欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (3): 598-608.doi: 10.3724/SP.J.1006.2025.42028

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响

刘建国1,2(), 陈冬东2, 陈玉玉2, 易琴琴2, 李清2, 徐正进1,*(), 钱前2,*(), 沈兰2,*()   

  1. 1沈阳农业大学水稻研究所, 辽宁沈阳 110866
    2中国水稻研究所, 浙江杭州 311401
  • 收稿日期:2024-06-06 接受日期:2024-10-25 出版日期:2025-03-12 网络出版日期:2024-11-12
  • 通讯作者: *沈兰, E-mail: shenlan@caas.cn; 钱前, E-mail: qianqian188@hotmail.com; 徐正进, E-mail: xuzhengjin@126.com
  • 作者简介:E-mail: liujianguo316@163.com
  • 基金资助:
    浙江省自然科学基金探索项目(LY22C130005);国家自然科学基金项目(32171987)

Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains

LIU Jian-Guo1,2(), CHEN Dong-Dong2, CHEN Yu-Yu2, YI Qin-Qin2, LI Qing2, XU Zheng-Jin1,*(), QIAN Qian2,*(), SHEN Lan2,*()   

  1. 1Rice Research Institute of Shenyang Agricultural University, Shenyang 110866, Liaoning, China
    2China National Rice Research Institute, Hangzhou 311401, Zhejiang, China
  • Received:2024-06-06 Accepted:2024-10-25 Published:2025-03-12 Published online:2024-11-12
  • Contact: *E-mail: shenlan@caas.cn; E-mail: qianqian188@hotmail.com; E-mail: xuzhengjin@126.com
  • Supported by:
    Zhejiang Provincial Natural Science Foundation Exploration Project(LY22C130005);National Natural Science Foundation of China(32171987)

摘要:

MAPK信号通路中的MKKs家族基因在水稻生长发育和防御信号传导中起承上启下的作用, 并参与调控多种生物学过程。本研究通过生物信息学分析, 鉴定了水稻中的MKKs基因, 并构建了它们的系统发育树, 揭示了MKKs家族基因的保守性和多样性。利用基因编辑技术, 编辑日本晴水稻品种中OsMKK4基因, 成功获得了6种该基因不同突变类型的材料, 其粒长、粒宽和千粒重均较野生型显著降低。单倍型分析结果表明, OsMKK4基因的单倍型有明显的籼粳分化, 主要为Glu14粳型和Leu14籼型。含有Glu14粳型稻的平均粒长较低, 平均粒宽和千粒重较高。此外, 将Kasalath中带有Leu14单倍型的OsMKK4基因导入日本晴, 导致DHX (CSSL)的粒长、粒宽和千粒重较日本晴显著降低; 与Kasalath相比, 代换系的粒宽和千粒重显著增加。本研究探索了OsMKK4基因的重要单倍型对水稻籽粒的影响, 为更精确的分子设计育种提供基因资源和策略。

关键词: 水稻, MAPK, OsMKK4, 粒型, 单倍型

Abstract:

The MKK gene family in the MAPK signaling pathway plays a pivotal role in connecting processes related to rice growth, development, and defense signaling, regulating various biological processes. In this study, we identified MKK genes in rice through bioinformatics analysis and constructed a phylogenetic tree, revealing both the conservation and diversity within the MKK gene family. Using gene editing technology, we edited the OsMKK4 gene in the Nipponbare rice variety and successfully obtained six lines with different mutation types in this gene. Grain length, grain width, and 1000-grain weight in these mutant lines were significantly reduced compared to the wild type. Haplotype analysis revealed clear differentiation in OsMKK4 gene haplotypes between indica and japonica rice, primarily divided into the Glu14 japonica type and Leu14 indica type. On average, japonica rice containing Glu14 exhibited shorter grain length but higher grain width and 1000-grain weight. Furthermore, introducing the OsMKK4 gene with the Leu14 haplotype from Kasalath into Nipponbare resulted in significantly reduced grain length, grain width, and 1000-grain weight in the DHX (CSSL) compared to Nipponbare. However, compared to Kasalath, the grain width and 1000-grain weight of the substitution line increased significantly, particularly in grain width. This study highlights the

influence of key OsMKK4 gene haplotypes on rice grain traits, providing valuable genetic resources and strategies for more precise molecular breeding design.

Key words: rice, MAPK, OsMKK4, grain size, haplotype

表1

引物序列信息"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
OsMKK4g1 GGCAAGCGACGTGAGGTCCCGCTG AAACCAGCGGGACCTCACGTCGCT
OsMKK4g2 GGCAGTGCCCACCCCGCCGAATT AAACAATTCGGCGGGGTGGGCAC
OsMKK4-JC GCGAGCCCACCAGAAAACGC TCGTCGTGGTTCCCGTAGAGCA
Hyg ACCAGACACGAGACGACTAA ATCGGTGCGGGCCTCTTC

图1

水稻MKKs家族基因及编码蛋白的系统发育与结构分析 A: MKKs不同物种间系统进化树; B: MKKs水稻系统进化树; C: MKKs保守基序; D: MKKs的保守结构域; E: MKKs启动子顺式作用元件; F: MKKs基因结构。"

图2

OsMKK4 gRNA靶位点示意图及突变蛋白的氨基酸变化 A: OsMKK4靶位点示意图。OsMKK4的2个gRNA靶点位置和碱基序列, 红色字体为PAM序列。B: 黄色高亮为PAM序列; 红色小写字母为插入碱基; +表示插入; -表示缺失; *表示翻译的终止。C: 测序结果中红色方框表示突变位点。D: 突变蛋白三级结构分析。NPB: 日本晴; osmkk4 1-1、osmkk4 1-2、osmkk4 2-1、osmkk4 2-2、osmkk4 2-3和osmkk4 2-4: OsMKK4的6种突变类型。"

图3

OsMKK4基因编辑新种质的农艺性状比较分析 A: 日本晴与日本晴背景编辑新品系的植株形态比较, 标尺为10 cm; B: 不同突变新品系粒长和粒宽比较, 标尺为1 cm; C: 不同突变新品系株高的统计分析; D~F: 分别为千粒重、粒长与粒宽的统计分析, 数据为平均值。±标准差(n ≥ 9)。*表示P < 0.05水平差异; **表示P < 0.01水平差异。缩写同图2。"

图4

OsMKK4基因自然变异与单倍型网络分析 A: OsMKK4基因结构、蛋白质结构及5种变异位置; B: 8种单倍型的网络图, 黑线代表2种单倍型之间突变数量; C: 1072份材料中8种单倍型的千粒重数据统计; D: 1072份材料中8种单倍型的粒长数据统计; E: 1072份材料中8种单倍型的粒宽数据统计(n ≥ 10)。相同字母表示在0.05水平上差异不显著, 不同小写字母表示在0.05概率水平差异显著。Hap: 单倍型; XI、GJ、Aus、Bas和admix: 根据起源区域不同而划分的不同水稻类型。"

图5

OsMKK4的自然变异与籽粒性状差异相关 A: 水稻亚种氨基酸序列分布; B~D: 氨基酸序列组合的千粒重、粒长、粒宽数据统计(n ≥ 10)。相同字母表示在0.05水平上差异不显著, 不同小写字母表示在0.05概率水平差异显著。缩写同图4。"

图6

自然变异染色体代换系的籽粒性状考察 A: 3种品系基因及氨基酸序列的比对; B: 3种品系基因测序结果; C: 3种品系的粒长和粒宽比较, 标尺为1 cm; D~F: 3种品系千粒重、粒长和粒宽数据统计(n ≥ 9)。*表示P < 0.05水平差异; **表示P < 0.01水平差异。DHX: 日本晴为受体亲本、Kasalath为供体亲本的水稻染色体片段代换系。Kasalath: 一种水稻基因组的重要代表性籼型常规稻品种。缩写同图2。"

[1] Tang S, Zhao Z Y, Liu X T, Sui Y, Zhang D D, Zhi H, Gao Y Z, Zhang H, Zhang L L, Wang Y N, Zhao M C, Li D D, Wang K, He Q, Zhang R L, Zhang W, Jia G Q, Tang W Q, Ye X G, Wu C Y, Diao X M. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun, 2023, 14: 3091.
doi: 10.1038/s41467-023-38812-y pmid: 37248257
[2] Zhang Y, Xiong Y, Liu R Y, Xue H W, Yang Z B. The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proc Natl Acad Sci USA, 2019, 116: 16121-16126.
doi: 10.1073/pnas.1902321116 pmid: 31320586
[3] Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y pmid: 29487318
[4] Ren D Y, Ding C Q, Qian Q. Molecular bases of rice grain size and quality for optimized productivity. Sci Bull, 2023, 68: 314-350.
[5] Xiong L N, Tan L B, Xu R, Zhu Z F, Sun X Y, Sun H Y, Sun C Q. A gain-of-function mutation of OsMAPK6 leads to long grain in rice. Crop J, 2021, 9: 1481-1485.
doi: 10.1016/j.cj.2021.03.022
[6] Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8: 1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[7] Yang W S, Wu K, Wang B, Liu H H, Guo S Y, Guo X Y, Luo W, Sun S Y, Ouyang Y D, Fu X D, Chong K, Zhang Q F, Xu Y Y. The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Mol Plant, 2021, 14: 1699-1713.
doi: 10.1016/j.molp.2021.06.027 pmid: 34216830
[8] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018, 11: 750-753.
[9] Group M A P K. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301-308.
doi: 10.1016/s1360-1385(02)02302-6 pmid: 12119167
[10] Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S Q, Seguin A, Ellis B E. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci, 2006, 11: 192-198.
[11] Liu Z Q, Mei E Y, Tian X J, He M L, Tang J Q, Xu M, Liu J L, Song L, Li X F, Wang Z Y, Guan Q J, Xu Q J, Bu Q Y. OsMKKK 70 regulates grain size and leaf angle in rice through the OsMKK4-OsMAPK6-OsWRKY53 signaling pathway. J Integr Plant Biol, 2021, 63: 2043-2057.
[12] Jiang M, Chu Z Q. Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation. BMC Genomics, 2018, 19: 407.
doi: 10.1186/s12864-018-4793-8 pmid: 29843611
[13] Ma H G, Li J, Ma L, Wang P L, Xue Y, Yin P, Xiao J H, Wang S P. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632.
[14] Rao K P, Richa T, Kumar K, Raghuram B, Sinha A K. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res, 2010, 17: 139-153.
doi: 10.1093/dnares/dsq011 pmid: 20395279
[15] Kumar K, Rao K P, Sharma P, Sinha A K. Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem, 2008, 46: 891-897.
[16] Xu R, Duan P G, Yu H Y, Zhou Z K, Zhang B L, Wang R C, Li J, Zhang G Z, Zhuang S S, Lyu J, Li N, Chai T Y, Tian Z X, Yao S G, Li Y H. Control of grain size and weight by the OsMKKK10- OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant, 2018, 11: 860-873.
[17] Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557.
[18] Liu J G, Shen L, Guo L B, Zhang G H, Gao Z Y, Zhu L, Hu J, Dong G J, Ren D Y, Zhang Q, Li Q, Zeng D L, Yan C J, Qian Q. OsSTS, a novel allele of mitogen-activated protein kinase kinase 4 (OsMKK4), controls grain size and salt tolerance in rice. Rice (N Y), 2023, 16: 47.
doi: 10.1186/s12284-023-00663-y pmid: 37874376
[19] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30: 871-888.
[20] Guo T, Lu Z Q, Shan J X, Ye W W, Dong N Q, Lin H X. ERECTA 1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. Plant Cell, 2020, 32: 2763-2779.
[21] Liu S Y, Hua L, Dong S J, Chen H Q, Zhu X D, Jiang J E, Zhang F, Li Y H, Fang X H, Chen F. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015, 84: 672-681.
[22] Ma H G, Chen J, Zhang Z Z, Ma L, Yang Z Y, Zhang Q L, Li X H, Xiao J H, Wang S P. MAPK kinase 10.2 promotes disease resistance and drought tolerance by activating different MAPKs in rice. Plant J, 2017, 92: 557-570.
[23] Xie G S, Kato H, Imai R. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J, 2012, 443: 95-102.
doi: 10.1042/BJ20111792 pmid: 22248149
[24] Wang F Z, Jing W, Zhang W H. The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci, 2014, 227: 181-189.
doi: 10.1016/j.plantsci.2014.08.007 pmid: 25219319
[25] Jing C Y, Zhang F M, Wang X H, Wang M X, Zhou L, Cai Z, Han J D, Geng M F, Yu W H, Jiao Z H, Huang L, Liu R, Zheng X M, Meng Q L, Ren N N, Zhang H X, Du Y S, Wang X, Qiang C G, Zou X H, Gaut B S, Ge S. Multiple domestications of Asian rice. Nat Plants, 2023, 9: 1221-1235.
[26] Zhao H, Li J, Yang L, Qin G, Xia C, Xu X, Su Y, Liu Y, Ming L, Chen L L, Xiong L, Xie W. An inferred functional impact map of genetic variants in rice. Mol Plant, 2021, 14: 1584-1599.
doi: 10.1016/j.molp.2021.06.025 pmid: 34214659
[27] Wang C C, Yu H, Huang J, Wang W S, Faruquee M, Zhang F, Zhao X Q, Fu B Y, Chen K, Zhang H L, Tai S S, Wei C C, McNally K L, Alexandrov N, Gao X Y, Li J Y, Li Z K, Xu J L, Zheng T Q. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol J, 2020, 18: 14-16.
[28] Mansueto L, Fuentes R R, Borja F N, Detras J, Abriol-Santos J M, Chebotarov D, Sanciangco M, Palis K, Copetti D, Poliakov A, Dubchak I, Solovyev V, Wing R A, Hamilton R S, Mauleon R, McNally K L, Alexandrov N. Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Res, 2017, 45: D1075-D1081.
[29] Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol, 2020, 227: 629-640.
doi: 10.1111/nph.16540 pmid: 32167575
[30] Mao X X, Zhang J J, Liu W G, Yan S J, Liu Q, Fu H, Zhao J L, Huang W J, Dong J F, Zhang S H, Yang T F, Yang W, Liu B, Wang F. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice (N Y), 2019, 12: 2.
doi: 10.1186/s12284-018-0260-z pmid: 30671680
[31] 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37: 953-973.
Shan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas (Beijing), 2015, 37: 953-973 (in Chinese with English abstract).
[32] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[33] Guo N H, Tang S J, Wang Y K, Chen W, An R H, Ren Z L, Hu S K, Tang S Q, Wei X J, Shao G N, Jiao G A, Xie L H, Wang L, Chen Y, Zhao F L, Sheng Z H, Hu P S. A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice. Nat Commun, 2024, 15: 1134.
doi: 10.1038/s41467-024-45402-z pmid: 38326370
[1] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[2] 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686.
[3] 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346.
[4] 李春梅, 陈洁, 郎兴宣, 庄海民, 朱靖, 杜梓君, 冯浩天, 金涵, 朱国林, 刘凯. 水稻矮化多分蘖基因DT1的图位克隆与功能分析[J]. 作物学报, 2025, 51(2): 347-357.
[5] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[6] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[7] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[8] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[9] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[10] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[11] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[12] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[13] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[14] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[15] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!