作物学报 ›› 2025, Vol. 51 ›› Issue (1): 189-206.doi: 10.3724/SP.J.1006.2025.43015
郝琪(), 陈天陆, 王富贵, 王振, 白岚方, 王永强(), 王志刚()
HAO Qi(), CHEN Tian-Lu, WANG Fu-Gui, WANG Zhen, BAI Lan-Fang, WANG Yong-Qiang(), WANG Zhi-Gang()
摘要:
作物冠层氮素营养的遥感诊断对指导作物精准施氮, 提高作物氮效率和产量具有重要意义。本研究针对玉米冠层纵深大影响无人机估算氮浓度精度的问题, 基于2022年和2023年不同氮肥运筹处理下田间无人机多光谱数据和氮浓度实测数据, 分析玉米冠层氮浓度空间分布特征, 并利用随机森林算法确定估算冠层氮浓度的有效叶层。进一步结合随机森林算法和多光谱植被指数构建有效叶层氮浓度估算模型, 最终将有效叶层氮浓度转换到冠层尺度实现冠层氮浓度的估算。结果表明: (1) 九叶展期和大喇叭口期玉米冠层氮浓度表现为上层叶片>中层叶片>下层叶片, 吐丝期和乳熟期表现为中层叶片>上层叶片>下层叶片。(2) 各时期估算冠层氮浓度的有效叶层分别为下层、中层、中层和中层。与支持向量回归模型相比, 随机森林回归估算冠层氮浓度的精度较高。(3) 结合随机森林算法, 基于有效叶层氮浓度估算冠层氮浓度的平均RMSE、NRMSE和MAE分别为0.10%、4.41%和0.07%, 而直接基于植被指数估算冠层氮浓度的平均RMSE、NRMSE和MAE分别为0.19%、9.00%和0.15%。综上, 玉米冠层氮浓度存在空间分异特征, 估算冠层氮浓度时考虑基于随机森林和植被指数估算的有效叶层氮浓度能明显提高冠层氮浓度的估算精度。本研究确定的考虑空间分异的冠层氮浓度估算框架可为玉米氮素营养实时诊断提供理论支撑。
[1] | Guo B B, Qi S L, Heng Y R, Duan J Z, Zhang H Y, Wu Y P, Feng W, Xie Y X, Zhu Y J. Remotely assessing leaf N uptake in winter wheat based on canopy hyperspectral red-edge absorption. Eur J Agron, 2017, 82: 113-124. |
[2] | Wen P F, Wang R, Shi Z J, Ning F, Wang S L, Zhang Y J, Zhang Y H, Wang Q, Li J. Effects of N application rate on N remobilization and accumulation in maize (Zea mays L.) and estimating of vegetative N remobilization using hyperspectral measurements. Comput Electron Agric, 2018, 152: 166-181. |
[3] | Cai Y P, Guan K Y, Nafziger E, Chowdhary G, Peng B, Jin Z N, Wang S W, Wang S B. Detecting in-Season crop nitrogen stress of corn for field trials using UAV- and CubeSat-based multispectral sensing. IEEE J Sel Top Appl Earth Obs Remote Sens, 2019, 12: 5153-5166. |
[4] | Shu M Y, Zhu J Y, Yang X H, Gu X H, Li B G, Ma Y T. A spectral decomposition method for estimating the leaf nitrogen status of maize by UAV-based hyperspectral imaging. Comput Electron Agric, 2023, 212: 108100. |
[5] | Tavakoli H, Gebbers R. Assessing nitrogen and water status of winter wheat using a digital camera. Comput Electron Agric, 2019, 157: 558-567. |
[6] | Liu L, Peng Z G, Zhang B Z, Wei Z, Han N N, Lin S Z, Chen H, Cai J B. Canopy nitrogen concentration monitoring techniques of summer corn based on canopy spectral information. Sensors (Basel), 2019, 19: 4123. |
[7] | Wang X B, Miao Y X, Dong R, Zha H N, Xia T T, Chen Z C, Kusnierek K, Mi G H, Sun H, Li M Z. Machine learning-based in-season nitrogen status diagnosis and side-dress nitrogen recommendation for corn. Eur J Agron, 2021, 123: 126193. |
[8] | Li H L, Zhao C J, Huang W J, Yang G J. Non-uniform vertical nitrogen distribution within plant canopy and its estimation by remote sensing: a review. Field Crops Res, 2013, 142: 75-84. |
[9] | 魏夏永, 黄茜, 薄丽媛, 毛晓敏. 西北旱区不同覆膜和灌溉水平下的玉米冠层氮含量垂直分布及高光谱反演. 中国农业大学学报, 2022, 27(11): 13-21. |
Wei X Y, Huang Q, Bo L Y, Mao X M. Vertical distribution of nitrogen content in spring maize leaves and its hyperspectral inversion under different film mulching and irrigation levels in northwest arid region. J China Agric Univ, 2022, 27(11): 13-21 (in Chinese with English abstract). | |
[10] | Luo J H, Ma R H, Feng H H, Li X C. Estimating the total nitrogen concentration of reed canopy with hyperspectral measurements considering a non-uniform vertical nitrogen distribution. Remote Sens, 2016, 8: 789. |
[11] | Duan D D, Zhao C J, Li Z H, Yang G J, Yang W D. Estimating total leaf nitrogen concentration in winter wheat by canopy hyperspectral data and nitrogen vertical distribution. J Integr Agric, 2019, 18: 1562-1570. |
[12] | 刘蓉, 姚萌奇, 乔志刚, 李聪, 雒连春, 汪天胜, 张琪玮. 基于凯氏定氮法与杜马斯燃烧法测定肥料中氮含量的对比研究. 应用化工, 2023, 52: 2258-2260. |
Liu R, Yao M Q, Qiao Z G, Li C, Luo L C, Wang T S, Zhang Q W. A comparative study based on Kjeldahl method and Dumas combustion methods for the determination of nitrogen content in fertilizers. Appl Chem Ind, 2023, 52: 2258-2260 (in Chinese with English abstract). | |
[13] | Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol, 2003, 160: 271-282. |
[14] | Tucker C J, Elgin J H, McMurtrey J E, Fan C J. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sens Environ, 1979, 8: 237-248. |
[15] | Qi J, Chehbouni A, Huete A R, Kerr Y H, Sorooshian S. A modified soil adjusted vegetation index. Remote Sens Environ, 1994, 48: 119-126. |
[16] | Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications, Can J Remote Sens, 1996, 22: 3, 229-242. |
[17] | Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J, Strachan I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens Environ, 2004, 90: 337-352. |
[18] | Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens Environ, 1996, 55: 95-107. |
[19] | Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ, 1995, 51: 375-384. |
[20] | Jordan C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969, 50: 663-666. |
[21] | Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sens Environ, 1988, 25: 295-309. |
[22] | Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ, 2002, 81: 416-426. |
[23] | Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ, 2001, 76: 156-172. |
[24] | 岳继博, 杨贵军, 冯海宽. 基于随机森林算法的冬小麦生物量遥感估算模型对比. 农业工程学报, 2016, 32(18): 175-182. |
Yue J B, Yang G J, Feng H K. Comparative of remote sensing estimation models of winter wheat biomass based on random forest algorithm. Trans CSAE, 2016, 32(18): 175-182 (in Chinese with English abstract). | |
[25] | Zhang H F, Quost B, Masson M H. Cautious weighted random forests. Expert Syst Appl, 2023, 213: 118883. |
[26] | 蒋贵印. 基于无人机遥感的春玉米多光谱响应及氮素营养参数反演. 河南理工大学硕士学位论文, 河南焦作, 2020. |
Jiang G Y. Multispectral Response of Spring Maize and Inversion of Nitrogen Nutrition Parameters Based on Remote Sensing of UAV. MS Thesis of Henan Polytechnic University, Jiaozuo, Henan, China, 2020 (in Chinese with English abstract). | |
[27] | Ette J S, Ritter T, Vospernik S. Insights in forest structural diversity indicators with machine learning: what is indicated. Biodivers Conserv, 2023, 32: 1019-1046. |
[28] | Kebede M M, Le Cornet C, Fortner R T. In-depth evaluation of machine learning methods for semi-automating article screening in a systematic review of mechanistic literature. Res Synth Methods, 2023, 14: 156-172. |
[29] | 刘帅兵, 金秀良, 冯海宽, 聂臣巍, 白怡, 余汛. 基于无人机多源遥感的玉米LAI垂直分布估算. 农业机械学报, 2023, 54(5): 181-193. |
Liu S B, Jin X L, Feng H K, Nie C W, Bai Y, Yu X. Vertical distribution estimation of maize LAI using UAV multi-source remote sensing. Trans CSAM, 2023, 54(5): 181-193 (in Chinese with English abstract). | |
[30] | 张炜健, 高宇, 唐彧哲, 张贺景, 杨海波, 闫东, 李斐. 内蒙古中西部玉米临界氮浓度稀释模型的构建与验证. 植物营养与肥料学报, 2022, 28: 2020-2029. |
Zhang W J, Gao Y, Tang Y Z, Zhang H J, Yang H B, Yan D, Li F. Construction and validation of critical nitrogen concentration dilution model for maize in central and western Inner Mongolia. J Plant Nutr Fert, 2022, 28: 2020-2029 (in Chinese with English abstract). | |
[31] | 魏鹏飞, 徐新刚, 李中元, 杨贵军, 李振海, 冯海宽, 陈帼, 范玲玲, 王玉龙, 刘帅兵. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测. 农业工程学报, 2019, 35(8): 126-133. |
Wei P F, Xu X G, Li Z Y, Yang G J, Li Z H, Feng H K, Chen G, Fan L L, Wang Y L, Liu S B. Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV. Trans CSAE, 2019, 35(8): 126-133 (in Chinese with English abstract). | |
[32] | Richardson J T E. Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev-Neth, 2011, 6: 135-147. |
[33] | 杨勤英. 冬小麦叶面积指数与氮素垂直分布的高光谱反演研究. 安徽大学硕士学位论文, 安徽合肥, 2014. |
Yang Q Y. Inversion of Winter Wheat Leaf Area Index and Nitrogen Vertical Distribution with Hyperspectral Data. MS Thesis of Anhui University, Hefei, Anhui, China, 2014 (in Chinese with English abstract). | |
[34] | 温鹏飞. 玉米单叶和冠层氮素营养参数垂直分布反演及遥感监测研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2019. |
Wen P F. Monitoring the Vertical Distribution of Nitrogen Status at Leaf and Canopy Scales with Remote Sensing Data in Maize. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract). | |
[35] | Winterhalter L, Mistele B, Schmidhalter U. Assessing the vertical footprint of reflectance measurements to characterize nitrogen uptake and biomass distribution in maize canopies. Field Crops Res, 2012, 129: 14-20. |
[36] | Li Y B, Song H, Zhou L, Xu Z Z, Zhou G S. Vertical distributions of chlorophyll and nitrogen and their associations with photosynthesis under drought and rewatering regimes in a maize field. Agric Forst Meteor, 2019, 272: 40-54. |
[37] | Chen B, Huang G M, Lu X J, Gu S H, Wen W L, Wang G T, Chang W S, Guo X Y, Zhao C J. Prediction of vertical distribution of SPAD values within maize canopy based on unmanned aerial vehicles multispectral imagery. Front Plant Sci, 2023, 14: 1253536. |
[38] | Meivel S, Maheswari S. Remote sensing analysis of agricultural drone. J Indian Soc Remote Sens, 2021, 49: 689-701. |
[39] | Yang B, Zhu W X, Rezaei E E, Li J, Sun Z G, Zhang J Q. The optimal phenological phase of maize for yield prediction with high- frequency UAV remote sensing. Remote Sens, 2022, 14: 1559. |
[40] | Osco L P, Junior J M, Ramos A P M, Furuya D E G, Santana D C, Teodoro L P R, Goncalves W N, Baio F H R, Pistori H, Junior C A S, Teodoro P E. Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques. Remote Sens, 2020, 12: 3237. |
[41] | Lee H, Wang J F, Leblon B. Using linear regression, random forests, and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sens, 2020, 12: 2071. |
[1] | 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284. |
[2] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[3] | 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395. |
[4] | 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10、ZmCCT9、ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970. |
[5] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[6] | 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933. |
[7] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[8] | 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066. |
[9] | 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013. |
[10] | 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876. |
[11] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[12] | 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627. |
[13] | 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434. |
[14] | 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450. |
[15] | 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324. |
|