欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 207-220.doi: 10.3724/SP.J.1006.2025.41025

• 耕作栽培·生理生化 • 上一篇    下一篇

减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响

张军1,2(), 胡川1, 周起晖1, 任开明1, 董誓言1, 刘傲寒1, 吴金芝1, 黄明1,*(), 李友军1,*()   

  1. 1河南科技大学农学院, 河南洛阳 471023
    2商洛学院生物医药与食品工程学院, 陕西商洛 726000
  • 收稿日期:2024-03-18 接受日期:2024-08-15 出版日期:2025-01-12 网络出版日期:2024-08-26
  • 通讯作者: 黄明,李友军
  • 作者简介:E-mail: bjzhangjun@126.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0300700);河南省科技攻关项目(222102110087);河南省科技攻关项目(232102111009);河南省旱地绿色智慧农业特色骨干学科群建设项目(17100001)

Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat

ZHANG Jun1,2(), HU Chuan1, ZHOU Qi-Hui1, REN Kai-Ming1, DONG Shi-Yan1, LIU Ao-Han1, WU Jin-Zhi1, HUANG Ming1,*(), LI You-Jun1,*()   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
    2College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo 726000, Shaanxi, China
  • Received:2024-03-18 Accepted:2024-08-15 Published:2025-01-12 Published online:2024-08-26
  • Contact: HUANG Ming,LI You-Jun
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300700);Science and Technology Research Project of Henan(222102110087);Science and Technology Research Project of Henan(232102111009);Dryland Green Wisdom Agriculture Key Group Construction Project of Henan(17100001)

摘要:

探究减氮及有机肥替代对旱地冬小麦产量形成和经济效益的影响, 为实施化肥减量和有机肥替代提供理论和技术依据。2021—2023年度, 基于2019年开始设置在黄土高原和黄淮海平原交汇处典型旱地冬小麦产区(河南洛宁和河南孟津)的定位试验, 研究了冬小麦干物质积累转运分配特性、氮肥干物质生产效率、产量及其构成要素和经济效益。试验设置不施氮肥(NN)、农户施氮(FN)、基于FN减氮20% (RN)和RN基础上20%氮肥用有机肥替代(OSN) 4个处理。结果表明: (1) 与FN相比, RN处理降低了小麦拔节期、开花期和成熟期的干物质积累量、花前干物质转运量以及成熟期茎鞘、穂轴+颖壳和籽粒的干物质分配量, 但对籽粒产量无显著影响。(2) 与FN和RN相比, OSN处理提高了各生育阶段的氮肥干物质生产效率, 从而增加了拔节期、开花期、成熟期的干物质积累量, 而且提高了花前干物质转运量、花后干物质积累量、花后干物质积累量对籽粒的贡献率, 进而使成熟期地上部各器官的干物质分配量均得到显著提高, 最终使籽粒产量分别显著增加15.03%和17.12%, 经济效益增加3.84%和4.23%。(3) 小麦产量与花前干物质转运量、花后干物质积累量和花后干物质积累量对籽粒的贡献率呈极显著正相关, 与花前干物质转运量对籽粒的贡献率呈极显著负相关。综上, 在雨养条件下, 小麦季施氮量为172 kg hm-2 (夏休闲-冬小麦)和192 kg hm-2 (夏玉米-冬小麦)的基础上, OSN处理提高了氮肥干物质生产效率, 增加各生育时期的干物质积累量, 其花前干物质转运量和花后干物质积累量的协同增加使其获得了最高产量, 实现增产增收, 适宜在产量水平为5000 kg hm-2的雨养旱地冬小麦高产栽培中应用。

关键词: 旱地冬小麦, 减氮, 有机肥替代, 干物质积累转运, 产量, 经济效益

Abstract:

The effects of reducing chemical nitrogen and organic fertilizer substitution on dryland winter wheat yield formation and economic benefit were explored to provide a theoretical and technical basis for the implementation of chemical fertilizer reduction and organic fertilizer substitution. A field experiment with four treatments: no nitrogen application (NN), farmer nitrogen application (FN), 20% reduction of N fertilizer based on FN (RN), and organic fertilizer substituting 20% nitrogen of RN (OSN)—was conducted at Mengjin and Luoning, Henan province, typical dryland wheat production system at the intersection of the Loess Plateau and the Huang-Huai-Hai Plain, from 2019 to 2023. The effects of different treatments on dry matter accumulation, translocation, distribution, applied nitrogen dry matter productivity, yield and its components, and economic benefit were analyzed. The results showed the following: (1) Compared with FN, RN reduced dry matter accumulation of wheat at jointing, anthesis, and maturity stages, as well as pre-anthesis dry matter translocation and dry matter distribution in the stem, spike axis+glume, and grain at maturity, but had no significant effect on grain yield. (2) Compared with FN and RN, OSN increased applied nitrogen dry matter productivity at each growth stage, significantly enhancing dry matter accumulation at jointing, anthesis, and maturity stages. OSN also increased pre-anthesis dry matter translocation, post-anthesis dry matter accumulation, and the contribution rate of post-anthesis dry matter accumulation to grain. This led to increased dry matter distribution in all aboveground organs at maturity, resulting in a significant grain yield increase of 15.03% and 17.12%, and an economic benefit increase of 3.84% and 4.23%, respectively. (3) Grain yield was significantly positively correlated with pre-anthesis dry matter translocation, post-anthesis dry matter accumulation, and the contribution rate of post-anthesis dry matter accumulation to grain, and significantly negatively correlated with the contribution rate of pre-anthesis dry matter translocation to grain. In this research, based on nitrogen application amounts of 172 kg hm-2 (summer fallow-winter wheat) and 192 kg hm-2 (summer maize-winter wheat) during the wheat season under rain-fed conditions, the OSN treatment improved applied nitrogen dry matter productivity and increased dry matter accumulation at each growth stage. The synergistic increase in pre-anthesis dry matter translocation and post-anthesis dry matter accumulation allowed OSN to achieve the highest yield, making it an optimal fertilizer management practice for high-efficiency and sustainable production of rain-fed dryland winter wheat with a yield level of 5000 kg hm-2.

Key words: dryland winter wheat, reduced chemical nitrogen, organic fertilizer substitution, dry matter accumulation and translocation, yield, economic benefit

表1

小麦主要生育时期干物质积累量的方差分析"

方差分析
ANOVA
干物质积累量 Dry matter accumulation (kg hm-2)
拔节期Jointing 开花期 Anthesis 成熟期Maturity
处理 Treatment (T) 14.95** 166.57** 335.57**
地点 Site (S) 2.43 16.08 4713.86**
年度 Year (Y) 111.95** 8.78* 15.07**
T×S 0.97 2.07 11.08
S×Y 308.66** 0.61 0.01
T×Y 100.45** 2.87 2.08
T×S×Y 132.57** 0.16 0.06

图1

不同处理对冬小麦不同生育时期干物质积累量的影响 NN为不施氮肥; FN为农户施氮; RN为基于FN减氮20%; OSN为RN基础上20%氮肥用有机肥替代。不同小写字母表示同一生育时期不同处理间差异显著(P < 0.05)。** 表示不同生育时期间在0.01概率水平差异显著。"

表2

不同处理对氮肥干物质生产效率的影响"

试验点
Site
年度
Year
处理
Treatment
干物质积累量 Dry matter accumulation (kg hm-2)
拔节期 Jointing 开花期 Anthesis 成熟期 Maturity
洛宁
Luoning
2021-2022 FN 2.94 b 13.80 b 20.29 b
RN 2.23 c 12.35 b 20.03 b
OSN 5.87 a 17.69 a 29.50 a
2022-2023 FN 3.12 b 13.75 b 19.83 b
RN 2.30 c 11.74 c 18.66 b
OSN 4.80 a 20.54 a 32.08 a
孟津
Mengjin
2021-2022 FN 2.32 b 12.54 b 18.65 b
RN 1.97 c 11.91 b 18.92 b
OSN 5.35 a 16.89 a 27.96 a
2022-2023 FN 7.22 b 12.39 b 18.28 b
孟津
Mengjin
2022-2023 RN 2.23 c 10.94 c 17.98 b
OSN 10.45 a 18.22 a 29.54 a
方差分析
ANOVA
处理 Treatment (T) 12.77 21.39* 53.30*
地点 Site (S) 0.56 12.26 351.35*
年度 Year (Y) 534.30** 1.21 0.19
T×S 0.80 1.65 2.39
S×Y 736.80** 0.84 0.04
T×Y 112.95** 5.77* 6.37**
T×S×Y 175.40** 0.37 0.31

表3

不同处理对花前干物质转运量、花后干物质积累量及其对籽粒贡献率的影响"

试验点
Site
年度
Year
处理
Treatment
花前干物质Pre-anthesis dry matter 花后干物质Post-anthesis dry matter
转运量
Translocation
amount (kg hm-2)
对籽粒贡献率
Contribution rate
to grain (%)
积累量
Accumulation
amount (kg hm-2)
对籽粒贡献率
Contribution rate
to grain (%)
洛宁
Luoning
2021-2022 NN 1370 c 38.44 a 2193 c 61.56 c
FN 1836 a 35.46 b 3343 b 64.54 b
RN 1733 b 33.75 b 3310 b 66.25 ab
OSN 1860 a 31.54 c 4047 a 68.46 a
2022-2023 NN 1377 d 40.29 a 2041 c 59.71 d
FN 1892 b 37.46 b 3159 b 62.54 c
RN 1721 c 35.21 c 3167 b 64.79 b
OSN 1976 a 33.56 d 3912 a 66.44 a
孟津
Mengjin
2021-2022 NN 1499 c 38.21 a 2423 c 61.79 c
FN 1942 a 35.17 b 3580 b 64.83 b
RN 1822 b 33.64 b 3593 b 66.36 ab
OSN 1975 a 31.37 c 4322 a 68.63 a
2022-2023 NN 1373 c 37.36 a 2302 c 62.64 d
FN 1782 a 34.08 b 3447 b 65.92 c
RN 1618 b 31.45 c 3527 b 68.55 b
OSN 1835 a 30.05 c 4271 a 69.95 a
方差分析
ANOVA
处理 Treatment (T) 137.13** 247.85** 2409.64** 233.76**
地点 Site (S) 0.02 1.09 47.86 0.98
年度 Year (Y) 34.20** 2.51 86.44** 1.65
T×S 1.82 0.73 1.18 0.21
S×Y 102.39** 65.19** 7.80** 45.91**
T×Y 3.91* 0.88 1.24 0.62
T×S×Y 1.73 0.29 1.11 0.23

表4

不同处理对成熟期干物质分配量和比例的影响"

试验点
Site
年度
Year
处理
Treatment
叶片
Leaf
茎鞘
Stem
穂轴+颖壳
Spike axis+glume
籽粒
Grain

Amount
(kg hm-2)
比例
Rate
(%)

Amount
(kg hm-2)
比例
Rate
(%)

Amount
(kg hm-2)
比例
Rate
(%)

Amount
(kg hm-2)
比例
Rate
(%)
洛宁
Luoning
2021-2022 NN 1158 d 13.59 a 2571 c 30.19 b 1225 c 14.38 a 3563 c 41.84 d
FN 1524 b 12.69 b 3642 a 30.33 a 1663 b 13.85 b 5179 b 43.13 c
RN 1454 c 12.58 b 3354 b 29.01 c 1620 b 14.01 ab 5133 b 44.40 b
OSN 1622 a 12.47 c 3699 a 28.45 d 1786 a 13.73 b 5895 a 45.34 a
2022-2023 NN 1048 c 12.79 ab 2505 d 30.57 a 1223 c 14.92 a 3418 c 41.72 d
FN 1436 b 12.37 b 3409 b 29.38 b 1707 a 14.71 ab 5052 b 43.53 c
RN 1482 b 13.44 b 3119 c 28.28 d 1540 b 13.96 bc 4889 b 44.32 b
OSN 1663 a 12.72 ab 3792 a 29.01 c 1727 a 13.21 c 5888 a 45.05 a
孟津
Mengjin
2021-2022 NN 977 d 11.08 c 2546 d 28.88 c 1370 d 15.54 a 3922 c 44.50 c
FN 1320 c 10.65 d 3738 b 30.16 a 1813 b 14.63 b 5523 b 44.56 c
RN 1390 b 11.52 a 3557 c 29.47 b 1706 c 14.14 c 5415 b 44.87 b
OSN 1522 a 11.17 b 3887 a 28.53 d 1918 a 14.08 c 6297 a 46.22 a
2022-2023 NN 995 d 11.70 c 2519 d 29.63 b 1314 d 15.45 d 3675 c 43.22 d
FN 1409 c 11.73 c 3612 b 30.07 a 1763 b 14.68 c 5228 b 43.52 c
RN 1454 b 12.54 b 3380 c 29.15 c 1616 c 13.94 b 5145 b 44.37 b
OSN 1782 a 13.12 a 3887 a 28.62 d 1808 a 13.31 a 6106 a 44.95 a
方差分析
ANOVA
处理 Treatment (T) 35.88** 1.09 87.52** 5.11 127.92** 7.10 959.08** 73.01**
地点 Site (S) 0.96 3.82 57.35 0.38 15.26 2.58 20.95 2.97
年度 Year (Y) 44.72** 91.39** 21.04** 5.61* 90.75** 0.09 24.70** 564.66**
T×S 2.37 2.77 5.31 7.69 0.68 4.74 0.74 14.79*
S×Y 151.13** 92.18** 0.65 80.98** 24.08** 11.49** 2.39 517.52**
T×Y 54.58** 19.92** 7.57** 305.67** 15.11** 12.28** 0.71 34.57**
T×S×Y 11.99** 7.95** 1.00 72.08** 2.66 1.29 0.21 24.70**

表5

冬小麦产量、产量构成因素和收获指数的方差分析"

变异来源
Variation source
产量
Grain yield
穂数
Spike number
穗粒数
Grain number per spike
千粒重
1000-grain weight
收获指数
Harvest index
处理 Treatment (T) 806.77** 48.84** 26.81** 19.59* 22.15*
地点 Site (S) 22.91 51.63 0.57 0.23 2.16
年度 Year (Y) 19.27** 116.68** 186.97** 6.61* 3.39
T×S 4.66 0.85 0.66 0.25 2.26
S×Y 2.21 2.26 16.49** 6.17* 2.36
T×Y 0.76 2.04 11.71** 0.61 0.62
T×S×Y 0.09 2.40 8.07** 1.99 0.15

图2

不同处理对产量、产量构成因素和收获指数的影响 缩写同图1。小写字母依次为NN、FN、RN和OSN多重比较结果, 不同小写字母表示不同处理间差异显著。"

图3

小麦产量及其构成要素与干物质积累转运间的相关性 * 和** 分别表示0.05和0.01概率水平相关。X1~X5依次为产量、穂数、穗粒数、千粒重和收获指数; X6~X12依次为拔节期干物质积累量、开花期干物质积累量、成熟期干物质积累量、花前干物质转运量、花前干物质对籽粒的贡献率、花后干物质积累量和花后干物质对籽粒的贡献率。"

表6

不同处理对经济效益的影响"

地点
Site
处理
Treat-
ment
2021-2022 2022-2023 肥料投入占
总投入比例
Fertilizer input as percentage of input (%)
产值
Output (Yuan hm-2)
肥料投入
Fertilizer cost
(Yuan hm-2)
经济效益
Economic benefit
(Yuan hm-2)
产投比
Ratio of output to input
产值
Output
(Yuan hm-2)
肥料投入
Fertilizer
cost
(Yuan hm-2)
经济效益
Economic benefit
(Yuan hm-2)
产投比
Ratio of output to input
洛宁
Luoning
NN 9204 c 1323 3156 b 1.52 c 9027 c 1323 2979 c 1.49 c 21.88
FN 13,263 b 2370 6168 a 1.87 a 12,961 b 2370 5866 ab 1.83 a 33.40
RN 13,148 b 2161 6262 a 1.91 a 12,542 b 2161 5656 b 1.82 a 31.38
OSN 15,088 a 4057 6306 a 1.72 b 14,979 a 4057 6197 a 1.71 b 46.20
孟津
Mengjin
NN 9932 c 1323 3884 b 1.64 c 9448 c 1323 3400 b 1.56 c 21.88
FN 14,170 b 2492 6953 a 1.96 a 13,442 b 2492 6225 a 1.86 a 34.53
RN 13,970 b 2258 6987 a 2.00 a 13,229 b 2258 6246 a 1.89 a 32.34
OSN 16,156 a 4375 7056 a 1.78 b 15,699 a 4375 6599 a 1.73 b 48.08
[1] 王贵荣. 国家统计局农村司司长王贵荣解读粮食生产情况. 北京: 国家统计局, 2023 [2023-12-11]. https://www.stats.gov.cn/sj/sjjd/202312/t20231211_1945418.html.
Wang G R. Director of the Rural Department of the National Bureau of Statistics, interprets the situation of grain production. Beijing: National Bureau of Statistics, 2023 [2023-12-11]. https://www.stats.gov.cn/sj/sjjd/202312/t20231211_1945418.html.
[2] 杨子光, 郭利磊, 张珂, 孙军伟, 孟丽梅. 黄淮旱地冬小麦主要性状演变规律研究. 作物杂志, 2020, (4): 30-36.
Yang Z G, Guo L L, Zhang K, Sun J W, Meng L M. Development trend of the major traits of winter wheat varieties (lines) in the Huang-Huai Dryland. Crops, 2020, (4): 30-36 (in Chinese with English abstract).
[3] 马小龙, 王朝辉, 曹寒冰, 佘旭, 何红霞, 包明, 宋庆赟, 刘金山. 黄土高原旱地小麦产量差异与产量构成及氮磷钾吸收利用的关系. 植物营养与肥料学报, 2017, 23: 1135-1145.
Ma X L, Wang Z H, Cao H B, She X, He H X, Bao M, Song Q Y, Liu J S. Yield variation of winter wheat and its relation to yield components, NPK uptake and utilization in drylands of the Loess Plateau. J Plant Nutr Fert, 2017, 23: 1135-1145 (in Chinese with English abstract).
[4] Liu H, Xiong W, Mottaleb K A, Krupnik T J, Burgueño J, Pequeno D N L, Wu W B. Contrasting contributions of five factors to wheat yield growth in China by process-based and statistical models. Eur J Agron, 2021, 130: 126370.
[5] 姜丽娜, 马静丽, 方保停, 马建辉, 李春喜, 王志敏, 蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响. 作物学报, 2019, 45: 957-966.
Jiang L N, Ma J L, Fang B T, Ma J H, Li C X, Wang Z M, Hao B Z. Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province. Acta Agron Sin, 2019, 45: 957-966 (in Chinese with English abstract).
[6] Wang J B, Xie J H, Li L L, Luo Z Z, Zhang R Z, Wang L L, Jiang Y J. The impact of fertilizer amendments on soil autotrophic bacteria and carbon emissions in maize field on the semiarid Loess Plateau. Front Microbiol, 2021, 12: 664120.
[7] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响. 作物学报, 2023, 49: 447-458.
Zhang X Y, Hu X H, Gu S B, Lin X, Yin F W, Wang D. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions. Acta Agron Sin, 2023, 49: 447-458 (in Chinese with English abstract).
[8] 徐晓峰, 焦念元. 氮肥减施对宽幅播种冬小麦产量形成和氮肥利用效率的影响. 核农学报, 2021, 35: 953-959.
Xu X F, Jiao N Y. Effects of reduced application of nitrogen fertilizer on yield formation and nitrogen use efficiency of winter wheat with wide-range sowing. J Nucl Agric Sci, 2021, 35: 953-959 (in Chinese with English abstract).
[9] 李传梁, 于振文, 张娟, 张永丽, 石玉. 测墒补灌条件下施氮量对小麦干物质积累转运和产量的影响. 麦类作物学报, 2023, 43: 1039-1046.
Li C L, Yu Z W, Zhang J, Zhang Y L, Shi Y. Effect of nitrogen application rates on dry matter accumulation, transportation and yield of wheat under the conditions of soil moisture measurement and supplementary irrigation. J Triticeae Crops, 2023, 43: 1039-1046 (in Chinese with English abstract).
[10] Abd-Elrahman S H, Saudy H S, El-Fattah D A A, Hashem F A. Effect of irrigation water and organic fertilizer on reducing nitrate accumulation and boosting lettuce productivity. J Soil Sci Plant Nutr, 2022, 22: 2144-2155.
[11] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响. 作物学报, 2024, 50: 1053-1064.
Lou F, Zuo Y P, Li M, Dai X M, Wang J, Han J L, Wu S, Li X L, Duan H J. Effects of organic fertilizer substituting chemical fertilizer nitrogen on yield, quality, and nitrogen efficiency of waxy maize. Acta Agron Sin, 2024, 50: 1053-1064 (in Chinese with English abstract).
[12] 毛伟滔, 张绪成, 马明生, 柳燕兰, 尹嘉德. 有机肥部分替代化肥对旱地地膜冬小麦产量及水肥利用效率的影响. 麦类作物学报, 2023, 43: 1587-1598.
Mao W T, Zhang X C, Ma M S, Liu Y L, Yin J D. Effects of partial substitution of chemical fertilizer by organic fertilizer on yield, and water and fertilizer use efficiency of winter wheat under film mulching in dryland. J Triticeae Crops, 2023, 43: 1587-1598 (in Chinese with English abstract).
[13] 鲁伟丹, 李俊华, 罗彤, 陈丽丽, 张磊, 刘硕康. 连续三年不同有机肥替代率对小麦产量及土壤养分的影响. 植物营养与肥料学报, 2021, 27: 1330-1338.
Lu W D, Li J H, Luo T, Chen L L, Zhang L, Liu S K. Effects of different organic fertilizer replacement rates on wheat yield and soil nutrients over three consecutive years. J Plant Nutr Fert, 2021, 27: 1330-1338 (in Chinese with English abstract).
[14] 崔永增, 姚海坡, 李谦, 姚艳荣, 吕丽华, 吴立勇, 翟立超, 贾秀领. 有机肥部分替代氮肥对优质麦生长、品质和氮效率的影响. 华北农学报, 2023, 38(3): 158-166.
Cui Y Z, Yao H P, Li Q, Yao Y R, Lyu L H, Wu L Y, Zhai L C, Jia X L. Effects of partial substitution of chemical fertilizer by organic fertilizer on growth, quality and nitrogen efficiency of quality wheat. Acta Agric Boreali-Sin, 2023, 38(3): 158-166 (in Chinese with English abstract).
[15] 于慧玲, 阚茗溪, 徐哲莉, 马瑞琦, 刘阿康, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 匀播和条播小麦产量及干物质积累对春季灌水量的响应. 作物学报, 2023, 49: 2833-2844.
Yu H L, Kan M X, Xu Z L, Ma R Q, Liu A K, Wang D M, Wang Y J, Yang Y S, Zhao G C, Chang X H. Yield and dry matter accumulation of wheat in response to spring irrigation water in uniform sowing and strip sowing. Acta Agron Sin, 2023, 49: 2833-2844 (in Chinese with English abstract).
[16] 马瑞琦, 常旭虹, 刘阿康, 王德梅, 陶志强, 王艳杰, 杨玉双, 王振林, 赵广才. 减量施氮协同提升强筋小麦产量和品质. 植物营养与肥料学报, 2023, 29: 172-187.
Ma R Q, Chang X H, Liu A K, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Wang Z L, Zhao G C. Coordinated improvement of yield and quality of strong gluten wheat by reducing exogenous nitrogen application. J Plant Nutr Fert, 2023, 29: 172-187 (in Chinese with English abstract).
[17] 张建军, 樊廷录, 赵刚, 党翼, 王磊, 李尚中. 长期定位施不同氮源有机肥替代部分含氮化肥对陇东旱塬冬小麦产量和水分利用效率的影响. 作物学报, 2017, 43: 1077-1086.
Zhang J J, Fan T L, Zhao G, Dang Y, Wang L, Li S Z. Yield and water use efficiency of winter wheat in response to long-term application of organic fertilizer from different nitrogen resources replacing partial chemical nitrogen in dry land of eastern Gansu Province. Acta Agron Sin, 2017, 43: 1077-1086 (in Chinese with English abstract).
[18] Han Y, Lyu F L, Lin X D, Zhang C Y, Sun B H, Yang X Y, Zhang S L. Crop yield and nutrient efficiency under organic manure substitution fertilizer in a double cropping system: a 6-year field experiment on an anthrosol. Agronomy, 2022, 12: 2047.
[19] 赵艳, 罗铮, 杨丽, 王贝贝, 李凌雨, 王犇, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥运筹对稻茬小麦氮素转运、干物质积累、产量及品质的影响. 麦类作物学报, 2022, 42: 1001-1011.
Zhao Y, Luo Z, Yang L, Wang B B, Li L Y, Wang B, Ma S Y, Fan Y H, Huang Z L, Zhang W J. Effect of nitrogen fertilizer application on nitrogen translocation, dry matter accumulation, yield and quality of wheat after rice. J Triticeae Crops, 2022, 42: 1001-1011 (in Chinese with English abstract).
[20] 李春喜, 刘晴, 邵云, 马守臣, 李斯斯, 李晓波, 翁正鹏. 有机物料还田和减施氮肥对小麦氮素利用及经济效益的影响. 干旱地区农业研究, 2019, 37(6): 214-220.
Li C X, Liu Q, Shao Y, Ma S C, Li S S, Li X B, Weng Z P. Effects of organic materials returning and nitrogen fertilizer reduction on nitrogen utilization and economic benefits of wheat. Agric Res Arid Areas, 2019, 37(6): 214-220 (in Chinese with English abstract).
[21] 马尚宇, 王艳艳, 刘雅男, 姚科郡, 黄正来, 张文静, 樊永惠, 马元山. 播期、播量和施氮量对小麦干物质积累、转运和分配及产量的影响. 中国生态农业学报(中英文), 2020, 28: 375-385.
Ma S Y, Wang Y Y, Liu Y N, Yao K J, Huang Z L, Zhang W J, Fan Y H, Ma Y S. Effect of sowing date, planting density, and nitrogen application on dry matter accumulation, transfer, distribution, and yield of wheat. Chin J Eco-Agric, 2020, 28: 375-385 (in Chinese with English abstract).
[22] 李欣欣, 石祖梁, 王久臣, 王飞, 徐志宇, 江荣风. 施氮量和种植密度对稻茬晚播小麦干物质积累及光合特性的影响. 华北农学报, 2020, 35(5): 140-148.
Li X X, Shi Z L, Wang J C, Wang F, Xu Z Y, Jiang R F. Effects of nitrogen application amount and planting density on dry matter accumulation and flag leaf photosynthetic characteristics for late-sowing wheat in rice-wheat rotation. Acta Agric Boreali-Sin, 2020, 35(5): 140-148 (in Chinese with English abstract).
[23] 高仁才, 陈松鹤, 马宏亮, 莫飘, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与氮肥减施对旱地冬小麦干物质积累、结实特性和产量的影响. 植物营养与肥料学报, 2022, 28: 426-439.
Gao R C, Chen S H, Ma H L, Mo P, Xiao Y, Zhang X, Fan G Q. Effects of straw mulching in autumn and reducing nitrogen application on dry matter accumulation, seed-setting characteristics and yield of dryland winter wheat. J Plant Nutr Fert, 2022, 28: 426-439 (in Chinese with English abstract).
[24] 李春喜, 张令令, 马守臣, 邵云, 韩蕊, 王温澎, 李昊烊, 崔景明. 有机培肥和减施氮肥对小麦光合特性和氮素吸收及产量的影响. 西北植物学报, 2017, 37: 943-951.
Li C X, Zhang L L, Ma S C, Shao Y, Han R, Wang W P, Li H Y, Cui J M. Effects of organic fertilization combined with reduced nitrogen fertilizer on wheat photosynthetic characteristics, nitrogen uptake and grain yield. Acta Bot Boreali-Occident Sin, 2017, 37: 943-951 (in Chinese with English abstract).
[25] 李永华, 武雪萍, 何刚, 王朝辉. 我国麦田有机肥替代化学氮肥的产量及经济环境效应. 中国农业科学, 2020, 53: 4879-4890.
Li Y H, Wu X P, He G, Wang Z H. Benefits of yield, environment and economy from substituting fertilizer by manure for wheat production of China. Sci Agric Sin, 2020, 53: 4879-4890 (in Chinese with English abstract).
[26] 史辛凯, 于振文, 赵俊晔, 石玉, 王西芝. 施氮量对高产小麦光合特性、干物质积累分配与产量的影响. 麦类作物学报, 2021, 41: 713-721.
Shi X K, Yu Z W, Zhao J Y, Shi Y, Wang X Z. Effect of nitrogen application rate on photosynthetic characteristics, dry matter accumulation and distribution and yield of high-yielding winter wheat. J Triticeae Crops, 2021, 41: 713-721 (in Chinese with English abstract).
[27] 崔正勇, 李新华, 裴艳婷, 高国强, 张凤云, 孙明柱, 李鹏. 氮磷配施对冬小麦干物质积累、分配及产量的影响. 西北农业学报, 2018, 27: 339-346.
Cui Z Y, Li X H, Pei Y T, Gao G Q, Zhang F Y, Sun M Z, Li P. Effects of nitrogen-phosphorus-combined application on characteristics of dry matter accumulation, distribution and yield of winter wheat. Acta Agric Boreali-occident Sin, 2018, 27: 339-346 (in Chinese with English abstract).
[28] 吕梦. 氮肥减量配施有机肥对豫西旱地冬小麦-夏玉米产量及氮肥利用的影响. 河南科技大学硕士学位论文, 河南洛阳, 2022.
Lyu M. Effects of Nitrogen Reduction Combined with Organic Fertilizer Application on Yield and Nitrogen Use Efficiency of Winter Wheat-Summer Maize in Dryland of Western Henan. MS Thesis of Henan University of Science and Technology, Luoyang, Henan, China, 2022 (in Chinese with English abstract).
[29] 赵凯男, 吴金芝, 李俊红, 田文仲, 张洁, 李芳, 侯园泉, 张振旺, 姚宇卿, 吕军杰, 黄明, 李友军. 秸秆和有机肥配合替代部分化肥提高作物水分利用率减少土壤硝态氮残留. 植物营养与肥料学报, 2022, 28: 1770-1781.
Zhao K N, Wu J Z, Li J H, Tian W Z, Zhang J, Li F, Hou Y Q, Zhang Z W, Yao Y Q, Lyu J J, Huang M, Li Y J. Effects of combined straw and organic fertilizer application as partial replacement for chemical fertilizers on water use efficiency and soil nitrate residue. J Plant Nutr Fert, 2022, 28: 1770-1781 (in Chinese with English abstract).
[30] 巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58: 1-13.
Ju X T, Zhang C. The principles and indicators of rational N fertilization. Acta Pedol Sin, 2021, 58: 1-13 (in Chinese with English abstract).
[31] 张铭, 蒋达, 缪瑞林, 许轲, 刘艳阳, 张军, 张洪程. 不同土壤肥力条件下施氮量对稻茬小麦氮素吸收利用及产量的影响. 麦类作物学报, 2010, 30: 135-140.
Zhang M, Jiang D, Miao R L, Xu K, Liu Y Y, Zhang J, Zhang H C. Effects of N application rate on nitrogen absorption, utilization and yield of wheat under different soil fertility after rice. J Triticeae Crops, 2010, 30: 135-140 (in Chinese with English abstract).
[32] 孙梦, 冯昊翔, 张晓燕, 刘世洁, 韩志栋, 韩潇杰, 李尊, 马耕, 王丽芳, 王晨阳. 不同土壤肥力下施氮量对小麦产量和品质的影响. 麦类作物学报, 2022, 42: 826-834.
Sun M, Feng H X, Zhang X Y, Liu S J, Han Z D, Han X J, Li Z, Ma G, Wang L F, Wang C Y. Effects of nitrogen rates on wheat yield and quality under different soil fertility regimes. J Triticeae Crops, 2022, 42: 826-834 (in Chinese with English abstract).
[33] Xu X P, He P, Chuan L M, Liu X Y, Liu Y X, Zhang J J, Huang X M, Qiu S J, Zhao S C, Zhou W. Regional distribution of wheat yield and chemical fertilizer requirements in China. J Integr Agric, 2021, 20: 2772-2780.
[34] 张奇茹, 谢英荷, 李廷亮, 刘凯, 姜丽伟, 曹静, 邵靖琳. 有机肥替代化肥对旱地小麦产量和养分利用效率的影响及其经济环境效应. 中国农业科学, 2020, 53: 4866-4878.
Zhang Q R, Xie Y H, Li T L, Liu K, Jiang L W, Cao J, Shao J L. Effects of organic fertilizers replacing chemical fertilizers on yield, nutrient use efficiency, economic and environmental benefits of dryland wheat. Sci Agric Sin, 2020, 53: 4866-4878 (in Chinese with English abstract).
[35] 张晶, 张定一, 王丽, 毛平平, 赵娟, 王姣爱. 不同有机肥和氮磷组合对旱地小麦的增产机理研究. 植物营养与肥料学报, 2017, 23: 238-243.
Zhang J, Zhang D Y, Wang L, Mao P P, Zhao J, Wang J A. The mechanism of different combinations of organic and N, P fertilizers increasing yield of dryland wheat. J Plant Nutr Fert, 2017, 23: 238-243 (in Chinese with English abstract).
[36] 高晶, 高辉. 2023年春末黄淮海麦区“烂场雨”极端性特征及大尺度大气环流场. 气象, 2023, 49: 1227-1234.
Gao J, Gao H. “Wheat-Soaked Persistent Rainfall” in late spring 2023 in the Huang-Huai-Hai Plain and the large-scale circulation pattern. Meteor Mon, 2023, 49: 1227-1234 (in Chinese with English abstract).
[37] 王永华, 李金才, 魏凤珍, 屈会娟. 小麦冻害类型、诊断特征及其预防对策与补救措施. 中国农学通报, 2006, 22(4): 345-348.
Wang Y H, Li J C, Wei F Z, Qu H J. Types of freeze injury and diagnostic characteristics of winter wheat and prevention measure and salvage measure. Chin Agric Sci Bull, 2006, 22(4): 345-348 (in Chinese with English abstract).
[38] 冯伟森, 田文仲, 吴少辉, 张少澜, 温红霞, 张学品, 杨洪强, 张灿军. 豫西旱作麦区灌水对旱地小麦产量和水分利用效率的影响. 作物研究, 2017, 31: 228-231.
Feng W S, Tian W Z, Wu S H, Zhang S L, Wen H X, Zhang X P, Yang H Q, Zhang C J. Effects of irrigation on yield and water use efficiency of dryland wheat in Yuxi dryland wheat area. Crop Res, 2017, 31: 228-231 (in Chinese with English abstract).
[39] 钱彩虹, 陈立, 李春燕, 丁锦峰, 朱敏, 郭文善, 朱新开. 减量施氮对稻茬红皮强筋小麦产量、品质和氮盈亏的影响. 江苏农业科学, 2023, 51(9): 75-81.
Qian C H, Chen L, Li C Y, Ding J F, Zhu M, Guo W S, Zhu X K. Effects of reduced nitrogen application on yield, quality and apparent nitrogen budget of red-skinned strong gluten wheat after rice. Jiangsu Agric Sci, 2023, 51(9): 75-81 (in Chinese).
[40] 熊淑萍, 高明, 张志勇, 秦步坛, 徐赛俊, 付新露, 王小纯, 马新明. 基于GIS的河南省小麦产量及产量构成要素时空差异分析. 中国农业科学, 2022, 55: 692-706.
Xiong S P, Gao M, Zhang Z Y, Qin B T, Xu S J, Fu X L, Wang X C, Ma X M. Spatial and temporal difference analysis of wheat yield and yield components in Henan province based on GIS. Sci Agric Sin, 2022, 55: 692-706 (in Chinese with English abstract).
[41] 温延臣, 张曰东, 袁亮, 李伟, 李燕青, 林治安, 赵秉强. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51: 2136-2142.
Wen Y C, Zhang Y D, Yuan L, Li W, Li Y Q, Lin Z A, Zhao B Q. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer. Sci Agric Sin, 2018, 51: 2136-2142 (in Chinese with English abstract).
[1] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[2] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[3] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[4] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
[5] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[6] 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173.
[7] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[8] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[9] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[10] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[11] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[12] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[13] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[14] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[15] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!