作物学报 ›› 2025, Vol. 51 ›› Issue (1): 149-160.doi: 10.3724/SP.J.1006.2025.44085
王媛(), 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕()
WANG Yuan(), XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan()
摘要:
有机肥部分替代化肥是一种实现化肥减量的可持续农业生产措施。本研究于2020和2021连续2年以“沁黄2号”为供试材料, 设不施氮(CK)、常量化肥氮(NPK)、有机肥替代25%化肥氮(25% M)、有机肥替代50%化肥氮(50% M)、有机肥替代75%化肥氮(75% M)和有机肥替代100%化肥氮(100% M) 6个处理, 研究不同替代率对谷子产量构成和氮素吸收的影响, 并分析氮素吸收调控小米米色、糊化特性和类胡萝卜素组分的效应, 明确谷子生产中有机肥最佳替代率。结果表明, 2年中较低的有机肥替代化肥氮率显著提高了谷子植株氮素累积, 但随着替代率的持续增加, 植株氮素累积量呈降低趋势, 最终影响谷子产量和小米品质。2020年, 25% M处理显著提高了谷子地上部氮素累积量, 较NPK处理提高9.6%; 2021年, 25% M处理谷子地上部氮素累积量、生物量、穗粒数和产量达到最高, 较NPK处理分别提高6.1%、12.0%、15.4%和12.0%。50% M处理显著影响了小米的米色、糊化特征和类胡萝卜素含量, 与NPK相比, 小米籽粒红绿值、橘色值、支链淀粉含量、总淀粉含量、小米糊化最终黏度、叶黄素含量、玉米黄质含量和黄色素含量的增幅分别可达6.0%、6.0%、7.4%、4.3%、7.8%、20.7%、17.4%和2.8%。但有机肥完全替代化肥降低了谷子地上部氮素吸收、地上部生物量、穗粒数及谷子产量, 也抑制了小米叶黄素和玉米黄质含量的提升。2年均表现出谷子地上部氮吸收量与小米单粒重、直链淀粉含量和小米糊化回升值呈显著的负相关。且2021年谷子地上部氮吸收量还与小米总淀粉含量、蛋白质含量、小米粉糊化峰值黏度和小米黄色素含量呈显著的负相关, 与小米糊化峰谷黏度呈显著的正相关。综上, 施氮总量120 kg hm-2下, 有机肥替代25%~50%化肥氮能通过促进植株氮素的吸收, 实现产量、米色、蒸煮特性及类胡萝卜素的协同提升, 为谷子化肥减量和提质增效生产提供技术支撑。
[1] | 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019, 52: 3943-3949. |
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019, 52: 3943-3949 (in Chinese with English abstract). | |
[2] | Mohamed T K, Issoufou A, Zhou H. Antioxidant activity of fractionated foxtail millet protein hydrolysate. Int Food Res J, 2012, 19: 207-213. |
[3] | 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2022. pp 382-389. |
National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2022. pp 382-389 (in Chinese). | |
[4] | Yang S H, Peng S Z, Xu J Z, Hou H J, Gao X L. Nitrogen loss from paddy field with different water and nitrogen managements in Taihu lake region of China. Commun Soil Sci Plant Anal, 2013, 44: 2393-2407. |
[5] | Liu B, Wang X Z, Ma L, Chadwick D, Chen X P. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: a meta-analysis. Environ Pollut, 2021, 269: 116143. |
[6] | Shi Y L, Liu X R, Zhang Q W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. Sci Total Environ, 2019, 686: 199-211. |
[7] | Cui J X, Yan P, Wang X L, Yang J, Li Z J, Yang X L, Sui P, Chen Y Q. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China Plain. J Clean Prod, 2018, 193: 524-532. |
[8] | Zhang W F, Cao G X, Li X L, Zhang H Y, Wang C, Liu Q Q, Chen X P, Cui Z L, Shen J B, Jiang R F, Mi G H, Miao Y X, Zhang F S, Dou Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537: 671-674. |
[9] | Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, Ma W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, Sun Y X, Peng X L, Zhang J W, He M R, Zhu Y J, Xue J Q, Wang G L, Wu L, An N, Wu L Q, Ma L, Zhang W F, Zhang F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489. |
[10] | Li P F, Lu J W, Wang Y, Wang S, Hussain S, Ren T, Cong R H, Li X K. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agric Ecosyst Environ, 2018, 251: 78-87. |
[11] | Liu T Q, Fan D J, Zhang X X, Chen J, Li C F, Cao C G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res, 2015, 184: 80-90. |
[12] | Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47. |
[13] | Zhou B Y, Sun X F, Wang D, Ding Z S, Li C F, Ma W, Zhao M. Integrated agronomic practice increases maize grain yield and nitrogen use efficiency under various soil fertility conditions. Crop J, 2019, 7: 527-538. |
[14] | Huang R, Wang Y Y, Liu J, Gao J J, Zhang Y R, Ni J P, Xie D T, Wang Z F, Gao M. Partial substitution of chemical fertilizer by organic materials changed the abundance, diversity, and activity of nirS-type denitrifying bacterial communities in a vegetable soil. Appl Soil Ecol, 2020, 152: 103589. |
[15] | Cai A D, Xu M G, Wang B R, Zhang W J, Liang G P, Hou E Q, Luo Y Q. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res, 2019, 189: 168-175. |
[16] | Zhou X, Lu Y H, Liao Y L, Zhu Q D, Cheng H D, Nie X, Cao W D, Nie J. Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system. J Integr Agric, 2019, 18: 2381-2392. |
[17] | Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl Soil Ecol, 2016, 99: 1-12. |
[18] | Tang Q, Ti C P, Xia L L, Xia Y Q, Wei Z J, Yan X Y. Ecosystem services of partial organic substitution for chemical fertilizer in a peri-urban zone in China. J Clean Prod, 2019, 224: 779-788. |
[19] | Wang X Q, Yang Y D, Zhao J, Nie J W, Zang H D, Zeng Z H, Olesen J E. Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat-summer maize system in the North China Plain. Eur J Agron, 2020, 119: 126118. |
[20] | 谢军红, 柴强, 李玲玲, 张仁陟, 王林林, 刘畅. 有机氮替代无机氮对旱作全膜双垄沟播玉米产量和水氮利用效率的影响. 应用生态学报, 2019, 30: 1199-1206. |
Xie J H, Chai Q, Li L L, Zhang R Z, Wang L L, Liu C. Effects of the substitution of inorganic nitrogen by organic nitrogen fertilizer on maize grain yield and water and nitrogen use efficiency under plastic film fully mulched ridge-furrow in semi-arid area. Chin J Appl Ecol, 2019, 30: 1199-1206 (in Chinese with English abstract). | |
[21] | Du Y D, Cui B J, Zhang Q, Wang Z, Sun J, Niu W Q. Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis. Catena, 2020, 193: 104617. |
[22] | Pan Y H, Guo J J, Fan L Y, Ji Y, Liu Z, Wang F, Pu Z X, Ling N, Shen Q R, Guo S W. The source-sink balance during the grain filling period facilitates rice production under organic fertilizer substitution. Eur J Agron, 2022, 134: 126468. |
[23] | Yu Q G, Ye J, Yang S N, Fu J R, Ma J W, Sun W C, Jiang L N, Wang Q. Effects of nitrogen application level on rice nutrient uptake and ammonia volatilization. Rice Sci, 2013, 20: 139-147. |
[24] | 温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51: 2136-2142. |
Wen Y C, Zhang Y D, Yuan L, Li W, Li Y Q, Lin Z A, Zhao B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Sci Agric Sin, 2018, 51: 2136-2142 (in Chinese with English abstract). | |
[25] | Xin X L, Qin S W, Zhang J B, Zhu A N, Yang W L, Zhang X F. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crops Res, 2017, 208: 27-33. |
[26] | Li H, Feng W T, He X H, Zhu P, Gao H J, Sun N, Xu M G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J Integr Agric, 2017, 16: 937-946. |
[27] | Ding W C, Xu X P, He P, Ullah S, Zhang J J, Cui Z L, Zhou W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis. Field Crops Res, 2018, 227: 11-18. |
[28] | Xia L L, Lam S K, Yan X Y, Chen D L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ Sci Technol, 2017, 51: 7450-7457. |
[29] | Chen M M, Zhang S R, Liu L, Wu L P, Ding X D. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Tillage Res, 2021, 212: 105060. |
[30] | Lyu F L, Song J S, Giltrap D, Feng Y T, Yang X Y, Zhang S L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci Total Environ, 2020, 732: 139321. |
[31] | Luo L G, Itoh S, Zhang Q W, Yang S Q, Zhang Q Z, Yang Z L. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems. Environ Monit Assess, 2011, 177: 141-150. |
[32] | 叶静, 俞巧钢, 杨梢娜, 姜丽娜, 马军伟, 王强, 汪建妹, 孙万春, 符建荣. 有机无机肥配施对杭嘉湖地区稻田氮素利用率及环境效应的影响. 水土保持学报, 2011, 25(3): 87-91. |
Ye J, Yu Q G, Yang S N, Jiang L N, Ma J W, Wang Q, Wang J M, Sun W C, Fu J R. Effect of combined application of organic manure and chemical fertilizers on N use efficiency in paddy fields and the environmental effects in hang Jiahu area. J Soil Water Conserv, 2011, 25(3): 87-91 (in Chinese with English abstract). | |
[33] | Shang Q Y, Gao C M, Yang X X, Wu P P, Ling N, Shen Q R, Guo S W. Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Biol Fert Soils, 2014, 50: 715-725. |
[34] | Han J N, Wang L F, Zheng H Y, Pan X Y, Li H Y, Chen F J, Li X X. ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta, 2015, 242: 935-949. |
[35] | Nadeem F, Ahmad Z, Wang R F, Han J N, Shen Q, Chang F R, Diao X M, Zhang F S, Li X X. Foxtail millet [Setaria italica (L.) beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Front Plant Sci, 2018, 9: 205. |
[36] | Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B. A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet, 2006, 113: 1131-1146. |
[37] | Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei C X, Zhou G S, Huo Z Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll, 2017, 63: 525-532. |
[38] | Wang Y, Wang J S, Dong E W, Liu Q X, Wang L G, Chen E Y, Jiao X Y, Diao X M. Foxtail millet [Setaria italica (L.) P. Beauv.] grown under nitrogen deficiency exhibits a lower folate contents. Front Nutr, 2023, 10: 1035739. |
[39] | Lyu X M, Zhang Y, Zhang Y X, Fan S J, Kong L G. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis. BMC Plant Biol, 2020, 20: 257. |
[40] | Zhang J, Zhuang M H, Shan N, Zhao Q, Li H, Wang L G. Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production systems. Sci Total Environ, 2019, 670: 1184-1189. |
[41] | Luan H A, Gao W, Huang S W, Tang J W, Li M Y, Zhang H Z, Chen X P. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system. Soil Tillage Res, 2019, 191: 185-196. |
[42] | Han J Q, Dong Y Y, Zhang M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Appl Soil Ecol, 2021, 165: 103966. |
[43] | Tounkara A, Clermont-Dauphin C, Affholder F, Ndiaye S, Masse D, Cournac L. Inorganic fertilizer use efficiency of millet crop increased with organic fertilizer application in rainfed agriculture on smallholdings in central Senegal. Agric Ecosyst Environ, 2020, 294: 106878. |
[44] | 董二伟, 王媛, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 施氮量对谷子产量、氮素利用及小米品质的影响. 中国农业科学, 2024, 57: 306-318. |
Dong E W, Wang Y, Wang J S, Liu Q X, Huang X L, Jiao X Y. Effects of nitrogen fertilization levels on grain yield, plant nitrogen utilization characteristics and grain quality of foxtail millet. Sci Agric Sin, 2024, 57: 306-318 (in Chinese with English abstract). | |
[45] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. pp 264-268. |
Lu R K. Analytical Methods for Soil and Agro-Chemistry. Beijing: China Agricultural Science and Technology Press, 1999. pp 264-268 (in Chinese). | |
[46] | Zhao F C, Jing L Q, Wang D C, Bao F, Lu W P, Wang G Y. Grain and starch granule morphology in superior and inferior kernels of maize in response to nitrogen. Sci Rep, 2018, 8: 6343. |
[47] | 赵利蓉, 马珂, 张丽光, 汤沙, 原向阳, 刁现民. 不同生态区谷子品种农艺性状和品质分析. 作物杂志, 2022, (2): 44-53. |
Zhao L R, Ma K, Zhang L G, Tang S, Yuan X Y, Diao X M. Analysis of agronomic traits and quality of foxtail millet varieties in different ecological regions. Crops, 2022, (2): 44-53 (in Chinese with English abstract). | |
[48] | Man J M, Yang Y, Zhang C Q, Zhou X H, Dong Y, Zhang F M, Liu Q Q, Wei C X. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. J Agric Food Chem, 2012, 60: 9332-9341. |
[49] | Shen R, Yang S P, Zhao G H, Shen Q, Diao X M. Identification of carotenoids in foxtail millet (Setaria italica) and the effects of cooking methods on carotenoid content. J Cereal Sci, 2015, 61: 86-93. |
[50] | Xiang N, Li C Y, Li G K, Yu Y T, Hu J G, Guo X B. Comparative evaluation on vitamin E and carotenoid accumulation in sweet corn (Zea mays L.) seedlings under temperature stress. J Agric Food Chem, 2019, 67: 9772-9781. |
[51] | Li J Q, Lu Y Y, Chen H L, Wang L X, Wang S H, Guo X B, Cheng X Z. Effect of photoperiod on vitamin E and carotenoid biosynthesis in mung bean (Vigna radiata) sprouts. Food Chem, 2021, 358: 129915. |
[52] | 晏娟, 沈其荣, 尹斌. 施氮量对氮高效水稻种质4007的氮素吸收、转运和利用的影响. 土壤学报, 2010, 47: 107-114. |
Yan J, Shen Q R, Yin B. Effects of nitrogen application rate on uptake, translocation and use of nitrogen by rice germ plasm 4007 high in nitrogen use efficiency. Acta Pedol Sin, 2010, 47: 107-114 (in Chinese with English abstract). | |
[53] | Moe K, Moh S M, Htwe A Z, Kajihara Y, Yamakawa T. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci, 2019, 26: 309-318. |
[54] | Akhtar K, Wang W Y, Ren G X, Khan A, Feng Y Z, Yang G H. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res, 2018, 182: 94-102. |
[55] | Nagar R, Goud V V, Kumar R, Kumar R. Effect of organic manures and crop residue management on physical, chemical and biological properties of soil under pigeon pea based intercropping system. Int J Farm Sci, 2016, 6: 101-113. |
[56] | Zhai L C, Wang Z B, Zhai Y C, Zhang L H, Zheng M J, Yao H P, Lyu L H, Shen H P, Zhang J T, Yao Y R, Jia X L. Partial substitution of chemical fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res, 2022, 217: 105287. |
[57] | Anisuzzaman M, Rafii M Y, Jaafar N M, Izan Ramlee S, Ikbal M F, Haque M A. Effect of organic and inorganic fertilizer on the growth and yield components of traditional and improved rice (Oryza sativa L.) genotypes in Malaysia. Agronomy, 2021, 11: 1830. |
[58] | Garzón E, González-Andrés F, García-Martínez V M, de Paz J M. Mineralization and nutrient release of an organic fertilizer made by flour, meat, and crop residues in two vineyard soils with different pH levels. Commun Soil Sci Plant Anal, 2011, 42: 1485-1496. |
[59] | Cai Z C, Qin S W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai- Hai Plain of China. Geoderma, 2006, 136: 708-715. |
[60] | Iqbal A, He L, Ali I, Ullah S, Khan A, Khan A, Akhtar K, Wei S Q, Zhao Q, Zhang J, Jiang L G. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS One, 2020, 15: e0238934. |
[61] | Gibbs P, Barraclough D. Gross mineralisation of nitrogen during the decomposition of leaf protein I (ribulose 1,5-diphosphate carboxylase) in the presence or absence of sucrose. Soil Biol Biochem, 1998, 30: 1821-1827. |
[62] | Yang Q H, Zhang P P, Qu Y, Gao X L, Liang J B, Yang P, Feng B L. Comparison of physicochemical properties and cooking edibility of waxy and non-waxy proso millet (Panicum miliaceum L.). Food Chem, 2018, 257: 271-278. |
[63] | 张婷, 王根平, 罗焱杰, 李琳, 高翔, 程汝宏, 师志刚, 董立, 张喜瑞, 杨伟红, 许立闪. 色差分析在优质小米选育中的应用. 中国农业科学, 2021, 54: 901-908. |
Zhang T, Wang G P, Luo Y J, Li L, Gao X, Cheng R H, Shi Z G, Dong L, Zhang X R, Yang W H, Xu L S. Color difference analysis in the application of high-quality foxtail millet breeding. Sci Agric Sin, 2021, 54: 901-908 (in Chinese with English abstract). | |
[64] | Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331. |
[65] | Saini R K, Nile S H, Park S W. Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int, 2015, 76: 735-750. |
[66] | Toishimanov M, Suleimenova Z, Myrzabayeva N, Dossimova Z, Shokan A, Kenenbayev S, Yessenbayeva G, Serikbayeva A. Effects of organic fertilizers on the quality, yield, and fatty acids of maize and soybean in southeast Kazakhstan. Sustainability, 2023, 16: 162. |
[67] | Sun M J, Chao Y, He W, Kang X R, Yang Q G, Wang H, Pan H, Lou Y H, Zhuge Y P. Changes in foxtail millet (Setaria italica L.) yield, quality, and soil microbiome after replacing chemical nitrogen fertilizers with organic fertilizers. Sustainability, 2022, 14: 16412. |
[68] | 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响. 作物学报, 2024, 50: 1053-1064. |
Lou F, Zuo Y P, Li M, Dai X M, Wang J, Han J L, Wu S, Li X L, Duan H J. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize. Acta Agron Sin, 2024, 50: 1053-1064 (in Chinese with English abstract). | |
[69] | Zhou T Y, Chen L, Wang W L, Xu Y J, Zhang W Y, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level. J Sci Food Agric, 2022, 102: 1832-1841. |
[70] | Jane J, Chen Y Y, Lee L F, McPherson A E, Wong K S, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem, 1999, 76: 629-637. |
[71] | Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties. J Cereal Sci, 2002, 36: 285-294. |
[72] | Gao L C, Bai W M, Xia M J, Wan C X, Wang M, Wang P K, Gao X L, Gao J F. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. Int J Biol Macromol, 2021, 179: 542-549. |
[73] | 胡雅杰, 薛建涛, 吴培, 李娈, 丛舒敏, 余恩唯, 倪嘉颢, 张洪程. 施氮量和直播密度对稻米食味品质和淀粉结构的影响. 中国粮油学报, 2022, 37(2): 7-13. |
Hu Y J, Xue J T, Wu P, Li L, Cong S M, Yu E W, Ni J H, Zhang H C. Effects of nitrogen application and sowing density on eating quality and starch structure of direct-seeding rice. J Chin Cereals Oils Assoc, 2022, 37(2): 7-13 (in Chinese with English abstract). |
[1] | 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188. |
[2] | 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246. |
[3] | 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232. |
[4] | 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43. |
[5] | 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173. |
[6] | 孟凡花, 刘敏, 沈傲, 刘炜. 脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J]. 作物学报, 2025, 51(1): 58-67. |
[7] | 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220. |
[8] | 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334. |
[9] | 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407. |
[10] | 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346. |
[11] | 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218. |
[12] | 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236. |
[13] | 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424. |
[14] | 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395. |
[15] | 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382. |
|