作物学报 ›› 2025, Vol. 51 ›› Issue (1): 134-148.doi: 10.3724/SP.J.1006.2025.44035
徐林珊1(), 郜耿东1, 王宇1, 王家星1, 杨吉招1, 武亚瑞1, 张宵寒1, 常影1, 李真1, 谢雄泽2, 龚德平3, 王晶1,*(), 葛贤宏1
XU Lin-Shan1(), GAO Geng-Dong1, WANG Yu1, WANG Jia-Xing1, YANG Ji-Zhao1, WU Ya-Rui1, ZHANG Xiao-Han1, CHANG Ying1, LI Zhen1, XIE Xiong-Ze2, GONG De-Ping3, WANG Jing1,*(), GE Xian-Hong1
摘要:
漆酶是一种含铜的多酚氧化酶家族, 在植物中主要参与木质素合成以及抵御各种逆境胁迫。本研究对甘蓝型油菜漆酶基因(BnaLACs)家族成员进行鉴定, 通过氨基酸数量、分子量、等电点、不稳定系数以及脂溶性系数等指标衡量其理化性质。后对其染色体位置、进化关系、基因结构、组织部位表达模式等进行预测和分析。结果表明, 甘蓝型油菜基因组共有53个BnaLACs家族成员, 基本为碱性、稳定蛋白, 大多数BnaLACs定位在液泡膜和细胞外。基因结构分析发现, BnaLACs结构较为保守。组织部位表达模式分析表明, 除花药外, BnaLACs在各组织部位均有表达, 其中在根、种子、角果皮和茎秆中表达量较高。分析茎秆中BnaLAC4s表达模式发现, BnaA05G0074200ZS与甘蓝型油菜抗倒性显著相关; 单倍型分析表明, 包含BnaA05G0074200ZS两种单倍型的品系间抗倒性、木质素含量均存在显著差异。研究结果将为进一步解析甘蓝型油菜漆酶基因家族功能及茎秆抗倒伏机制奠定基础。
[1] | Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci, 2015, 72: 857-868. |
[2] | Hüttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol, 2001, 55: 387-394. |
[3] | Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol Rev, 2006, 30: 215-242. |
[4] | Hoopes J T, Dean J F. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem, 2004, 42: 27-33. |
[5] | Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet A M, Goffner D. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol, 2002, 129: 145-155. |
[6] | McCaig B C, Meagher R B, Dean J F D. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta, 2005, 221: 619-636. |
[7] | Zhang Y C, Yu Y, Wang C Y, Li Z Y, Liu Q, Xu J, Liao J Y, Wang X J, Qu L H, Chen F, Xin P Y, Yan C Y, Chu J F, Li H Q, Chen Y Q. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol, 2013, 31: 848-852. |
[8] | Liang M X, Haroldsen V, Cai X N, Wu Y J. Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ, 2006, 29: 746-753. |
[9] | Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R. LACCASE5 is required for lignification of the Brachypodium distachyon Culm. Plant Physiol, 2015, 168: 192-204. |
[10] | Peng D L, Chen X G, Yin Y P, Lu K L, Yang W B, Tang Y H, Wang Z L. Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res, 2014, 157: 1-7. |
[11] | Bonawitz N D, Chapple C. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet, 2010, 44: 337-363. |
[12] | Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Phillipe L B, Nero B, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011, 23: 1124-1137. |
[13] | Cesarino I, Araújo P, Sampaio Mayer J L, Vicentini R, Berthet S, Demedts B, Vanholme B, Boerjan W, Mazzafera P. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot, 2013, 64: 1769-1781. |
[14] | Zhou J L, Lee C H, Zhong R Q, Ye Z H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell, 2009, 21: 248-266. |
[15] | Swetha C, Basu D, Pachamuthu K, Tirumalai V, Nair A, Prasad M, Shivaprasad P V. Major domestication-related phenotypes in Indica rice are due to loss of miRNA-mediated laccase silencing. Plant Cell, 2018, 30: 2649-2662. |
[16] | Lu S F, Li Q Z, Wei H R, Chang M J, Tunlaya-Anukit S, Kim H, Liu J, Song J Y, Sun Y H, Yuan L C, Yeh T F, Peszlen I, Ralph J, Sederoff R R, Chiang V L. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA, 2013, 110: 10848-10853. |
[17] | Sharma N K, Yadav S, Gupta S K, Irulappan V, Francis A, Senthil-Kumar M, Chattopadhyay D. MicroRNA397 regulates tolerance to drought and fungal infection by regulating lignin deposition in chickpea root. Plant Cell Environ, 2023, 46: 3501-3517. |
[18] | Cai X N, Davis E J, Ballif J, Liang M X, Bushman E, Haroldsen V, Torabinejad J, Wu Y J. Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot, 2006, 57: 2563-2569. |
[19] | Wang C Y, Zhang S C, Yu Y, Luo Y C, Liu Q, Ju C L, Zhang Y C, Qu L H, Lucas W J, Wang X J, Chen Y Q. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J, 2014, 12: 1132-1142. |
[20] | Liang M X, Davis E, Gardner D, Cai X N, Wu Y J. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224: 1185-1196. |
[21] | Wang G D, Li Q J, Luo B, Chen X Y. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol, 2004, 22: 893-897. |
[22] | Deng W, Zhao W, Yang Y. Degradation and detoxification of chlorophenols with different structure by LAC-4 laccase purified from White-Rot fungus Ganoderma lucidum. Int J Environ Res Public Health, 2022, 19: 8150. |
[23] | Wei J Z, Tirajoh A, Effendy J, Plant A L. Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci, 2000, 159: 135-148. |
[24] | Shen Y O, Zhang Y Z, Chen J, Lin H J, Zhao M J, Peng H W, Liu L, Yuan G S, Zhang S Z, Zhang Z M, Pan G T. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol Plant, 2013, 147: 270-282. |
[25] | Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol, 2018, 176: 1808-1823. |
[26] | Bao W, Whetten R, Sederoff R R. A laccase associated with lignification in loblolly pine xylem. Science, 1993, 260: 672-674. |
[27] | Chou E Y, Schuetz M, Hoffmann N, Watanabe Y, Sibout R, Samuels A L. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J Exp Bot, 2018, 69: 1849-1859. |
[28] | Wang J H, Feng J J, Jia W T, Chang S, Li S Z, Li Y X. Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels, 2015, 8: 145. |
[29] | Turlapati P V, Kim K W, Davin L B, Lewis N G. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011, 233: 439-470. |
[30] | Zhao Q, Nakashima J, Chen F, Yin Y B, Fu C X, Yun J F, Shao H, Wang X Q, Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013, 25: 3976-3987. |
[31] | Ménard D, Blaschek L, Kriechbaum K, Lee C C, Serk H, Zhu C T, Lyubartsev A, Nuoendagula, Bacsik Z, Bergström L, Mathew A, Kajita S, Pesquet E. Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. Plant Cell, 2022, 34: 4877-4896. |
[32] | Whitehill J G A, Henderson H, Schuetz M, Skyba O, Yuen M M S, King J, Samuels A L, Mansfield S D, Bohlmann J. Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. Plant Cell Environ, 2016, 39: 1646-1661. |
[33] | Joo Y, Kim H, Kang M, Lee G, Choung S, Kaur H, Oh S, Choi J W, Ralph J, Baldwin I T, Kim S G. Pith-specific lignification in Nicotiana attenuata as a defense against a stem-boring herbivore. New Phytol, 2021, 232: 332-344. |
[34] | Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. Plant Cell, 2023, 35: 889-909. |
[35] | 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7. |
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. China Oils Fats, 2022, 47(2): 1-7 (in Chinese with English abstract). | |
[36] | Welton F A. Lodging in oats and wheat. Botanical Gazatte, 1928, 85: 121. |
[37] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响. 作物学报, 2021, 47: 1724-1740. |
Lou H X, Ji J L, Kuai J, Wang B, Xu L, Li Z, Liu F, Huang W, Liu S Y, Yin Y F, Wang J, Zhou G S. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. Acta Agron Sin, 2021, 47: 1724-1740 (in Chinese with English abstract). | |
[38] | Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202. |
[39] | Xie J M, Chen Y R, Cai G J, Cai R L, Hu Z, Wang H. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592. |
[40] | Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucl Acids Res, 2015, 43: W39-W49. |
[41] | Cuzens J C, Miller J R. Acid hydrolysis of bagasse for ethanol production. Renew Energy, 1997, 10: 285-290. |
[42] | Attitalla I H. Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pak J Biol Sci, 2011, 14: 998-999. |
[43] | Li Z, Gao G D, Xu L S, Wang Z K, Wang C Y, Yang T H, Kuai J, Wang B, Xu Z H, Zhao J, King G J, Wang J, Zhou G S. Reducing nitrogen application at high planting density enhances secondary cell wall formation and decreases stem lodging in rapeseed. Eur J Agron, 2024, 156: 127162. |
[44] | Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966-2980. |
[45] | Yonekura-Sakakibara K, Yamamura M, Matsuda F, Ono E, Nakabayashi R, Sugawara S, Mori T, Tobimatsu Y, Umezawa T, Saito K. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. Plant Cell, 2021, 33: 129-152. |
[46] | Gavnholt B, Larsen K, Rasmussen S K. Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci, 2002, 162: 873-885. |
[47] | Miguel P A, Schneider I, Kroll P, Hofhuis H, Metzger S, Pauly M, Hay A. Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proc Natl Acad Sci USA, 2022, 119: e2202287119. |
[48] | Li Q, Fu C F, Liang C L, Ni X J, Zhao X H, Chen M, Ou L J. Crop lodging and the roles of lignin, cellulose, and hemicellulose in lodging resistance. Agronomy, 2022, 12: 1795. |
[49] | Zeng R F, Fu L M, Deng L, Liu M F, Gan Z M, Zhou H, Hu S F, Hu C G, Zhang J Z. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. Plant J, 2022, 110: 828-848. |
[50] | Pin P A, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen J J L, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 2010, 330: 1397-1400. |
[51] | Qin Z R, Wu J J, Geng S F, Feng N, Chen F J, Kong X C, Song G Y, Chen K, Li A L, Mao L, Wu L. Regulation of FT splicing by an endogenous cue in temperate grasses. Nat Commun, 2017, 8: 14320. |
[1] | 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57. |
[2] | 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105. |
[3] | 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171. |
[4] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[5] | 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029. |
[6] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[7] | 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813. |
[8] | 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413. |
[9] | 阳世杰, 王华智, 潘怡敏, 黄蕊, 侯森, 秦慧彬, 穆志新, 王海岗. 山西谷子种质资源株高全基因组关联分析[J]. 作物学报, 2024, 50(12): 2984-2997. |
[10] | 黄肖玉, 娄洪祥, 邵东李, 张哲, 蒋博, 肖雅丹, 常影, 郭安达, 赵杰, 徐正华, 王晶, 汪波, 蒯婕, 周广生. 高密度直播油菜不同类型叶片功能探究[J]. 作物学报, 2024, 50(10): 2550-2561. |
[11] | 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250. |
[12] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[13] | 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361. |
[14] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[15] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
|