• •
李璐琪1,2,程宇坤1,2,白斌3,雷斌4,耿洪伟1,2,*
LI Lu-Qi1,2, CHENG Yu-Kun1,2, BAI Bin3, LEI Bin4, GENG Hong-Wei1,2,*
摘要:
小麦气孔是调节光合作用和蒸腾作用的微观孔隙,对产量有着关键作用,了解小麦气孔性状的遗传机制,挖掘关于小麦气孔相关性状的候选基因对于提高小麦产量具有重要意义。本研究以276份冬小麦品种(系)为研究对象,在正常灌溉和干旱胁迫2个处理下,对小麦抽穗期和灌浆期的气孔密度、气孔平均面积、气孔所占比等叶片气孔相关性状进行测定,并结合90K小麦芯片,对上述3个性状进行全基因组关联分析。研究结果显示,在不同水分处理条件下,小麦气孔相关性状在2个时期均表现出较大的表型变异,变异系数介于0.06至0.28之间。全基因组关联结果显示,共检测到88个位于除4D的其他20条染色体上与气孔相关性状显著关联的位点(P < 0.001),其中与气孔平均面积显著相关的稳定遗传位点有4个,分布于1B, 3A, 6A染色体上,可解释遗传变异为2.78%~6.55%,均在正常灌溉下的灌浆期检测到。在抽穗期和灌浆期同时检测到2个与气孔密度显著关联的位点,其中在正常灌溉下6A染色体上检测到的位点Ex_c69429_328,可解释表型变异为2.31%~3.06%;在干旱胁迫下4A染色体上检测到的位点BS00064423_51,可解释表型变异的4.40%~6.09%。在1A、1B、3A、4A、5A、6A、6D染色体上检测到8个“一因多效”遗传位点,可解释表型变异的1.25%~7.31%。对贡献率大于5.00%且在2个环境或2个性状以上检测到位点进行单倍型分析,发现与气孔平均面积和气孔所占比显著相关的wsnp_Ex_rep_c69627_68580121(R2=6.47%)位点存在Hap1、Hap2两个单倍型,在276份品种(系)中含有Hap1(频率为81.20%)单倍型品种(系)的气孔平均面积显著小于含有Hap2(18.80%)单倍型品种(系)的气孔平均面积(P<0.05),不同单倍型在不同麦区的占比不同,其中单倍型Hap1在西南冬麦区出现的频率最高,单倍型Hap2则在北部冬麦区出现的频率最高。对2个环境检测到的及“一因多效”的位点进行候选基因的挖掘,共筛选出9个与小麦气孔性状相关的候选基因,这些基因在气孔发育、光合作用和抗逆性等方面具有潜在功能,可作为进一步研究气孔相关性状的重要基因。
[1] Colin C M, Stephen S J. Breeding perennial grain crops based on wheat. Crop Sci, 2017, 57: 1172–1188. [2] Tahira T, Muhammad F, Riaz A, Ali Z, Abdul W, Muhammad S. Terminal drought and seed priming improves drought tolerance in wheat. Physiol Mol Biol Plants, 2018, 24: 845–856. [3] Stuart C, Julie E. Gray. Influence of environmental factors on stomatal development. New Phytol, 2008, 178:9–23 [4] 王声锋, 段爱旺, 张展羽,徐建新. 基于随机降水的冬小麦灌溉制度制定. 农业工程学报, 2010, 26(12): 47–52. Wang S F, Duan A W, Zhang Z Y, Xu J X. Winter wheat irrigation schedule on stochastic precipitation. Trans CSAE, 2010, 26(12): 47–52(in Chinese with English abstract). [5] 刘梦龙, 魏健, 任姿蓉, 张亚黎, 王愔. 气孔研究进展: 从保卫细胞到光合作用. 生命科学, 2024, 36: 1289–1304. Liu M L, Wei J, Ren Z R, Zhang Y L, Wang Y. Research progress of stomata: from guard cells to photosynthesis. Chin Bull Life Sci, 2024, 36: 1289–1304(in Chinese with English abstract). [6] 方静, 史功赋, 魏淑丽, 程玉臣, 张向前, 王建国, 安玉, 赵小庆, 路战远. 干旱胁迫对春小麦旗叶生理特征及其根系抗旱基因表达特征的影响. 干旱地区农业研究, 2022, 40(3): 46–55. Fang J, Shi G F, Wei S L, Cheng Y C, Zhang X Q, Wang J G, An Y, Zhao X Q, Lu Z Y. Effects of drought stress on physiological characteristics of flag leaves and expression characteristics of drought-resistant genes in roots of spring wheat. Agric Res Arid Areas, 2022, 40(3): 46–55 (in Chinese with English abstract). [7] 陈倩倩, 范阳阳, 郝影宾, 刘西平. 不同土壤水分含量对玉米气孔发育过程和蒸腾耗水量的影响. 干旱地区农业研究, 2011, 29(3):75–79. Chen Q Q, Fan Y Y, Hao Y B, Liu X P. Effects of different soil water content on stomata development and water consumption of maize. Agric Res Arid. Areas, 2011, 29(3):75–79(in Chinese with English abstract). [8] 燕雯, 金秀良, 李龙, 徐子涵, 苏悦, 张跃强, 景蕊莲, 毛新国, 孙黛珍. 基于无人机多源影像数据的灌浆期人工合成小麦抗旱性评价. 中国农业科学, 2024, 57: 1674–1686. Yan W, Jin X L, Li L, Xu Z H, Su Y, Zhang Y Q, Jing R L, Mao X G, Sun D Z. Drought resistance evaluation of synthetic wheat at grain filling using UAV-Based Multi-Source imagery data. Sci Agric Sin, 2024, 57: 1674–1686 (in Chinese with English abstract). [9] 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40:2452–2459. Wang S Q, Hu Y G, She K J, Zhou L L, Meng F L. Gray relational grade analysis of agronomical and Physi-biochemical traits related to drought tolerance in wheat. Sci Agric Sin, 2007, 40: 2452–2459 (in Chinese with English abstract). [10] Shahinia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P, Mahjourimajd S, Tilbroook J, Fleury D. Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC plant Biol, 2016, 16: 150–163. [11] Ahmed H G M, Iqbal M N, Iqbal M A, Zeng Y W, Ullah A, Iqbal M, Raza H, Yar M M, Sarwar N, Imran M, et al.Genome-wide association mapping for stomata and yield indices in bread wheat under water limited conditions. Agronomy, 2021, 11: 1646. [12] Yates S A, Bruun A, Hodel M, Grieder C, Hund A, Walter A, Studer B. Genetic determination of stomatal patterning in winter wheat (Triticum aestivum L.). bioRxiv, 2018: 490029. [13] Li S M, Yu S Z, Zhang Y F, Zhu D H, Li F F, Chen B, Mei F M, Du L Y, Ding L, Chen L, et al. Genome-wide association study revealed Ta HXK3-2A as a candidate gene controlling stomatal index in wheat seedlings. Plant Cell Environ, 2022, 45: 2306–2323 [14] 丁浦洋, 周界光, 赵聪豪, 唐华苹, 牟杨, 唐力为, 邓梅, 魏育明, 兰秀锦, 马建. 小麦小穗数调控基因WAPO1的单倍型, 遗传效应, 地理分布及育种利用分析. 作物学报, 2022, 48: 2196–2209. Ding P Y, Zhou J G, Zhao C H, Tang H P, Mou Y, Tang L W, Deng M, Wei Y M, Lan X J, Ma J, Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat. Acta Agron Sin, 2022, 48: 2196–2209 (in Chinese with English abstract). [15] 魏迪, 常平, 刘佳熠, 杨阳, 张璇, 陈亮, 胡银岗. 小麦EPF/EPFL基因家族的全基因组鉴定及TaEPF1-2B与气孔性状的关系分析. 麦类作物学报, 2021, 41:1317–1329. Wei D, Chang P, Liu J Y, Yang Y, Zhang X, Chen L, Hu Y G. Genome-Wide identification of EPF/EPFL gene family in wheat (Triticum aestivum) and analysis of TaEPF1-2B associated with stomatal traits.J Triticeae Crops, 2021, 41:1317–1329(in Chinese with English abstract). [16] Nassuth N, Rahman M.A, Nguyen T, Ebadi A. Lee C. Leaves of more cold hardy grapes have a higher density of small, sunken stomata. Vitis, 2021, 60: 63–67. [17] 韩贝, 王旭文, 李保奇,余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析. 作物学报, 2021, 47:438–450. Han B, Wang X W, Li B Q, Yu Y, Tian Q, Yang X Y. Association analysis of drought tolerance traits of upland cotton accessions(Gossypium hirsutum L.). Acta Agron Sin, 2021, 47:438–450(in Chinese with English abstract). [18] Zhang J, Nilda R.B, Ma K, Zhou Y J, Geng R M, Yu L Q. Genetic diversity and relationship of weedy rice in Taizhou city, Jiangsu province, China. Rice Sci, 2008, 15:295–302. [19] 黄婧, 张敏. 基于SNP分子标记的乌饭树种质遗传多样性研究. 植物遗传资源学报, 2025, 26: 530–538. Huang J, Zhang M. Genetic diversity analysis of Vaccinium bracteatum germplasm based on SNP markers.J Plant Genet Resour, 2025, 26: 530–538(in Chinese with English abstract). [20] 栾海业,孟炜,张英虎,李钰, 朱琳洁, 王裕, 刘雨倩, 徐肖, 刘方方, 沈会权. 大麦耐盐相关性状的全基因组关联分析. 麦类作物学报, 2024, 44:729–734. Luan H Y, Meng W, Zhang Y H, Li Y, Zhu L J, Wang Y, Liu Y Q, Xu X, Liu F F, Shen H Q. Genome-Wide association analysis of traits related to salt tolerance in barley. J Triticeae Crops, 2024, 44:729–734(in Chinese with English abstract). [21] Yu J M, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, Mcmullen M D, Gaut B S, Nielsen D M, Holland J B, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208. [22] Cattivelli L, Rizza F, Badeck F W, Mazzucotelli E, Mastrangelo A M, Francia E, Mare C, Tondelli A, Stanca A M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 2008, 105:1–14. [23] 赵广才. 中国小麦种植区划研究(一).麦类作物学报, 2010, 30: 886–895. Zhao G C. Study on Chinese wheat planting regionalization (I). J Triticeae Crops, 2010, 30: 886–895 (in Chinese with English abstract). [24] 陈晨, 张永成. 马铃薯不同品种间气孔密度及叶绿素含量的差异性研究. 中国农学通报, 2013, 29(27):83–87. Chen C, Zhang Y C. Research on the differences in stomatal density and chlorophyll content among different potato varieties. Chin Agric Sci Bull, 2013, 29(27):83–87(in Chinese with English abstract). [25] 李方杰, 常志杰, 史大坤,卫晓轶, 魏锋, 洪德峰, 马俊峰. 郑秋道. 不同基因型玉米间作对气孔特征和产量的影响. 河南农业科学, 2024, 53(8):21–29. Li F J, Chang Z J, Shi D K, Wei X Y, Wei F, Hong D F, Ma J F, Zheng Q D. Effects of intercropping of different genotypes of maize on stomatal characteristics and yield. J Henan Agric Sci, 2024, 53(8):21–29(in Chinese with English abstract). [26] Baute J, Polyn S, De Block.J, Blomme J, Van Lijsebettens M, Inzé D. F-box protein FBX92 affects leaf size in Arabidopsis thaliana.Plant Cell Physiol, 2017, 58: 962–975. [27] 刘德政.调控小麦叶片气孔性状关键基因及其优异位点的挖掘.西北农林科技大学硕士学位论文,陕西杨凌, 2023. Liu D Z. Discovery of Key Genes Regulating Wheat Leaf Stomatal Traits and Their Superior Sites. Northwest A&F University Master’s thesis, Yanglin, Shaanxi, China, 2023 (in Chinese with English abstract). [28] 王睿, 任毅, 程宇坤, 王伟, 张志辉, 耿洪伟. 小麦旗叶形态相关性状全基因组关联分析. 作物学报, 2023, 49: 2886–2901. Wang R, Ren Y, Cheng Y K, Wang W, Zhang Z H, Geng H W. Genome-wide association analysis of morphological traits of flag leaf in wheat. Acta Agron Sin, 2023, 49: 2886–2901(in Chinese with English abstract). [29] 陈玲玲,刘亭萱,谷勇哲,宋健,王俊,邱丽娟.大豆叶柄夹角相关基因GmILPA1单倍型分析.植物遗传资源学报,2021,22:1698–1707. Chen L L, Liu T X, Gu Y Z, Song J, Wang J, Qiu L J. Haplotype analysis of petiole angle-related gene GmILPA1 in soybean. JPlant Genet Resour,2021,22:1698–1707(in Chinese with English abstract). [30] 刘德政,卢山,高珅奥,王脉, 乔朋放, 董清峰, 任昊, 陈亮, 胡银岗.大田和旱棚环境下小麦旗叶气孔性状变异及其与光合参数的关系.麦类作物学报,2024,44:360–369. Liu D Z, Lu S, Gao S A, Wang M, Qiao P F, Dong Q F, Ren H, Chen L, Hu Y G. Variations of flag leaf and stomatal traits of wheat in field and drought shed environment. J Triticeae Crops, 2024,44:360–369(in Chinese with English abstract). [31] Zhang Y, Xu W, Li Z, Deng X W, WuW H, XueY B. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis.Plant Physiol, 2008, 148, 751–763. [32] Kim S, Yamaoka Y, Ono H, Kim H, Shin D, Meashima M, Martinoia E, Cahoon E B, Nishida I, Lee Y. At ABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc NatlAca. Sci USA., 2013,110:773–778. [33] Park J J, Jin P, Yoon J, Yang J I, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in wilted dwarf and le-thal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91–103. [34] 陈默, 陈璐, 李双江, 谢海弘, 宋勇. 干旱胁迫对不同木薯苗期生理特性及气孔形态的影响. 四川农业大学学报, 2024, 42:1049–1056. Chen M, Chen L, Li S J, Xie H H, Song Y. Effects of drought stress on physiological characteristics and stomatal morphology of different cassava seedlings. JSichuan AgricUniv, 2024, 42:1049–1056(in Chinese with English abstract). [35] 韩慧, 张秀海, 郭建波,张来喜, 杨风萍, 董然. DELLA蛋白在植物中的功能. 分子植物育种,网络首发[2024-12-16],https://link.cnki.net/urlid/46.1068.S.20241216.1105.002. Han H, Zhang X M, Guo J B, Zhang L X, Yang F P, Dong R. The function of DELLA protein in plants. Mol Plant Breed., Published online [2024-12-16](in Chinese with English abstract). [36] 春宇, 李向颖, 元元, 萨日娜. 盐碱胁迫对藜麦生理生化及代谢水平的影响综述. 农业科学研究, 2024, 45(4): 67–77. Chun Y, Li X Y, Yuan Y, Sa R N. A review on the impact of saline-alkali stress on the physiological, biochemical, and metabolic levels of quinoa. JAgric Res, 2024, 45(4): 67–77 (in Chinese with English abstract). |
[1] | 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444. |
[2] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
[3] | 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408. |
[4] | 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188. |
[5] | 刘建国, 陈冬东, 陈玉玉, 易琴琴, 李清, 徐正进, 钱前, 沈兰. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51(3): 598-608. |
[6] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
[7] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
[8] | 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556. |
[9] | 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148. |
[10] | 马敏虎, 常华瑜, 陈朝燕, 仁增, 刘廷辉, 邢国芳, 郭刚刚. 苗草专用型大麦品种鉴定及全基因组关联分析[J]. 作物学报, 2025, 51(1): 91-102. |
[11] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[12] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[13] | 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235. |
[14] | 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886. |
[15] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
|