欢迎访问作物学报,今天是

作物学报

• •    

谷子微核心种质的构建

梁红凯**,赵苏蒙**,陆琼,周鹏,智慧,刁现民*,贺强*   

  1. 作物基因资源与育种全国重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2024-12-09 修回日期:2025-03-26 接受日期:2025-03-26 网络出版日期:2025-03-31
  • 基金资助:
    本研究由农业生物育种国家科技重大专项(2023ZD04076), 国家自然科学基金项目(32301798)和中国农业科学院青年创新专项(Y2024QC01)资助。

A mini core collection of foxtail millet

LIANG Hong-Kai**,ZHAO Su-Meng**,LU Qiong,ZHOU Peng,ZHI Hui,DIAO Xian-Min*,HE Qiang*   

  1. State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinse Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-12-09 Revised:2025-03-26 Accepted:2025-03-26 Published online:2025-03-31
  • Supported by:
    This study was supported by the Biological Breeding-National Science and Technology Major Project(2023ZD04076), the National Natural Science Foundation of China (32301798), and the Youth Innovation Program of the Chinese Academy of Agricultural Sciences (Y2024QC01).

摘要:

种质资源是作物遗传研究、种质创新和新品种培育的重要基础。然而,随着种质资源数量的快速增长,如何高效研究和利用这些遗传资源成为亟待解决的重要问题。本研究基于全球范围的967份谷子种质资源的基因组数据,通过遗传多样性、遗传距离、地理分布等信息,构建出一个具有代表性的200份谷子微核心种质资源群体。该微核心种质保留了原始种质的遗传多样性和群体结构的代表性,同时具有广泛的地理分布和丰富的表型变异。本研究进一步通过全基因组关联分析鉴定出10个与农艺性状关联的QTL,包括调控谷子叶枕颜色的PPLS1基因和与抽穗期相关的Ghd7.1基因,表明该微核心种质具有高的实用性。研究结果为谷子种质资源的高效利用提供了重要的材料基础。

关键词: 谷子, 种质资源, 微核心种质, 全基因组关联分析, PPLS1, Ghd7.1

Abstract:

Germplasm resources form the foundation of crop genetic research, germplasm innovation, and variety improvement. However, as the number of available germplasm resources continues to grow, efficiently studying and utilizing them has become an increasingly urgent challenge. In this study, we analyzed genome data from 967 globally sourced foxtail millet germplasm accessions to construct a representative mini-core collection of 200 accessions, based on genetic diversity, genetic distance, and geographical distribution. This mini-core collection preserves the genetic diversity and population structure of the original germplasm while maintaining broad geographical representation and extensive phenotypic variation. Furthermore, genome-wide association analysis identified 10 QTLs associated with key agronomic traits, including PPLS1, a gene regulating leaf sheath color, and Ghd7.1, a gene linked to heading date. These findings highlight the practical value of the mini-core germplasm collection and provide a valuable genetic resource for the efficient utilization and further improvement of foxtail millet germplasm.

Key words: foxtail millet, germplasm resources, mini-core collection, genome-wide association study, PPLS1, Ghd7.1

[1] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943–3949.
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943–3949 (in Chinese with English abstract).

[2] 吕厚远. 中国史前农业起源演化研究新方法与新进展. 中国科学: 地球科学, 2018, 48(2): 181–199.
Lyu H Y. New methods and progress in research on the origins and evolution of prehistoric agriculture in China. Sci Sin Terrae, 2018, 48(2): 181–199 (in Chinese with English abstract).

[3] 贾冠清, 刁现民. 谷子(Setaria italica(L.) P.Beauv.)作为功能基因组研究模式植物的发展现状及趋势. 生命科学, 2017, 29: 292–301.
Jia G Q, Diao X M. Current status and perspectives of researches on foxtail millet (Setaria italica(L.) P. Beauv.): a potential model of plant functional genomics studies. Chin Bull Life Sci, 2017, 29: 292–301 (in Chinese with English abstract).

[4] He Q, Tang S, Zhi H, Chen J F, Zhang J, Liang H K, Alam O, Li H B, Zhang H, Xing L H, et al. A graph-based genome and pan-genome variation of the model plant Setaria. Nat Genet, 2023, 55: 1232–1242.

[5] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用. 作物学报, 2024, 50: 265279.
Diao X M, Wang L W, Zhi H, Zhang J, Li S G, Cheng R H. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet. Acta Agron Sin, 2024, 50: 265279 (in Chinese with English abstract).

[6] 徐玖亮, 温馨, 刁现民, 张福锁, 李学贤. 我国主要谷类杂粮的营养价值及保健功能. 粮食与饲料工业, 2021, (1): 2735.
Xu J L, Wen X, Diao X M, Zhang F S, Li X X. Nutrition values and health effects of coarse cerealsin China. Cereal Feed Ind, 2021, (1): 2735 (in Chinese with English abstract).

[7] Frankel O H, Brown A H D. Plant Genetic Resources Today: A Critical Appraisal. Crop Genetic Resources: Conservation and Evaluation, 1984. pp 249–257.

[8] 李永祥, 李会勇, 扈光辉, 刘旭洋, 李春辉, 张登峰, 黎裕, 王天宇. 玉米应用核心种质的构建与应用. 植物遗传资源学报, 2023, 24: 911916. 
Li Y X, Li H Y, Hu G H, Liu X Y, Li C H, Zhang D F, Li Y, Wang T Y. Construction and utilization of applied core collection in maize. J Plant Genet Resour, 2023, 24: 911–916 (in Chinese with English abstract).

[9] 郝晨阳, 董玉琛, 王兰芬, 游光霞, 张洪娜, 盖红梅, 贾继增, 张学勇. 我国普通小麦核心种质的构建及遗传多样性分析. 科学通报, 2008, 53: 908–915.
Hao C Y, Dong Y C, Wang L F, You G X, Zhang H N, Gai H M, Jia J Z, Zhang X Y. Construction and genetic diversity analysis of common wheat core germplasm in China. Chin Sci Bull, 2008, 53: 908–915 (in Chinese with English abstract).

[10] Kumar A, Kumar S, Singh K B M, Prasad M, Thakur J K. Designing a mini-core collection effectively representing 3004 diverse rice accessions. Plant Commun, 2020, 1: 100049.

[11] 李锐, 尚霄, 尚春树, 常利芳, 闫蕾, 白建荣. 基于SSR标记的山西玉米自交系的核心种质构建. 种子, 2021, 40(9): 72–76.
Li R, Shang X, Shang C S, Chang L F, Yan L, Bai J R. Core germplasm construction of Shanxi maize inbred line based on SSR markers. Seed, 2021, 40(9): 72–76 (in Chinese with English abstract).

[12] Shehzad T, Okuizumi H, Kawase M, Okuno K. Development of SSR-based Sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet Resour Crop Evol, 2009, 56: 809–827. 

[13] 邓学斌, 刘磊, 闫喆, 李涛, 刘希艳, 冯晶晶, 池海娟, 郑峥, 李君明. 加工番茄核心种质构建及其遗传背景分析. 园艺学报, 2015, 42: 1299–1312.
Deng X B, Liu L, Yan Z, Li T, Liu X Y, Feng J J, Chi H J, Zheng Z, Li J M. Development of a core collection of processing tomato germplasms and analysis of genetic background. Acta Hortic Sin, 2015, 42: 1299–1312 (in Chinese with English abstract).

[14] 代攀虹, 孙君灵, 贾银华, 杜雄明, 王谧. 利用表型数据构建陆地棉核心种质. 植物遗传资源学报, 2016, 17: 961–968.
Dai P H, Sun J L, Jia Y H, Du X M, Wang M. Construction of core collection of upland cotton based on phenotypic data. J Plant Genet Resour, 2016, 17: 961–968 (in Chinese with English abstract).

[15] 李萌, 秦慧彬, 王宇楠, 穆志新, 杜慧玲. 基于农艺性状指标的山西高粱地方品种核心种质构建. 植物遗传资源学报, 2021, 22: 174182.
Li M, Qin H B, Wang Y N, Mu Z X, Du H L. A core collection of Sorghum landraces formed by taking use of agronomic traits in Shanxi Province. J Plant Genet Resour, 2021, 22: 174–182 (in Chinese with English abstract).

[16] Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1066.

[17] Govindaraj M, Rai K N, Kanatti A, Upadhyaya H D, Shivade H, Rao A S. Publisher Correction: Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement. Sci Rep, 2021, 11: 9757.

[18] 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊. 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017, 50: 24332441.
Liu Y Y, Mei H X, Du Z M, Wu K, Zheng Y Z, Cui X H, Zheng L. Construction of core collection of sesame based on phenotype and molecular markers. Sci Agric Sin2017, 50: 24332441 (in Chinese with English abstract).

[19] 台德卫, 张效忠, 苏泽胜, 王元垒, 罗彦长, 夏家发. 全球水稻分子育种核心种质资源耐低钾品种的苗期筛选. 植物遗传资源学报, 2004, 5: 356–359.
Tai D W, Zhang X Z, Su Z S, Wang Y L, Luo Y C, Xia J F. Screening for low-kalium tolerance varieties at seedling stage from the core germplasm of integrated international rice molecular breeding program. J Plant Genet Resour, 2004, 5: 356–359 (in Chinese with English abstract).

[20] 赵静, 付家兵, 廖红, 何勇, 年海, 胡月明, 邱丽娟, 董英山, 严小龙. 大豆磷效率应用核心种质的根构型性状评价. 科学通报, 2004, 49: 1249–1257.
Zhao J, Fu J B, Liao H, He Y, Nian H, Hu Y M, Qiu L J, Dong Y S, Yan X L. Evaluation of root configuration characteristics of soybean phosphorus efficiency application core germplasm. Chin Sci Bull, 2004, 49: 1249–1257 (in Chinese with English abstract).

[21] 王丽侠, 程须珍, 王素华, 罗高玲, 刘振兴, 蔡庆生. 我国小豆应用核心种质的生态适应性及评价利用. 植物遗传资源学报, 2013, 14: 794799.
Wang L X, Cheng X Z, Wang S H, Luo G L, Liu Z X, Cai Q S. Adaptability and variation of an applied core collection of adzuki bean (Vigna angularis) in China. J Plant Genet Resour, 2013, 14: 794–799 (in Chinese with English abstract).

[22] Upadhyaya H D, Pundir R P S, Gowda C L L, Gopal Reddy V, Singh S. Establishing a core collection of foxtail millet to enhance the utilization of germplasm of an underutilized crop. Plant Genet Resour, 2009, 7: 177–184.

[23] 王海岗, 温琪汾, 乔治军, 穆志新. 山西谷子地方品种初选核心种质构建. 农学学报, 2019, 9(4): 26–31.
Wang H G, Wen Q F, Qiao Z J, Mu Z X. Core germplasm construction of foxtail millet Landrace in Shanxi. J Agric, 2019, 9(4): 26–31 (in Chinese with English abstract).

[24] 侯森, 秦慧彬, 李萌, 王海岗, 穆志新. 山西谷子地方品种微核心种质构建. 山西农业科学, 2024, 52(1): 1926.
Hou S, Qin H B, Li M, Wang H G, Mu Z X. Minicore germplasm construction of foxtail millet Landrace in Shanxi. J Shanxi Agric Sci, 2024, 52(1): 19–26 (in Chinese with English abstract).

[25] 李振姣, 井苗, 李海录, 强羽竹, 白晶晶, 王小英, 付治忠, 王孟. 榆林市谷子资源核心种质构建. 大麦与谷类科学, 2024, 41(5): 3742.
Li Z J, Jing M, Li H L,Qiang Y Z, Bai J J, Wang X Y, Fu Z Z, Wang M. Core collection construction of millet germplasm resources in Yulin City. Barley Cereal Sci, 2024, 41(5): 37–42 (in Chinese with English abstract).

[26] Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet, 2013, 45: 957–961.

[27] He Q, Wang C C, He Q, Zhang J, Liang H K, Lu Z F, Xie K, Tang S, Zhou Y H, Liu B, et al. A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria. Mol Plant, 2024, 17: 219–222.

[28] Bai H, Song Z J, Zhang Y, Li Z Y, Wang Y F, Liu X, Ma J F, Quan J Z, Wu X H, Liu M, et al. The bHLH transcription factor PPLS1 regulates the color of Pulvinus and leaf sheath in foxtail millet (Setaria italica). Theor Appl Genet, 2020, 133: 1911–1926.

[29] Yan W H, Liu H Y, Zhou X C, Li Q P, Zhang J, Lu L, Liu T M, Liu H J, Zhang C J, Zhang Z Y, et al. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res, 2013, 23: 969–971.

[30] 李国营, 范志影, 陆平, 刘方, 张萍, 李为喜, 朱志华. 谷子初级核心种质生育酚的组分及其评价. 植物遗传资源学报, 2009, 10: 378–384.
Li G Y, Fan Z Y, Lu P, Liu F, Zhang P, Li W X, Zhu Z H. Identification and evalution of tocopherol content in primary core-collection of foxtail millet. J Plant Genet Resour, 2009, 10: 378–384 (in Chinese with English abstract). 

[31] 郭静. 中国谷子核心种质资源米汤固形物含量全基因组关联分析. 山西农业大学硕士毕业论文, 山西晋中, 2022.
Guo J. Genome-Wide Association Study on Solid Content of Millet Porridge of Core Germplasm Resources of Foxtail Millet. MS Thesis of Shanxi Agricultural University, Jinzhong, Shanxi, China, 2022 (in Chinese with English abstract).

[32] 宋慧, 臧贺藏, 李国强, 解慧芳, 邢璐, 李龙, 王素英, 刘金荣, 郑国清. 基于谷子种质资源表型性状构建骨干种质库. 中国农业大学学报, 2022, 27(12): 102115.
Song H, Zang H C, Li G Q, Xie H F, Xing L, Li L, Wang S Y, Liu J R, Zheng G Q. Construction of backbone germplasm bank based on the phenotypic traits of foxtail millet. J China Agric Univ, 2022, 27(12): 102115 (in Chinese with English abstract).

[33] Zhang H L, Zhang D L, Wang M X, Sun J L, Qi Y W, Li J J, Wei X H, Han L Z, Qiu Z E, Tang S X, et al. A core collection and mini core collection of Oryza sativa L. in China. Theor Appl Genet, 2011, 122: 49–61.

[34] 李金龙, 范昱, 赵梦雨, 康珍, 杨克理, 张凯旋, 周美亮. 基于表型性状和SSR分子标记构建甜荞初级核心种质. 植物遗传资源学报, 2021, 22: 12401247.
Li J L, Fan Y, Zhao M Y, Kang Z, Yang K L, Zhang K X, Zhou M L. Construction of primary core collection of buckwheat germplasm resources based on phenotypic traits and SSR. J Plant Genet Resour, 2021, 22: 1240–1247 (in Chinese with English abstract).

[35] 侯青青, 司丽珍, 黄学辉, 韩斌. 水稻复杂性状研究的新途径: 水稻重要农艺性状全基因组关联分析. 生命科学, 2016, 28: 1250–1257.
Hou Q Q, Si L Z, Huang X H, Han B. Progress on genome-wide association study of important agronomic traits in rice. Chin Bull Life Sci, 2016, 28: 1250–1257 (in Chinese with English abstract). 


[1] 郭冰, 秦家范, 李娜, 宋梦瑶, 王黎明, 李君霞, 马小倩. 谷子SHMT基因家族全基因组鉴定与表达分析[J]. 作物学报, 2025, 51(3): 586-5897.
[2] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
[3] 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394.
[4] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[5] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[6] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[7] 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102.
[8] 孟凡花, 刘敏, 沈傲, 刘炜. 脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J]. 作物学报, 2025, 51(1): 58-67.
[9] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[10] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[11] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[12] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[13] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[14] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[15] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!