欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 134-148.doi: 10.3724/SP.J.1006.2025.44035

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析

徐林珊1(), 郜耿东1, 王宇1, 王家星1, 杨吉招1, 武亚瑞1, 张宵寒1, 常影1, 李真1, 谢雄泽2, 龚德平3, 王晶1,*(), 葛贤宏1   

  1. 1华中农业大学植物科学技术学院, 湖北武汉 430070
    2襄阳市农业科学院, 湖北襄阳 441057
    3荆州农业科学院, 湖北荆州 434000
  • 收稿日期:2024-02-27 接受日期:2024-08-15 出版日期:2025-01-12 网络出版日期:2024-09-02
  • 通讯作者: 王晶
  • 作者简介:E-mail: linshan@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目课题“多抗油菜新种质创制与应用”(2023YFD1201402);湖北省重点研发计划“耐密植超高产油菜品种高通量智能化选育”(2023BBB030)

Analysis of expression patterns of laccase gene family members in Brassica napus and their association with stem fracture resistance

XU Lin-Shan1(), GAO Geng-Dong1, WANG Yu1, WANG Jia-Xing1, YANG Ji-Zhao1, WU Ya-Rui1, ZHANG Xiao-Han1, CHANG Ying1, LI Zhen1, XIE Xiong-Ze2, GONG De-Ping3, WANG Jing1,*(), GE Xian-Hong1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
    3Jingzhou Academy of Agricultural Sciences, Jingzhou 434000, Hubei, China
  • Received:2024-02-27 Accepted:2024-08-15 Published:2025-01-12 Published online:2024-09-02
  • Contact: WANG Jing
  • Supported by:
    National Key Research and Development Program ‘Creation and Application of New Germplasm of Multi-resistance Rapeseed’(2023YFD1201402);Hubei Key Research and Development Program ‘High-throughput Intelligent Selection and Breeding of High-yield Rapeseed Varieties with High Resistance to Dense Planting’(2023BBB030)

摘要:

漆酶是一种含铜的多酚氧化酶家族, 在植物中主要参与木质素合成以及抵御各种逆境胁迫。本研究对甘蓝型油菜漆酶基因(BnaLACs)家族成员进行鉴定, 通过氨基酸数量、分子量、等电点、不稳定系数以及脂溶性系数等指标衡量其理化性质。后对其染色体位置、进化关系、基因结构、组织部位表达模式等进行预测和分析。结果表明, 甘蓝型油菜基因组共有53个BnaLACs家族成员, 基本为碱性、稳定蛋白, 大多数BnaLACs定位在液泡膜和细胞外。基因结构分析发现, BnaLACs结构较为保守。组织部位表达模式分析表明, 除花药外, BnaLACs在各组织部位均有表达, 其中在根、种子、角果皮和茎秆中表达量较高。分析茎秆中BnaLAC4s表达模式发现, BnaA05G0074200ZS与甘蓝型油菜抗倒性显著相关; 单倍型分析表明, 包含BnaA05G0074200ZS两种单倍型的品系间抗倒性、木质素含量均存在显著差异。研究结果将为进一步解析甘蓝型油菜漆酶基因家族功能及茎秆抗倒伏机制奠定基础。

关键词: 甘蓝型油菜, 漆酶, 进化, 表达模式, 单倍型, 抗倒性

Abstract:

Laccase is a family of copper-containing polyphenol oxidases primarily involved in lignin synthesis and resistance to various stresses in plants. In this study, members of the laccase gene family (BnaLACs) in Brassica napus were identified, and their physical and chemical properties were measured, including the number of amino acids, molecular weight, isoelectric point, instability index, and aliphatic index. The chromosome positions, evolutionary relationships, gene structures, and tissue expression patterns of these genes were subsequently predicted and analyzed. The results showed that the Brassica napus genome contains 53 BnaLAC family members, which are generally alkaline and stable proteins. Most BnaLACs are located in the vacuole membrane and outside the cell. Gene structure analysis revealed that BnaLACs have conserved structures. Tissue expression pattern analysis indicated that BnaLACs are expressed in all tissues except anthers, with higher expression levels in roots, seeds, silique walls, and stems. The expression pattern of BnaLAC4s in stems was specifically analyzed, and it was found that BnaA05G0074200ZS is significantly correlated with lodging resistance in Brassica napus. Haplotype analysis showed significant differences in lodging resistance and lignin content between different BnaA05G0074200ZS haplotype lines. The results of this study provide a foundation for further analysis of the functions of the laccase gene family in Brassica napus and the mechanisms underlying stem lodging resistance.

Key words: Brassica napus, laccase, evolution, expression pattern, haplotype, lodging resistance

表1

BnaA05G0074200ZS验证所用引物"

引物类型Primer type 引物名称Primer name 引物序列Primer sequence (5°-3°)
单倍型鉴定引物
Haplotype identification primer
BnaLAC-A5-3329-F1 CTACTGTTGTTCGTCGTTTCTATTG
BnaLAC-A5-3329-R2 CTACTCACACACATTATTGTGGCT
BnaA5LAC-3K-F2 CTCCTCGGTTCTCTTTCTTCTA
BnaA5LAC-3K-R2 CATCTAATTGTATGTCTTATCGCCTTT
qRT-PCR引物
qRT-PCR primer
qRTBnaLAC-A5F2 AGGCGCTTAAGTCTGGATTAGCCC
qRTBnaLAC-A5R2 AACGGTTTGACGTAGACAGCGTCC
BnENTH-F GTTTAGACCCGTTGCTGCTC
BnENTH-R TTGTCCATCTCAGCCATTTG

图1

BnaLACs在甘蓝型油菜染色体上的分布"

图2

拟南芥和甘蓝型油菜中LAC家族成员的系统发育树 共分为9类, 每一类用不同颜色标注。"

图3

拟南芥和甘蓝型油菜中LAC家族成员保守Motif以及基因结构分析 根据系统发育关系将BnaLAC家族共分为9类, 每一类用不同颜色标注。BnaLAC家族共鉴定到10种保守Motif, 不同颜色的方块表示不同Motif。基因结构中黄色方块表示外显子, 绿色方块表示UTR区域, 黑色线表示内含子。"

图4

甘蓝型油菜BnaLACs家族成员全生育期组织表达模式 各组织部位中BnaLACs表达量,组织部位分别为2 mm和4 mm花蕾,花丝,花瓣,花粉,花專,子叶,莲座叶,1~23片叶,根,开花后14~64d种子,开花后2~60d角果皮,下、中和上部"

图5

BnaLACs家族成员不同组织表达模式 A: 子叶、莲座叶以及1~23片叶中BnaLACs表达量。B: 花后14~64 d种子中BnaLACs表达量。C: 花后2~60 d角果皮中BnaLACs表达量。D: 下、中和上部茎秆中BnaLACs表达量。E: 根中BnaLACs表达量。F: 2 mm和4 mm花蕾中BnaLACs表达量。G: 花丝中BnaLACs表达量。"

图6

ZS11以及倒伏品种L23中 BnaLAC4s表达模式以及木质素含量 A、B、C为甘蓝型油菜数据库中ZS11表达模式。D、E、F为ZS11和L23中BnaLAC4s表达模式, ZS11: 中双11号。G: 木质素含量。t检验, *表示在0.05概率水平差异显著。"

图7

自然群体中BnaA05G0074200ZS单倍型分布情况 A: BnaA05G0074200ZS单倍型类型。B: 自然群体中BnaA05G0074200ZS单倍型与抗折力关系; t检验, P=0.016 < 0.05, 差异显著。C: 不同单倍型中BnaA05G0074200ZS相对表达量, C152和C344为hap1, C275和C474为hap2, 通过ANOVA方法分析表达差异显著性, 不同的小写字母代表在0.05概率水平差异显著。D: 不同单倍型木质素含量。"

表2

BnaLAC家族成员信息以及理化性质"

[1] Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci, 2015, 72: 857-868.
[2] Hüttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol, 2001, 55: 387-394.
[3] Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol Rev, 2006, 30: 215-242.
[4] Hoopes J T, Dean J F. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem, 2004, 42: 27-33.
[5] Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet A M, Goffner D. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol, 2002, 129: 145-155.
[6] McCaig B C, Meagher R B, Dean J F D. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta, 2005, 221: 619-636.
[7] Zhang Y C, Yu Y, Wang C Y, Li Z Y, Liu Q, Xu J, Liao J Y, Wang X J, Qu L H, Chen F, Xin P Y, Yan C Y, Chu J F, Li H Q, Chen Y Q. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol, 2013, 31: 848-852.
[8] Liang M X, Haroldsen V, Cai X N, Wu Y J. Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ, 2006, 29: 746-753.
[9] Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R. LACCASE5 is required for lignification of the Brachypodium distachyon Culm. Plant Physiol, 2015, 168: 192-204.
[10] Peng D L, Chen X G, Yin Y P, Lu K L, Yang W B, Tang Y H, Wang Z L. Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res, 2014, 157: 1-7.
[11] Bonawitz N D, Chapple C. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet, 2010, 44: 337-363.
[12] Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Phillipe L B, Nero B, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011, 23: 1124-1137.
[13] Cesarino I, Araújo P, Sampaio Mayer J L, Vicentini R, Berthet S, Demedts B, Vanholme B, Boerjan W, Mazzafera P. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot, 2013, 64: 1769-1781.
[14] Zhou J L, Lee C H, Zhong R Q, Ye Z H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell, 2009, 21: 248-266.
[15] Swetha C, Basu D, Pachamuthu K, Tirumalai V, Nair A, Prasad M, Shivaprasad P V. Major domestication-related phenotypes in Indica rice are due to loss of miRNA-mediated laccase silencing. Plant Cell, 2018, 30: 2649-2662.
[16] Lu S F, Li Q Z, Wei H R, Chang M J, Tunlaya-Anukit S, Kim H, Liu J, Song J Y, Sun Y H, Yuan L C, Yeh T F, Peszlen I, Ralph J, Sederoff R R, Chiang V L. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA, 2013, 110: 10848-10853.
[17] Sharma N K, Yadav S, Gupta S K, Irulappan V, Francis A, Senthil-Kumar M, Chattopadhyay D. MicroRNA397 regulates tolerance to drought and fungal infection by regulating lignin deposition in chickpea root. Plant Cell Environ, 2023, 46: 3501-3517.
[18] Cai X N, Davis E J, Ballif J, Liang M X, Bushman E, Haroldsen V, Torabinejad J, Wu Y J. Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot, 2006, 57: 2563-2569.
[19] Wang C Y, Zhang S C, Yu Y, Luo Y C, Liu Q, Ju C L, Zhang Y C, Qu L H, Lucas W J, Wang X J, Chen Y Q. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J, 2014, 12: 1132-1142.
[20] Liang M X, Davis E, Gardner D, Cai X N, Wu Y J. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224: 1185-1196.
[21] Wang G D, Li Q J, Luo B, Chen X Y. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol, 2004, 22: 893-897.
[22] Deng W, Zhao W, Yang Y. Degradation and detoxification of chlorophenols with different structure by LAC-4 laccase purified from White-Rot fungus Ganoderma lucidum. Int J Environ Res Public Health, 2022, 19: 8150.
[23] Wei J Z, Tirajoh A, Effendy J, Plant A L. Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci, 2000, 159: 135-148.
[24] Shen Y O, Zhang Y Z, Chen J, Lin H J, Zhao M J, Peng H W, Liu L, Yuan G S, Zhang S Z, Zhang Z M, Pan G T. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol Plant, 2013, 147: 270-282.
[25] Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol, 2018, 176: 1808-1823.
[26] Bao W, Whetten R, Sederoff R R. A laccase associated with lignification in loblolly pine xylem. Science, 1993, 260: 672-674.
[27] Chou E Y, Schuetz M, Hoffmann N, Watanabe Y, Sibout R, Samuels A L. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J Exp Bot, 2018, 69: 1849-1859.
[28] Wang J H, Feng J J, Jia W T, Chang S, Li S Z, Li Y X. Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels, 2015, 8: 145.
[29] Turlapati P V, Kim K W, Davin L B, Lewis N G. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011, 233: 439-470.
[30] Zhao Q, Nakashima J, Chen F, Yin Y B, Fu C X, Yun J F, Shao H, Wang X Q, Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013, 25: 3976-3987.
[31] Ménard D, Blaschek L, Kriechbaum K, Lee C C, Serk H, Zhu C T, Lyubartsev A, Nuoendagula, Bacsik Z, Bergström L, Mathew A, Kajita S, Pesquet E. Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. Plant Cell, 2022, 34: 4877-4896.
[32] Whitehill J G A, Henderson H, Schuetz M, Skyba O, Yuen M M S, King J, Samuels A L, Mansfield S D, Bohlmann J. Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. Plant Cell Environ, 2016, 39: 1646-1661.
[33] Joo Y, Kim H, Kang M, Lee G, Choung S, Kaur H, Oh S, Choi J W, Ralph J, Baldwin I T, Kim S G. Pith-specific lignification in Nicotiana attenuata as a defense against a stem-boring herbivore. New Phytol, 2021, 232: 332-344.
[34] Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. Plant Cell, 2023, 35: 889-909.
[35] 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7.
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. China Oils Fats, 2022, 47(2): 1-7 (in Chinese with English abstract).
[36] Welton F A. Lodging in oats and wheat. Botanical Gazatte, 1928, 85: 121.
[37] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响. 作物学报, 2021, 47: 1724-1740.
Lou H X, Ji J L, Kuai J, Wang B, Xu L, Li Z, Liu F, Huang W, Liu S Y, Yin Y F, Wang J, Zhou G S. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. Acta Agron Sin, 2021, 47: 1724-1740 (in Chinese with English abstract).
[38] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
[39] Xie J M, Chen Y R, Cai G J, Cai R L, Hu Z, Wang H. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.
[40] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucl Acids Res, 2015, 43: W39-W49.
[41] Cuzens J C, Miller J R. Acid hydrolysis of bagasse for ethanol production. Renew Energy, 1997, 10: 285-290.
[42] Attitalla I H. Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pak J Biol Sci, 2011, 14: 998-999.
[43] Li Z, Gao G D, Xu L S, Wang Z K, Wang C Y, Yang T H, Kuai J, Wang B, Xu Z H, Zhao J, King G J, Wang J, Zhou G S. Reducing nitrogen application at high planting density enhances secondary cell wall formation and decreases stem lodging in rapeseed. Eur J Agron, 2024, 156: 127162.
[44] Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966-2980.
[45] Yonekura-Sakakibara K, Yamamura M, Matsuda F, Ono E, Nakabayashi R, Sugawara S, Mori T, Tobimatsu Y, Umezawa T, Saito K. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. Plant Cell, 2021, 33: 129-152.
[46] Gavnholt B, Larsen K, Rasmussen S K. Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci, 2002, 162: 873-885.
[47] Miguel P A, Schneider I, Kroll P, Hofhuis H, Metzger S, Pauly M, Hay A. Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proc Natl Acad Sci USA, 2022, 119: e2202287119.
[48] Li Q, Fu C F, Liang C L, Ni X J, Zhao X H, Chen M, Ou L J. Crop lodging and the roles of lignin, cellulose, and hemicellulose in lodging resistance. Agronomy, 2022, 12: 1795.
[49] Zeng R F, Fu L M, Deng L, Liu M F, Gan Z M, Zhou H, Hu S F, Hu C G, Zhang J Z. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. Plant J, 2022, 110: 828-848.
[50] Pin P A, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen J J L, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 2010, 330: 1397-1400.
[51] Qin Z R, Wu J J, Geng S F, Feng N, Chen F J, Kong X C, Song G Y, Chen K, Li A L, Mao L, Wu L. Regulation of FT splicing by an endogenous cue in temperate grasses. Nat Commun, 2017, 8: 14320.
[1] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[2] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[3] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[4] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[5] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[6] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[7] 王添宁, 冯雅岚, 琚吉浩, 吴毅, 张均, 马超. 小麦及其祖先物种GRF转录因子家族鉴定与表达分析[J]. 作物学报, 2024, 50(4): 897-813.
[8] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发[J]. 作物学报, 2024, 50(2): 403-413.
[9] 阳世杰, 王华智, 潘怡敏, 黄蕊, 侯森, 秦慧彬, 穆志新, 王海岗. 山西谷子种质资源株高全基因组关联分析[J]. 作物学报, 2024, 50(12): 2984-2997.
[10] 黄肖玉, 娄洪祥, 邵东李, 张哲, 蒋博, 肖雅丹, 常影, 郭安达, 赵杰, 徐正华, 王晶, 汪波, 蒯婕, 周广生. 高密度直播油菜不同类型叶片功能探究[J]. 作物学报, 2024, 50(10): 2550-2561.
[11] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[12] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[13] 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361.
[14] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[15] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!