽培棉
Cultivars of
G. hirsutum L.
半野生棉
Semi-wild accessions of G. hirsutum L.
A06_29826691 纤维伸长率
Fiber elongation rate
A: 0.942 G: 0.058 A: 0.421 G: 0.579 0.627 3.958
A06_30632495 纤维伸长率, 纤维整齐度
Fiber elongation rate, fiber uniformity
A: 0.964 G: 0.036 A: 0.628 G: 0.372 0.365 6.829
D11_28341684 纤维整齐度 Fiber uniformity C: 0.919 T: 0.081 C: 0.143 T: 0.857 0.773 1.643
[1] Billings G T, Jones M A, Rustgi S, Bridges W C Jr, Holland J B, Hulse-Kemp A M, Campbell B T. Outlook for implementation of genomics-based selection in public cotton breeding programs. Plants (Basel), 2022, 11: 1446.
[2] Yang Z E, Gao C X, Zhang Y H, Yan Q D, Hu W, Yang L, Wang Z, Li F G. Recent progression and future perspectives in cotton genomic breeding. J Integr Plant Biol, 2023, 65: 548-569.
doi: 10.1111/jipb.13388
[3] Huang G, Huang J Q, Chen X Y, Zhu Y X. Recent advances and future perspectives in cotton research. Annu Rev Plant Biol, 2021, 72: 437-462.
doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477
[4] Yu H H, Xie W B, Li J, Zhou F S, Zhang Q F. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014, 12: 28-37.
doi: 10.1111/pbi.12113 pmid: 24034357
[5] Tung C W, Zhao K Y, Wright M H, Ali M L, Jung J, Kimball J, Tyagi W, Thomson M J, McNally K, Leung H, et al. Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice, 2010, 3: 205-217.
[6] Singh N, Jayaswal P K, Panda K, Mandal P, Kumar V, Singh B, Mishra S, Singh Y, Singh R, Rai V, et al. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep, 2015, 5: 11600.
[7] Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One, 2011, 6: e28334.
[8] Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom T M, Fries R, Pausch H, et al. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics, 2014, 15: 823.
doi: 10.1186/1471-2164-15-823 pmid: 25266061
[9] Lee Y G, Jeong N, Kim J H, Lee K, Kim K H, Pirani A, Ha B K, Kang S T, Park B S, Moon J K, et al. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J, 2015, 81: 625-636.
[10] Vos P G, Uitdewilligen J G A M L, Voorrips R E, Visser R G F, van Eck H J. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet, 2015, 128: 2387-2401.
doi: 10.1007/s00122-015-2593-y pmid: 26263902
[11] Cavanagh C R, Chao S, Wang S C, Huang B E, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G L, Akhunova A, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013, 110: 8057-8062.
doi: 10.1073/pnas.1217133110 pmid: 23630259
[12] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[13] Pandey M K, Agarwal G, Kale S M, Clevenger J, Nayak S N, Sriswathi M, Chitikineni A, Chavarro C, Chen X P, Upadhyaya H D, et al. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep, 2017, 7: 40577.
[14] Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J, Polley A, Luerßen H, Wieckhorst S, Mascher M, et al. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet, 2016, 129: 317-329.
doi: 10.1007/s00122-015-2629-3 pmid: 26536890
[15] 李双双, 陈丽丽, 拉毛杰布, 九麦扎西, 勒毛才让, 马毅. 基因芯片在奶牛遗传育种中的应用. 中国畜禽种业, 2024, 20(8): 53-62.
Li S S, Chen L L, Lamao J B, Jiumai Z X, Lemao C R, Ma Y. The application of gene chips in genetic breeding of dariry cattle. Chin Livest Poult Breed, 2024, 20(8): 53-62 (in Chinese with English abstract).
[16] Tan Z D, Han X, Dai C, Lu S P, He H Z, Yao X, Chen P, Yang C, Zhao L, Yang Q Y, et al. Functional genomics of Brassica napus: progresses, challenges, and perspectives. J Integr Plant Biol, 2024, 66: 484-509.
[17] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 等. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, et al. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001
[18] Cai C P, Zhu G Z, Zhang T Z, Guo W Z. High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017, 18: 654.
[19] Hulse-Kemp A M, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang D D, Frelichowski J, Giband M, Hague S, Hinze L L, et al. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3: Genes Genom Genet, 2015, 5: 1187-1209.
[20] Si Z F, Jin S K, Li J Y, Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design, validation, and utility of the “ZJU CottonSNP40K” liquid chip through genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629.
[21] Ma Z Y, Zhang Y, Wu L Q, Zhang G Y, Sun Z W, Li Z K, Jiang Y F, Ke H F, Chen B, Liu Z W, et al. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat Genet, 2021, 53: 1385-1391.
doi: 10.1038/s41588-021-00910-2 pmid: 34373642
[22] He S P, Sun G F, Geng X L, Gong W F, Dai P H, Jia Y H, Shi W J, Pan Z E, Wang J D, Wang L Y, et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet, 2021, 53: 916-924.
doi: 10.1038/s41588-021-00844-9 pmid: 33859417
[23] Yuan D J, Grover C E, Hu G J, Pan M Q, Miller E R, Conover J L, Hunt S P, Udall J A, Wendel J F. Parallel and intertwining threads of domestication in allopolyploid cotton. Adv Sci, 2021, 8: 2003634.
[24] You J Q, Liu Z P, Qi Z Y, Ma Y Z, Sun M L, Su L, Niu H, Peng Y B, Luo X X, Zhu M M, et al. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nat Genet, 2023, 55: 1987-1997.
doi: 10.1038/s41588-023-01530-8 pmid: 37845354
[25] Lappalainen T, MacArthur D G. From variant to function in human disease genetics. Science, 2021, 373: 1464-1468.
doi: 10.1126/science.abi8207 pmid: 34554789
[26] Finucane H K, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P R, Anttila V, Xu H, Zang C Z, Farh K, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet, 2015, 47: 1228-1235.
doi: 10.1038/ng.3404 pmid: 26414678
[27] Xiang R D, Berg I V D, MacLeod I M, Hayes B J, Prowse-Wilkins C P, Wang M, Bolormaa S, Liu Z Q, Rochfort S J, Reich C M, et al. Quantifying the contribution of sequence variants with regulatory and evolutionary significance to 34 bovine complex traits. Proc Natl Acad Sci USA, 2019, 116: 19398-19408.
doi: 10.1073/pnas.1904159116 pmid: 31501319
[28] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51: 224-229.
[29] 房嫌嫌, 吴大鹏, 陈进红, 祝水金. 陆地棉半野生种系的遗传多样性和亲缘关系分析. 棉花学报, 2011, 23(2): 99-105.
doi: 10.11963/cs110201
Fang X X, Wu D P, Chen J H, Zhu S J. Diversity and genetic relationship among the semi-cultivars of G.hirsutum L. Races using SSR markers. Cotton Sci, 2011, 23(2): 99-105 (in Chinese with English abstract).
[30] Viot C R, Wendel J F. Evolution of the cotton genus, Gossypium, and its domestication in the Americas. Crit Rev Plant Sci, 2023, 42: 1-33.
[31] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51: 739-748.
[32] Chen X Y, Hu X B, Li G, Grover C E, You J Q, Wang R P, Liu Z P, Qi Z Y, Luo X X, Peng Y B, et al. Genetic regulatory perturbation of gene expression impacted by genomic introgression in fiber development of allotetraploid cotton. Adv Sci, 2024, 11: e2401549.
[1] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[2] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
[3] 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394.
[4] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[5] 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102.
[6] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[7] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[8] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[9] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[10] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[11] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[12] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[13] 阳世杰, 王华智, 潘怡敏, 黄蕊, 侯森, 秦慧彬, 穆志新, 王海岗. 山西谷子种质资源株高全基因组关联分析[J]. 作物学报, 2024, 50(12): 2984-2997.
[14] 鲁宗辉, 司二静, 叶霈颖, 汪军成, 姚立蓉, 马小乐, 李葆春, 王化俊, 尚勋武, 孟亚雄. 大麦籽粒β-葡聚糖含量的全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(10): 2483-2492.
[15] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!