作物学报 ›› 2025, Vol. 51 ›› Issue (3): 598-608.doi: 10.3724/SP.J.1006.2025.42028
刘建国1,2(), 陈冬东2, 陈玉玉2, 易琴琴2, 李清2, 徐正进1,*(
), 钱前2,*(
), 沈兰2,*(
)
LIU Jian-Guo1,2(), CHEN Dong-Dong2, CHEN Yu-Yu2, YI Qin-Qin2, LI Qing2, XU Zheng-Jin1,*(
), QIAN Qian2,*(
), SHEN Lan2,*(
)
摘要:
MAPK信号通路中的MKKs家族基因在水稻生长发育和防御信号传导中起承上启下的作用, 并参与调控多种生物学过程。本研究通过生物信息学分析, 鉴定了水稻中的MKKs基因, 并构建了它们的系统发育树, 揭示了MKKs家族基因的保守性和多样性。利用基因编辑技术, 编辑日本晴水稻品种中OsMKK4基因, 成功获得了6种该基因不同突变类型的材料, 其粒长、粒宽和千粒重均较野生型显著降低。单倍型分析结果表明, OsMKK4基因的单倍型有明显的籼粳分化, 主要为Glu14粳型和Leu14籼型。含有Glu14粳型稻的平均粒长较低, 平均粒宽和千粒重较高。此外, 将Kasalath中带有Leu14单倍型的OsMKK4基因导入日本晴, 导致DHX (CSSL)的粒长、粒宽和千粒重较日本晴显著降低; 与Kasalath相比, 代换系的粒宽和千粒重显著增加。本研究探索了OsMKK4基因的重要单倍型对水稻籽粒的影响, 为更精确的分子设计育种提供基因资源和策略。
[1] |
Tang S, Zhao Z Y, Liu X T, Sui Y, Zhang D D, Zhi H, Gao Y Z, Zhang H, Zhang L L, Wang Y N, Zhao M C, Li D D, Wang K, He Q, Zhang R L, Zhang W, Jia G Q, Tang W Q, Ye X G, Wu C Y, Diao X M. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun, 2023, 14: 3091.
doi: 10.1038/s41467-023-38812-y pmid: 37248257 |
[2] |
Zhang Y, Xiong Y, Liu R Y, Xue H W, Yang Z B. The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proc Natl Acad Sci USA, 2019, 116: 16121-16126.
doi: 10.1073/pnas.1902321116 pmid: 31320586 |
[3] |
Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y pmid: 29487318 |
[4] | Ren D Y, Ding C Q, Qian Q. Molecular bases of rice grain size and quality for optimized productivity. Sci Bull, 2023, 68: 314-350. |
[5] |
Xiong L N, Tan L B, Xu R, Zhu Z F, Sun X Y, Sun H Y, Sun C Q. A gain-of-function mutation of OsMAPK6 leads to long grain in rice. Crop J, 2021, 9: 1481-1485.
doi: 10.1016/j.cj.2021.03.022 |
[6] |
Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8: 1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814 |
[7] |
Yang W S, Wu K, Wang B, Liu H H, Guo S Y, Guo X Y, Luo W, Sun S Y, Ouyang Y D, Fu X D, Chong K, Zhang Q F, Xu Y Y. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Mol Plant, 2021, 14: 1699-1713.
doi: 10.1016/j.molp.2021.06.027 pmid: 34216830 |
[8] | Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018, 11: 750-753. |
[9] |
Group M A P K. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-308.
doi: 10.1016/s1360-1385(02)02302-6 pmid: 12119167 |
[10] | Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S Q, Seguin A, Ellis B E. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 2006, 11: 192-198. |
[11] | Liu Z Q, Mei E Y, Tian X J, He M L, Tang J Q, Xu M, Liu J L, Song L, Li X F, Wang Z Y, Guan Q J, Xu Q J, Bu Q Y. OsMKKK 70 regulates grain size and leaf angle in rice through the OsMKK4-OsMAPK6-OsWRKY53 signaling pathway. J Integr Plant Biol, 2021, 63: 2043-2057. |
[12] |
Jiang M, Chu Z Q. Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation. BMC Genomics, 2018, 19: 407.
doi: 10.1186/s12864-018-4793-8 pmid: 29843611 |
[13] | Ma H G, Li J, Ma L, Wang P L, Xue Y, Yin P, Xiao J H, Wang S P. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632. |
[14] |
Rao K P, Richa T, Kumar K, Raghuram B, Sinha A K. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res, 2010, 17: 139-153.
doi: 10.1093/dnares/dsq011 pmid: 20395279 |
[15] | Kumar K, Rao K P, Sharma P, Sinha A K. Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem, 2008, 46: 891-897. |
[16] | Xu R, Duan P G, Yu H Y, Zhou Z K, Zhang B L, Wang R C, Li J, Zhang G Z, Zhuang S S, Lyu J, Li N, Chai T Y, Tian Z X, Yao S G, Li Y H. Control of grain size and weight by the OsMKKK10- OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant, 2018, 11: 860-873. |
[17] | Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557. |
[18] |
Liu J G, Shen L, Guo L B, Zhang G H, Gao Z Y, Zhu L, Hu J, Dong G J, Ren D Y, Zhang Q, Li Q, Zeng D L, Yan C J, Qian Q. OsSTS, a novel allele of mitogen-activated protein kinase kinase 4 (OsMKK4), controls grain size and salt tolerance in rice. Rice (N Y), 2023, 16: 47.
doi: 10.1186/s12284-023-00663-y pmid: 37874376 |
[19] | Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30: 871-888. |
[20] | Guo T, Lu Z Q, Shan J X, Ye W W, Dong N Q, Lin H X. ERECTA 1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell, 2020, 32: 2763-2779. |
[21] | Liu S Y, Hua L, Dong S J, Chen H Q, Zhu X D, Jiang J E, Zhang F, Li Y H, Fang X H, Chen F. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015, 84: 672-681. |
[22] | Ma H G, Chen J, Zhang Z Z, Ma L, Yang Z Y, Zhang Q L, Li X H, Xiao J H, Wang S P. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570. |
[23] |
Xie G S, Kato H, Imai R. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J, 2012, 443: 95-102.
doi: 10.1042/BJ20111792 pmid: 22248149 |
[24] |
Wang F Z, Jing W, Zhang W H. The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci, 2014, 227: 181-189.
doi: 10.1016/j.plantsci.2014.08.007 pmid: 25219319 |
[25] | Jing C Y, Zhang F M, Wang X H, Wang M X, Zhou L, Cai Z, Han J D, Geng M F, Yu W H, Jiao Z H, Huang L, Liu R, Zheng X M, Meng Q L, Ren N N, Zhang H X, Du Y S, Wang X, Qiang C G, Zou X H, Gaut B S, Ge S. Multiple domestications of Asian rice. Nat Plants, 2023, 9: 1221-1235. |
[26] |
Zhao H, Li J, Yang L, Qin G, Xia C, Xu X, Su Y, Liu Y, Ming L, Chen L L, Xiong L, Xie W. An inferred functional impact map of genetic variants in rice. Mol Plant, 2021, 14: 1584-1599.
doi: 10.1016/j.molp.2021.06.025 pmid: 34214659 |
[27] | Wang C C, Yu H, Huang J, Wang W S, Faruquee M, Zhang F, Zhao X Q, Fu B Y, Chen K, Zhang H L, Tai S S, Wei C C, McNally K L, Alexandrov N, Gao X Y, Li J Y, Li Z K, Xu J L, Zheng T Q. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol J, 2020, 18: 14-16. |
[28] | Mansueto L, Fuentes R R, Borja F N, Detras J, Abriol-Santos J M, Chebotarov D, Sanciangco M, Palis K, Copetti D, Poliakov A, Dubchak I, Solovyev V, Wing R A, Hamilton R S, Mauleon R, McNally K L, Alexandrov N. Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Res, 2017, 45: D1075-D1081. |
[29] |
Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol, 2020, 227: 629-640.
doi: 10.1111/nph.16540 pmid: 32167575 |
[30] |
Mao X X, Zhang J J, Liu W G, Yan S J, Liu Q, Fu H, Zhao J L, Huang W J, Dong J F, Zhang S H, Yang T F, Yang W, Liu B, Wang F. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice (N Y), 2019, 12: 2.
doi: 10.1186/s12284-018-0260-z pmid: 30671680 |
[31] | 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37: 953-973. |
Shan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas (Beijing), 2015, 37: 953-973 (in Chinese with English abstract). | |
[32] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[33] |
Guo N H, Tang S J, Wang Y K, Chen W, An R H, Ren Z L, Hu S K, Tang S Q, Wei X J, Shao G N, Jiao G A, Xie L H, Wang L, Chen Y, Zhao F L, Sheng Z H, Hu P S. A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice. Nat Commun, 2024, 15: 1134.
doi: 10.1038/s41467-024-45402-z pmid: 38326370 |
[1] | 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796. |
[2] | 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686. |
[3] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
[4] | 李春梅, 陈洁, 郎兴宣, 庄海民, 朱靖, 杜梓君, 冯浩天, 金涵, 朱国林, 刘凯. 水稻矮化多分蘖基因DT1的图位克隆与功能分析[J]. 作物学报, 2025, 51(2): 347-357. |
[5] | 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417. |
[6] | 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148. |
[7] | 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188. |
[8] | 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322. |
[9] | 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357. |
[10] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[11] | 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038. |
[12] | 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919. |
[13] | 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947. |
[14] | 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804. |
[15] | 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698. |
|