欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 149-160.doi: 10.3724/SP.J.1006.2025.44085

• 耕作栽培·生理生化 • 上一篇    下一篇

有机肥替代化肥氮对谷子氮素累积、产量及品质的影响

王媛(), 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕()   

  1. 山西农业大学资源环境学院, 山西太原 030031
  • 收稿日期:2024-05-23 接受日期:2024-09-18 出版日期:2025-01-12 网络出版日期:2024-10-10
  • 通讯作者: 焦晓燕
  • 作者简介:E-mail: wangyuan1520@126.com
  • 基金资助:
    山西省重点研发项目(2022ZDYF108);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06-14.5-A20)

Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet

WANG Yuan(), XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan()   

  1. College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2024-05-23 Accepted:2024-09-18 Published:2025-01-12 Published online:2024-10-10
  • Contact: JIAO Xiao-Yan
  • Supported by:
    Key Research Project of Shanxi Province(2022ZDYF108);China Agriculture Research System of MOF and MARA(CARS-06-14.5-A20)

摘要:

有机肥部分替代化肥是一种实现化肥减量的可持续农业生产措施。本研究于2020和2021连续2年以“沁黄2号”为供试材料, 设不施氮(CK)、常量化肥氮(NPK)、有机肥替代25%化肥氮(25% M)、有机肥替代50%化肥氮(50% M)、有机肥替代75%化肥氮(75% M)和有机肥替代100%化肥氮(100% M) 6个处理, 研究不同替代率对谷子产量构成和氮素吸收的影响, 并分析氮素吸收调控小米米色、糊化特性和类胡萝卜素组分的效应, 明确谷子生产中有机肥最佳替代率。结果表明, 2年中较低的有机肥替代化肥氮率显著提高了谷子植株氮素累积, 但随着替代率的持续增加, 植株氮素累积量呈降低趋势, 最终影响谷子产量和小米品质。2020年, 25% M处理显著提高了谷子地上部氮素累积量, 较NPK处理提高9.6%; 2021年, 25% M处理谷子地上部氮素累积量、生物量、穗粒数和产量达到最高, 较NPK处理分别提高6.1%、12.0%、15.4%和12.0%。50% M处理显著影响了小米的米色、糊化特征和类胡萝卜素含量, 与NPK相比, 小米籽粒红绿值、橘色值、支链淀粉含量、总淀粉含量、小米糊化最终黏度、叶黄素含量、玉米黄质含量和黄色素含量的增幅分别可达6.0%、6.0%、7.4%、4.3%、7.8%、20.7%、17.4%和2.8%。但有机肥完全替代化肥降低了谷子地上部氮素吸收、地上部生物量、穗粒数及谷子产量, 也抑制了小米叶黄素和玉米黄质含量的提升。2年均表现出谷子地上部氮吸收量与小米单粒重、直链淀粉含量和小米糊化回升值呈显著的负相关。且2021年谷子地上部氮吸收量还与小米总淀粉含量、蛋白质含量、小米粉糊化峰值黏度和小米黄色素含量呈显著的负相关, 与小米糊化峰谷黏度呈显著的正相关。综上, 施氮总量120 kg hm-2下, 有机肥替代25%~50%化肥氮能通过促进植株氮素的吸收, 实现产量、米色、蒸煮特性及类胡萝卜素的协同提升, 为谷子化肥减量和提质增效生产提供技术支撑。

关键词: 谷子, 有机肥替代化肥氮率, 氮素累积, 产量, 米色, 糊化特性, 类胡萝卜素

Abstract:

The partial substitution of chemical fertilizer with manure is increasingly recognized as a promising strategy for achieving sustainable agriculture. This study aimed to investigate the effects of different manure substitution ratios on grain yield and its components, plant nitrogen accumulation, grain appearance quality, carotenoid content, and pasting properties. A two-year field experiment (2020-2021) was conducted with six treatments: no fertilizer application (CK), chemical fertilizer (NPK), 25% substitution of chemical nitrogen with manure (25% M), 50% substitution (50% M), 75% substitution (75% M), and 100% substitution (100% M). Results indicated that plant nitrogen accumulation was highest with 25% M and decreased as the proportion of manure substitution increased, which subsequently affected grain yield and quality. In 2020, 25% M increased plant nitrogen accumulation by 9.6% compared to NPK. In 2021, 25% M produced the highest values for plant nitrogen accumulation, aboveground biomass, grain yield, and grain number per ear, with increases of 6.1%, 12.0%, 15.4%, and 12.0%, respectively, compared to NPK. Grain appearance quality, pasting properties, and carotenoid content were significantly influenced by the 50% M treatment. Compared to NPK, 50% M increased the a* parameter (indicating red or green coloration) by 6%, CCI (indicating orange coloration) by 6%, and final viscosity by 7.8%. Additionally, amylopectin, total starch, lutein, zeaxanthin, and yellow pigment contents increased by 7.4%, 4.3%, 20.68%, 17.4%, and 2.8%, respectively, under 50% M compared to NPK. However, 100% M significantly reduced plant nitrogen accumulation, biomass, grain number per ear, and grain yield relative to NPK, and had no positive effects on lutein and zeaxanthin contents. Pearson correlation analyses revealed that plant nitrogen accumulation was negatively related to grain weight, amylose content, and setback viscosity in 2020 and 2021. A negative correlation was also observed between plant nitrogen accumulation and total starch content, protein content, peak viscosity, and yellow pigment content in 2021, while a positive correlation was found between plant nitrogen accumulation and trough viscosity. In conclusion, under a total nitrogen application rate of 120 kg hm-2, substituting 25%-50% of chemical nitrogen with manure enhanced plant nitrogen accumulation, which in turn improved yield, grain appearance quality, pasting properties, and carotenoid content in foxtail millet grains.

Key words: foxtail millet, replacement ratio of chemical fertilizer nitrogen by manure, plant nitrogen accumulation, grain yield, grain appearance quality, pasting properties, carotenoids in grains

图1

2020-2021年生育期日平均气温和降雨量"

表1

各处理施肥量"

处理
Treatment
有机肥
Organic fertilizer (kg hm-2)
化肥Chemical fertilizer (kg hm-2)
N P2O5 K2O
CK 0 0 0 0
NPK 0 120 60 75
25% M 1200 90 42 54
50% M 2400 60 24 33
75% M 3600 30 6 12
100% M 4800 0 0 0

表2

有机肥替代化肥氮对谷子产量及其构成的影响"

年份
Year
处理
Treatment
产量
Grain yield
(kg hm-2)
千粒重
1000-grain weight
(g)
穗粒数
Grain number
(per panicle)
生物量
Biomass
(kg hm-2)
收获指数
HI
(%)
氮累积量
N accumulation
(kg hm-2)
氮收获指数
NHI
(%)
2020 CK 5525.3±245.4 b 2.72±0.02 c 6858±136 ab 10,600.3±361.6 a 52.1±0.5 b 123.1±2.8 a 64.5±1.9 c
NPK 6050.2±180.4 bc 2.67±0.01 ab 6796±230 ab 12,401.2±124.1 b 48.8±1.1 b 158.0±0.2 d 62.0±1.5 abc
25% M 6531.7±258.8 c 2.66±0.01 ab 7433±677 ab 13,008.0±737.0 b 50.4±1.8 b 173.1±1.0 f 61.3±0.5 abc
50% M 6560.0±384.2 c 2.65±0.01 ab 8537±837 b 12,793.8±779.8 b 51.3±0.5 b 162.6±0.4 e 63.9±0.3 bc
75% M 6300.4±288.7 bc 2.70±0.01 bc 6750±685 ab 12,221.3±520.5 ab 51.7±2.9 b 149.5±1.4 c 60.8±0.4 ab
100% M 5149.4±188.8 a 2.71±0.00 c 6108±237 a 12,206.4±178.0 ab 42.2±1.6 a 144.0±0.6 b 59.3±0.6 a
2021 CK 3649.5±95.2 a 2.74±0.00 d 5461±179 a 7871.4±111.2 a 46.3±0.6 c 89.8±3.0 a 59.3±0.8 c
NPK 4472.5±77.3 c 2.70±0.01 bc 5884±173 ab 10,226.4±98.0 cd 43.8±1.1 a 137.1±3.0 c 54.1±0.2 ab
25% M 5007.2±30.3 d 2.66±0.01 a 6791±132 c 11,456.2±79.6 e 43.7±0.1 a 145.5±1.9 d 55.6±0.8 b
50% M 4639.2±109.2 c 2.68±0.01 ab 6459±419 bc 10,505.7±159.6 d 44.2±0.7 ab 138.1±1.7 c 54.3±0.6 ab
75% M 4594.0±78.6 c 2.71±0.00 cd 6518±260 bc 10,132.0±93.0 c 45.3±0.5 abc 135.3±0.2 c 52.5±0.1 a
100% M 4073.2±45.4 b 2.70±0.00 cd 5360±13 a 8824.2±51.4 b 46.2±0.6 bc 125.9±2.0 b 52.5±0.4 a

表3

有机肥替代化肥氮对谷子籽粒性状和小米外观品质的影响"

年份
Year
处理
Treatment
单粒重
Weight per grain
(mg)
籽粒体积
Volume per grain
(mm3)
籽粒密度
Grain density
(g L-1)
米色 Grain color values
L a b CCI E
2020 CK 2.71±0.02 c 1.96±0.01 ab 1383.58±12.51 b 54.27±0.23 b 1.73±0.01 bc 26.23±0.23 b 1.22±0.02 ab 60.30±0.28 b
NPK 2.64±0.01 ab 1.95±0.01 a 1354.69±5.74 ab 53.71±0.19 ab 1.67±0.02 a 26.04±0.08 ab 1.20±0.02 a 59.71±0.20 ab
25% M 2.64±0.01 ab 1.96±0.02 abc 1348.58±19.68 a 53.62±0.09 ab 1.70±0.01 ab 25.55±0.24 a 1.24±0.00 abc 59.42±0.07 a
50% M 2.65±0.01 ab 2.00±0.00 bc 1324.96±3.81 a 53.99±0.3 ab 1.72±0.01 bc 25.84±0.08 ab 1.23±0.01 abc 59.88±0.30 ab
75% M 2.69±0.01 bc 1.97±0.01 abc 1368.63±3.08 ab 53.37±0.29 a 1.72±0.01 bc 25.55±0.06 a 1.26±0.01 c 59.20±0.24 a
100% M 2.71±0.00 c 1.99±0.01 c 1361.19±4.52 ab 53.84±0.08 ab 1.75±0.01 c 26.02±0.07 ab 1.25±0.01 bc 59.82±0.08 ab
2021 CK 2.72±0.00 d 1.97±0.02 a 1380.86±9.59 b 53.82±0.39 a 1.37±0.01 a 25.67±0.13 b 0.99±0.02 a 59.65±0.40 a
NPK 2.69±0.01 bc 2.00±0.01 ab 1342.55±9.58 ab 53.06±0.35 a 1.34±0.01 a 25.21±0.23 ab 1.00±0.01 a 58.77±0.41 a
25% M 2.63±0.01 a 2.00±0.01 ab 1313.03±14.98 a 53.53±0.20 a 1.36±0.00 a 25.16±0.32 ab 1.01±0.01 ab 59.16±0.32 a
50% M 2.66±0.01 ab 2.03±0.03 ab 1312.31±17.12 a 53.09±0.60 a 1.42±0.01 b 25.23±0.25 ab 1.06±0.03 cd 58.80±0.63 a
75% M 2.70±0.00 cd 2.04±0.02 b 1321.99±16.38 a 53.03±0.33 a 1.42±0.01 b 25.26±0.09 ab 1.06±0.00 bc 58.76±0.34 a
100% M 2.70±0.00 cd 2.03±0.03 ab 1329.27±19.64 a 53.52±0.44 a 1.47±0.02 c 24.70±0.29 a 1.11±0.01 d 58.97±0.48 a

图2

有机肥替代化肥氮对小米直链淀粉、支链淀粉、总淀粉含量和蛋白质含量的影响 不同小写字母代表不同处理间在0.05概率水平差异显著。处理同表1。"

表4

有机肥部分替代化肥氮对小米粉糊化特性的影响"

年份
Year
处理
Treatment
峰值黏度
Peak viscosity
(BU)
最终黏度
Final viscosity
(BU)
崩解值
Breakdown
(BU)
回升值
Setback
(BU)
峰谷黏度
Trough viscosity
(BU)
糊化温度
Pasting temperature
(℃)
开始糊化时间
Start pasting time
(min)
2020 CK 267.0±9.7 bc 484.7±4.9 b 76.7±2.9 bc 355.7±7.1 d 129.0±3.5 a 77.3±0.5 a 9.36±0.20 a
NPK 251.7±15.5 ab 463.0±2.3 a 71.0±3.6 ab 342.3±2.4 bc 120.7±0.7 a 77.3±0.1 a 9.35±0.02 a
25% M 261.3±5.3 bc 492.3±3.7 bc 65.0±3.5 a 323.7±3.2 a 168.7±6.7 b 78.8±0.5 a 9.87±0.18 a
50% M 232.0±5.3 a 499.0±3.2 c 70.3±3.2 ab 339.3±0.9 b 159.7±3.2 b 78.5±0.5 a 9.79±0.18 a
75% M 272.3±5.4 bc 510.3±3.7 d 81.7±1.2 c 348.7±3.8 bcd 161.7±5.0 b 78.6±0.8 a 9.83±0.24 a
100% M 284.7±7.2 c 525.3±2.6 e 79.0±1.2 bc 353.3±0.9 cd 172.0±3.5 b 78.2±0.4 a 9.65±0.14 a
2021 CK 287.3±2.9 c 476.3±1.8 ab 63.0±2.0 a 373.3±3.5 ab 103.0±3.5 a 82.4±0.2 a 11.08±0.07 a
NPK 276.7±1.7 bc 471.7±2.2 a 60.0±5.2 a 335.3±8.5 b 136.3±9.2 a 82.3±0.4 a 11.06±0.13 a
25% M 265.7±6.4 ab 482.7±3.4 b 60.0±4.0 a 314.0±9.0 a 168.7±10.6 b 82.6±0.2 a 11.13±0.09 a
50% M 255.3±4.4 a 497.0±0.6 c 61.7±5.4 a 329.0±23.7 ab 168.0±23.8 b 82.6±0.4 a 11.10±0.12 a
75% M 266.0±4.6 ab 501.7±2.7 c 59.7±5.6 a 331.3±12.0 ab 170.3±12.8 b 83.1±0.1 a 11.19±0.11 a
100% M 270.7±3.7 b 510.3±2.2 d 67.3±4.5 a 340.0±20.8 ab 170.3±22.8 b 82.5±0.2 a 11.28±0.03 a

图3

有机肥部分替代化肥氮对小米黄色素和类胡萝卜素的影响 不同小写字母代表不同处理间在0.05概率水平差异显著。处理同表1。"

图4

谷子地上部氮吸收量与小米品质的相关关系 PN: 植株地上部氮累积量; GW: 小米单粒重; GV: 小米体积; a: 米色红绿值; CCI: 米色橘色值; AM: 小米直链淀粉含量; AMP: 小米支链淀粉含量; SC: 小米总淀粉含量; PC: 小米蛋白质含量; PV: 小米粉糊化峰值黏度; FV: 小米粉糊化最终黏度; SB: 小米粉糊化回升值; YP: 小米黄色素含量; LT: 小米叶黄素含量; ZE: 小米玉米黄质含量; CA: 小米β-胡萝卜素含量。* 、** 和*** 分别表示在0.05、0.01和0.001概率水平显著相关。"

[1] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949.
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949 (in Chinese with English abstract).
[2] Mohamed T K, Issoufou A, Zhou H. Antioxidant activity of fractionated foxtail millet protein hydrolysate. Int Food Res J, 2012, 19: 207-213.
[3] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2022. pp 382-389.
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2022. pp 382-389 (in Chinese).
[4] Yang S H, Peng S Z, Xu J Z, Hou H J, Gao X L. Nitrogen loss from paddy field with different water and nitrogen managements in Taihu lake region of China. Commun Soil Sci Plant Anal, 2013, 44: 2393-2407.
[5] Liu B, Wang X Z, Ma L, Chadwick D, Chen X P. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis. Environ Pollut, 2021, 269: 116143.
[6] Shi Y L, Liu X R, Zhang Q W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. Sci Total Environ, 2019, 686: 199-211.
[7] Cui J X, Yan P, Wang X L, Yang J, Li Z J, Yang X L, Sui P, Chen Y Q. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China Plain. J Clean Prod, 2018, 193: 524-532.
[8] Zhang W F, Cao G X, Li X L, Zhang H Y, Wang C, Liu Q Q, Chen X P, Cui Z L, Shen J B, Jiang R F, Mi G H, Miao Y X, Zhang F S, Dou Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537: 671-674.
[9] Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Xue J Q, Wang G L, Wu L, An N, Wu L Q, Ma L, Zhang W F, Zhang F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489.
[10] Li P F, Lu J W, Wang Y, Wang S, Hussain S, Ren T, Cong R H, Li X K. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric Ecosyst Environ, 2018, 251: 78-87.
[11] Liu T Q, Fan D J, Zhang X X, Chen J, Li C F, Cao C G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res, 2015, 184: 80-90.
[12] Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
[13] Zhou B Y, Sun X F, Wang D, Ding Z S, Li C F, Ma W, Zhao M. Integrated agronomic practice increases maize grain yield and nitrogen use efficiency under various soil fertility conditions. Crop J, 2019, 7: 527-538.
[14] Huang R, Wang Y Y, Liu J, Gao J J, Zhang Y R, Ni J P, Xie D T, Wang Z F, Gao M. Partial substitution of chemical fertilizer by organic materials changed the abundance, diversity, and activity of nirS-type denitrifying bacterial communities in a vegetable soil. Appl Soil Ecol, 2020, 152: 103589.
[15] Cai A D, Xu M G, Wang B R, Zhang W J, Liang G P, Hou E Q, Luo Y Q. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res, 2019, 189: 168-175.
[16] Zhou X, Lu Y H, Liao Y L, Zhu Q D, Cheng H D, Nie X, Cao W D, Nie J. Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system. J Integr Agric, 2019, 18: 2381-2392.
[17] Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl Soil Ecol, 2016, 99: 1-12.
[18] Tang Q, Ti C P, Xia L L, Xia Y Q, Wei Z J, Yan X Y. Ecosystem services of partial organic substitution for chemical fertilizer in a peri-urban zone in China. J Clean Prod, 2019, 224: 779-788.
[19] Wang X Q, Yang Y D, Zhao J, Nie J W, Zang H D, Zeng Z H, Olesen J E. Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat-summer maize system in the North China Plain. Eur J Agron, 2020, 119: 126118.
[20] 谢军红, 柴强, 李玲玲, 张仁陟, 王林林, 刘畅. 有机氮替代无机氮对旱作全膜双垄沟播玉米产量和水氮利用效率的影响. 应用生态学报, 2019, 30: 1199-1206.
Xie J H, Chai Q, Li L L, Zhang R Z, Wang L L, Liu C. Effects of the substitution of inorganic nitrogen by organic nitrogen fertilizer on maize grain yield and water and nitrogen use efficiency under plastic film fully mulched ridge-furrow in semi-arid area. Chin J Appl Ecol, 2019, 30: 1199-1206 (in Chinese with English abstract).
[21] Du Y D, Cui B J, Zhang Q, Wang Z, Sun J, Niu W Q. Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis. Catena, 2020, 193: 104617.
[22] Pan Y H, Guo J J, Fan L Y, Ji Y, Liu Z, Wang F, Pu Z X, Ling N, Shen Q R, Guo S W. The source-sink balance during the grain filling period facilitates rice production under organic fertilizer substitution. Eur J Agron, 2022, 134: 126468.
[23] Yu Q G, Ye J, Yang S N, Fu J R, Ma J W, Sun W C, Jiang L N, Wang Q. Effects of nitrogen application level on rice nutrient uptake and ammonia volatilization. Rice Sci, 2013, 20: 139-147.
[24] 温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51: 2136-2142.
Wen Y C, Zhang Y D, Yuan L, Li W, Li Y Q, Lin Z A, Zhao B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Sci Agric Sin, 2018, 51: 2136-2142 (in Chinese with English abstract).
[25] Xin X L, Qin S W, Zhang J B, Zhu A N, Yang W L, Zhang X F. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res, 2017, 208: 27-33.
[26] Li H, Feng W T, He X H, Zhu P, Gao H J, Sun N, Xu M G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J Integr Agric, 2017, 16: 937-946.
[27] Ding W C, Xu X P, He P, Ullah S, Zhang J J, Cui Z L, Zhou W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis. Field Crops Res, 2018, 227: 11-18.
[28] Xia L L, Lam S K, Yan X Y, Chen D L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ Sci Technol, 2017, 51: 7450-7457.
[29] Chen M M, Zhang S R, Liu L, Wu L P, Ding X D. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Tillage Res, 2021, 212: 105060.
[30] Lyu F L, Song J S, Giltrap D, Feng Y T, Yang X Y, Zhang S L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci Total Environ, 2020, 732: 139321.
[31] Luo L G, Itoh S, Zhang Q W, Yang S Q, Zhang Q Z, Yang Z L. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems. Environ Monit Assess, 2011, 177: 141-150.
[32] 叶静, 俞巧钢, 杨梢娜, 姜丽娜, 马军伟, 王强, 汪建妹, 孙万春, 符建荣. 有机无机肥配施对杭嘉湖地区稻田氮素利用率及环境效应的影响. 水土保持学报, 2011, 25(3): 87-91.
Ye J, Yu Q G, Yang S N, Jiang L N, Ma J W, Wang Q, Wang J M, Sun W C, Fu J R. Effect of combined application of organic manure and chemical fertilizers on N use efficiency in paddy fields and the environmental effects in hang Jiahu area. J Soil Water Conserv, 2011, 25(3): 87-91 (in Chinese with English abstract).
[33] Shang Q Y, Gao C M, Yang X X, Wu P P, Ling N, Shen Q R, Guo S W. Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Biol Fert Soils, 2014, 50: 715-725.
[34] Han J N, Wang L F, Zheng H Y, Pan X Y, Li H Y, Chen F J, Li X X. ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta, 2015, 242: 935-949.
[35] Nadeem F, Ahmad Z, Wang R F, Han J N, Shen Q, Chang F R, Diao X M, Zhang F S, Li X X. Foxtail millet [Setaria italica (L.) beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Front Plant Sci, 2018, 9: 205.
[36] Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B. A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet, 2006, 113: 1131-1146.
[37] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei C X, Zhou G S, Huo Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll, 2017, 63: 525-532.
[38] Wang Y, Wang J S, Dong E W, Liu Q X, Wang L G, Chen E Y, Jiao X Y, Diao X M. Foxtail millet [Setaria italica (L.) P. Beauv.] grown under nitrogen deficiency exhibits a lower folate contents. Front Nutr, 2023, 10: 1035739.
[39] Lyu X M, Zhang Y, Zhang Y X, Fan S J, Kong L G. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis. BMC Plant Biol, 2020, 20: 257.
[40] Zhang J, Zhuang M H, Shan N, Zhao Q, Li H, Wang L G. Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production systems. Sci Total Environ, 2019, 670: 1184-1189.
[41] Luan H A, Gao W, Huang S W, Tang J W, Li M Y, Zhang H Z, Chen X P. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system. Soil Tillage Res, 2019, 191: 185-196.
[42] Han J Q, Dong Y Y, Zhang M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Appl Soil Ecol, 2021, 165: 103966.
[43] Tounkara A, Clermont-Dauphin C, Affholder F, Ndiaye S, Masse D, Cournac L. Inorganic fertilizer use efficiency of millet crop increased with organic fertilizer application in rainfed agriculture on smallholdings in central Senegal. Agric Ecosyst Environ, 2020, 294: 106878.
[44] 董二伟, 王媛, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 施氮量对谷子产量、氮素利用及小米品质的影响. 中国农业科学, 2024, 57: 306-318.
Dong E W, Wang Y, Wang J S, Liu Q X, Huang X L, Jiao X Y. Effects of nitrogen fertilization levels on grain yield, plant nitrogen utilization characteristics and grain quality of foxtail millet. Sci Agric Sin, 2024, 57: 306-318 (in Chinese with English abstract).
[45] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. pp 264-268.
Lu R K. Analytical Methods for Soil and Agro-Chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 264-268 (in Chinese).
[46] Zhao F C, Jing L Q, Wang D C, Bao F, Lu W P, Wang G Y. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Sci Rep, 2018, 8: 6343.
[47] 赵利蓉, 马珂, 张丽光, 汤沙, 原向阳, 刁现民. 不同生态区谷子品种农艺性状和品质分析. 作物杂志, 2022, (2): 44-53.
Zhao L R, Ma K, Zhang L G, Tang S, Yuan X Y, Diao X M. Analysis of agronomic traits and quality of foxtail millet varieties in different ecological regions. Crops, 2022, (2): 44-53 (in Chinese with English abstract).
[48] Man J M, Yang Y, Zhang C Q, Zhou X H, Dong Y, Zhang F M, Liu Q Q, Wei C X. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. J Agric Food Chem, 2012, 60: 9332-9341.
[49] Shen R, Yang S P, Zhao G H, Shen Q, Diao X M. Identification of carotenoids in foxtail millet (Setaria italica) and the effects of cooking methods on carotenoid content. J Cereal Sci, 2015, 61: 86-93.
[50] Xiang N, Li C Y, Li G K, Yu Y T, Hu J G, Guo X B. Comparative evaluation on vitamin E and carotenoid accumulation in sweet corn (Zea mays L.) seedlings under temperature stress. J Agric Food Chem, 2019, 67: 9772-9781.
[51] Li J Q, Lu Y Y, Chen H L, Wang L X, Wang S H, Guo X B, Cheng X Z. Effect of photoperiod on vitamin E and carotenoid biosynthesis in mung bean (Vigna radiata) sprouts. Food Chem, 2021, 358: 129915.
[52] 晏娟, 沈其荣, 尹斌. 施氮量对氮高效水稻种质4007的氮素吸收、转运和利用的影响. 土壤学报, 2010, 47: 107-114.
Yan J, Shen Q R, Yin B. Effects of nitrogen application rate on uptake, translocation and use of nitrogen by rice germ plasm 4007 high in nitrogen use efficiency. Acta Pedol Sin, 2010, 47: 107-114 (in Chinese with English abstract).
[53] Moe K, Moh S M, Htwe A Z, Kajihara Y, Yamakawa T. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci, 2019, 26: 309-318.
[54] Akhtar K, Wang W Y, Ren G X, Khan A, Feng Y Z, Yang G H. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res, 2018, 182: 94-102.
[55] Nagar R, Goud V V, Kumar R, Kumar R. Effect of organic manures and crop residue management on physical, chemical and biological properties of soil under pigeon pea based intercropping system. Int J Farm Sci, 2016, 6: 101-113.
[56] Zhai L C, Wang Z B, Zhai Y C, Zhang L H, Zheng M J, Yao H P, Lyu L H, Shen H P, Zhang J T, Yao Y R, Jia X L. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res, 2022, 217: 105287.
[57] Anisuzzaman M, Rafii M Y, Jaafar N M, Izan Ramlee S, Ikbal M F, Haque M A. Effect of organic and inorganic fertilizer on the growth and yield components of traditional and improved rice (Oryza sativa L.) genotypes in Malaysia. Agronomy, 2021, 11: 1830.
[58] Garzón E, González-Andrés F, García-Martínez V M, de Paz J M. Mineralization and nutrient release of an organic fertilizer made by flour, meat, and crop residues in two vineyard soils with different pH levels. Commun Soil Sci Plant Anal, 2011, 42: 1485-1496.
[59] Cai Z C, Qin S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai- Hai Plain of China. Geoderma, 2006, 136: 708-715.
[60] Iqbal A, He L, Ali I, Ullah S, Khan A, Khan A, Akhtar K, Wei S Q, Zhao Q, Zhang J, Jiang L G. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS One, 2020, 15: e0238934.
[61] Gibbs P, Barraclough D. Gross mineralisation of nitrogen during the decomposition of leaf protein I (ribulose 1,5-diphosphate carboxylase) in the presence or absence of sucrose. Soil Biol Biochem, 1998, 30: 1821-1827.
[62] Yang Q H, Zhang P P, Qu Y, Gao X L, Liang J B, Yang P, Feng B L. Comparison of physicochemical properties and cooking edibility of waxy and non-waxy proso millet (Panicum miliaceum L.). Food Chem, 2018, 257: 271-278.
[63] 张婷, 王根平, 罗焱杰, 李琳, 高翔, 程汝宏, 师志刚, 董立, 张喜瑞, 杨伟红, 许立闪. 色差分析在优质小米选育中的应用. 中国农业科学, 2021, 54: 901-908.
Zhang T, Wang G P, Luo Y J, Li L, Gao X, Cheng R H, Shi Z G, Dong L, Zhang X R, Yang W H, Xu L S. Color difference analysis in the application of high-quality foxtail millet breeding. Sci Agric Sin, 2021, 54: 901-908 (in Chinese with English abstract).
[64] Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
[65] Saini R K, Nile S H, Park S W. Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int, 2015, 76: 735-750.
[66] Toishimanov M, Suleimenova Z, Myrzabayeva N, Dossimova Z, Shokan A, Kenenbayev S, Yessenbayeva G, Serikbayeva A. Effects of organic fertilizers on the quality, yield, and fatty acids of maize and soybean in southeast Kazakhstan. Sustainability, 2023, 16: 162.
[67] Sun M J, Chao Y, He W, Kang X R, Yang Q G, Wang H, Pan H, Lou Y H, Zhuge Y P. Changes in foxtail millet (Setaria italica L.) yield, quality, and soil microbiome after replacing chemical nitrogen fertilizers with organic fertilizers. Sustainability, 2022, 14: 16412.
[68] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响. 作物学报, 2024, 50: 1053-1064.
Lou F, Zuo Y P, Li M, Dai X M, Wang J, Han J L, Wu S, Li X L, Duan H J. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize. Acta Agron Sin, 2024, 50: 1053-1064 (in Chinese with English abstract).
[69] Zhou T Y, Chen L, Wang W L, Xu Y J, Zhang W Y, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level. J Sci Food Agric, 2022, 102: 1832-1841.
[70] Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem, 1999, 76: 629-637.
[71] Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties. J Cereal Sci, 2002, 36: 285-294.
[72] Gao L C, Bai W M, Xia M J, Wan C X, Wang M, Wang P K, Gao X L, Gao J F. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. Int J Biol Macromol, 2021, 179: 542-549.
[73] 胡雅杰, 薛建涛, 吴培, 李娈, 丛舒敏, 余恩唯, 倪嘉颢, 张洪程. 施氮量和直播密度对稻米食味品质和淀粉结构的影响. 中国粮油学报, 2022, 37(2): 7-13.
Hu Y J, Xue J T, Wu P, Li L, Cong S M, Yu E W, Ni J H, Zhang H C. Effects of nitrogen application and sowing density on eating quality and starch structure of direct-seeding rice. J Chin Cereals Oils Assoc, 2022, 37(2): 7-13 (in Chinese with English abstract).
[1] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[2] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[3] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
[4] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[5] 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173.
[6] 孟凡花, 刘敏, 沈傲, 刘炜. 脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J]. 作物学报, 2025, 51(1): 58-67.
[7] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[8] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[9] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[10] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[11] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[12] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[13] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[14] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[15] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!