欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 221-232.doi: 10.3724/SP.J.1006.2025.34189

• 耕作栽培·生理生化 • 上一篇    下一篇

行距配置和种植密度对棉花干物质生产及产量的影响

辛明华1(), 秘雅迪1(), 王国平1, 李小飞1, 李亚兵1, 董合林1,2, 韩迎春1, 冯璐1,*()   

  1. 1中国农业科学院棉花研究所 / 棉花生物学国家重点实验室, 河南安阳 455000
    2中国农业科学院西部农业研究中心, 新疆昌吉 831100
  • 收稿日期:2023-11-13 接受日期:2024-09-18 出版日期:2025-01-12 网络出版日期:2024-10-11
  • 通讯作者: 冯璐
  • 作者简介:辛明华, E-mail: xinminghua985@126.com;
    秘雅迪, E-mail: miyadi1999@163.com第一联系人:**同等贡献
  • 基金资助:
    新疆维吾尔自治区乡村振兴产业发展科技行动项目(2024NC064);棉花生物育种与综合利用全国重点实验室开放课题(CB2023C02);新疆自治区“天池英才”引进计划项目资助。

Effect of row spacing configuration and density regulation on dry matter production and yield in cotton

XIN Ming-Hua1(), MI Ya-Di1(), WANG Guo-Ping1, LI Xiao-Fei1, LI Ya-Bing1, DONG He-Lin1,2, HAN Ying-Chun1, FENG Lu1,*()   

  1. 1Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
    2Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, Changji 831100, Xinjiang, China
  • Received:2023-11-13 Accepted:2024-09-18 Published:2025-01-12 Published online:2024-10-11
  • Contact: FENG Lu
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Science and Technology Action Project for Industrial Development in Rural Revitalization of Xinjiang Uygur Autonomous Region(2024NC064);Open Project of National Key Laboratory of Cotton Biological Breeding and Comprehensive Utilization(CB2023C02);Tianchi Talent Introduction Plan of Xinjiang.

摘要:

行距配置和种植密度是影响棉花产量和品质的重要因素。当前新疆棉花种植主要采用宽窄行配置, 也有等行距配置方式, 但对这两种方式的认识尚存在争议。为此, 本研究以中棉所88号为供试材料, 采用裂区设计, 行距配置(等行距和宽窄行)为主区, 种植密度12×104株 hm-2 (D1)、16×104株 hm-2 (D2)和18×104株 hm-2 (D3)为裂区, 开展了2年大田试验, 比较研究了行距配置和密度对棉花群体生长发育、干物质积累和分配、以及产量和纤维品质的影响。结果表明, 中等密度(16×104株 hm-2)下等行距和宽窄行处理组合的叶面积指数(LAI)增速、LAI峰值, 以及吐絮期生殖器官生物量的分配比例均高于其他处理组合, 且二者无显著差异。各处理组合间的棉花群体生长率(CGR)、净同化率(NAR)和棉铃生长率(BGR)均无显著差异。2年平均, 中等密度下等行距和宽窄行处理组合的籽棉产量相当, 纤维品质指标也无显著差异。表明在中等密度下, 无论采用等行距还是宽窄行种植模式, 均能达到理想的产量和品质。本研究为新疆棉花行距配置和密度选择提供了科学依据。

关键词: 棉花, 单双行配置, 密度, 生长指标, 干物质积累与分配, 产量及品质

Abstract:

Row spacing configuration and plant density are critical factors influencing cotton yield and fiber quality. In Xinjiang, cotton is primarily planted using a wide-narrow row spacing system, though equal row spacing is also used. However, there is ongoing debate regarding the effectiveness of these two methods. To clarify this, a two-year field experiment was conducted using the cotton variety Zhongmian 88. A split-plot design was employed, with row spacing configurations (equal row spacing and wide-narrow row spacing) as the main plot and planting densities 12×104 plants hm-2 (D1), 16×104 plants hm-2 (D2), and 18×104 plants hm-2 (D3) as the sub-plots. The study aimed to compare the effects of row spacing configuration and plant density on cotton population growth, dry matter accumulation and distribution, as well as yield and fiber quality. The results showed that the growth rate of leaf area index (LAI), the peak LAI, and the proportion of reproductive organ biomass at the boll opening stage were higher in both equal rows spacing and wide-narrow row spacing at intermediate density (16×104 plants hm-2) compared to the other treatment combinations, with no significant differences between the two configurations. Additionally, no significant differences were found among treatments for cotton growth rate (CGR), net assimilation rate (NAR), and boll growth rate (BGR). Over the two years, seed cotton yields were similar for equal row spacing and wide-narrow row spacing at medium density, with no significant differences in fiber quality. A comprehensive analysis over both years concluded that under medium density, both row spacing configurations can achieve optimal yield and fiber quality. This study provides a scientific basis for selecting row spacing configurations and planting densities for cotton cultivation in Xinjiang.

Key words: cotton, single and double row configurations, densities, growth indicators, dry matter accumulation and partitioning, yield and quality

图1

试验地2020-2021年棉花生育期的气象条件"

图2

等行距和宽窄行种植示意图"

图3

各处理叶面积指数变化 B1D1: 等行距低密度; B1D2: 等行距中密度; B1D3: 等行距高密度; B2D1: 宽窄行低密度; B2D2: 宽窄行中密度; B2D3: 宽窄行高密度; SE: 苗期; SQ: 蕾期; FL: 开花期; BD: 盛铃期; BO: 吐絮期。不同小写字母表示同一年份处理间在0.05概率水平差异显著。"

表1

叶面积指数生长曲线拟合参数"

年份
Year
处理
Treatment
T1
(d)
T2
(d)
ΔT
(d)
Vm
(m2 m-2 d-1)
Wm GT
(m2 m-2)
2020 B1 D1 61 82 21 0.14 3.21 3.15
D2 62 87 25 0.12 3.94 3.25
D3 62 84 22 0.13 4.12 3.08
B2 D1 55 72 17 0.15 2.44 2.38
D2 55 76 21 0.13 3.25 2.52
D3 54 74 20 0.14 2.92 2.47
2021 B1 D1 61 85 24 0.12 3.28 3.36
D2 62 90 28 0.10 4.11 3.64
D3 61 87 26 0.11 4.17 3.38
B2 D1 57 77 20 0.14 2.96 2.40
D2 60 85 25 0.13 3.54 2.53
D3 57 80 23 0.13 3.43 2.51

表2

单双行配置和密度对棉花吐絮期干物质积累的影响"

年份
Year
处理
Treatment

Roots
(kg hm-2)

Stems
(kg hm-2)

Leaves
(kg hm-2)
生殖器官
Reproduction organ
(kg hm-2)
总干物质
Total dry matter weight
(kg hm-2)
2020 B1 D1 1287 c 4158 d 898 b 7945 c 14,289 c
D2 2559 a 11,712 a 1807 a 18,507 b 34,584 a
D3 2186 ab 5491 bc 2121 a 9290 c 19,088 b
B2 D1 1398 c 4814 cd 1149 b 10,912 c 18,273 b
D2 2377 ab 10,881 a 1868 a 22,210 a 37,336 a
D3 2025 b 6639 b 2133 a 8956 c 19,753 b
变异来源
Source of variance
B 0.562 0.345 0.449 0.039 0.023
D < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
B×D 0.604 0.075 0.761 0.197 0.380
2021 B1 D1 1432 d 4740 c 1196 d 12,400 c 19,768 d
D2 2578 b 9264 ab 3981 a 21,103 b 36,926 b
D3 2376 b 8734 b 2289 bc 15,651 c 29,051 c
B2 D1 982 e 4576 c 1797 cd 6943 d 14,299 e
D2 3068 a 1074 a 2695 b 29,942 a 46,447 a
D3 1847 c 5156 c 2736 b 10,497 cd 20,236 d
变异来源
Source of variance
B 0.121 0.121 0.701 0.660 0.265
D < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
B×D 0.002 0.002 0.004 0.001 < 0.001

图4

单双行配置和密度对棉花吐絮期干物质分配比例的影响 不同小写字母表示同一年份处理间在0.05概率水平差异显著。缩写同图3。"

表3

种植模式和种植密度对棉花群体生长参数的影响"

年份
Year
处理
Treatment
群体生长率
CGR
(g m-2 d-1)
棉铃生长率
BGR
(g m-2 d-1)
净同化率
NAR
(g m-2 d-1)
生殖器官与营养器官分配比例
RVR
2020 B1 D1 28.1 a 14.1 a 11.4 a 1.7 a
D2 31.2 a 15.8 a 12.9 a 2.1 a
D3 30.9 a 15.2 a 12.7 a 1.8 a
B2 D1 26.9 a 13.3 a 9.2 b 1.6 a
D2 31.6 a 15.4 a 12.8 a 2.0 a
D3 30.4 a 14.6 a 11.5 a 1.8 a
变异来源
Source of variance
B 0.448 0.350 0.042 0.184
D 0.360 0.110 0.138 0.078
B×D 0.180 0.235 0.283 0.145
2021 B1 D1 29.7 a 18.5 a 12.1 a 1.8 a
D2 31.6 a 21.1 a 13.5 a 2.2 a
D3 31.2 a 20.3 a 12.9 a 2.1 a
B2 D1 29.4 a 17.2 a 9.0 b 1.8 a
D2 31.3 a 18.4 a 13.1 a 2.1 a
D3 31.2 a 17.9 a 12.3 a 1.9 a
变异来源
Source of variance
B 0.184 0.380 0.040 0.225
D 0.700 0.127 0.217 0.075
B×D 0.148 0.286 0.286 0.083

表4

种植模式和种植密度对棉花产量和纤维品质的影响"

年份
Year
处理
Treatment
上半部平均长度
Upper half mean length
(mm)
整齐度指数
Uniformity
(%)
断裂比强度
Strength
(cN tex-1)
马克隆值
Micronaire
断裂伸长率
Breaking
elongation
(%)
籽棉产量
Seed cotton yield
(kg hm-2)
2020 B1 D1 28.7 a 84.5 a 30.4 b 4.1 b 6.8 a 5621 ab
D2 28.5 a 84.8 a 30.8 a 4.9 a 6.8 a 5897 a
D3 28.4 a 85.2 a 30.5 b 4.3 b 6.8 a 5650 ab
B2 D1 28.4 a 84.4 a 29.4 c 4.2 b 6.8 a 5582 b
D2 27.2 a 84.8 a 31.0 a 4.4 b 6.8 a 5744 a
D3 27.0 a 85.0 a 29.1 c 4.4 b 6.7 a 5625 ab
变异来源
Source of variance
B 0.108 0.175 0.246 0.774 0.107 0.347
D 0.282 0.192 0.031 0.035 0.214 0.013
B×D 0.072 0.804 0.204 0.774 0.109 0.535
2021 B1 D1 28.9 a 83.7 b 26.6 b 4.6 a 6.5 a 5679 b
D2 28.2 a 84.4 a 27.8 a 4.8 a 6.6 a 6162 a
D3 27.4 a 84.6 a 27.2 a 4.0 b 6.5 a 5974 ab
B2 D1 27.5 a 83.1 b 25.5 c 4.0 b 6.5 a 5644 b
D2 27.4 a 84.1 a 27.2 a 4.1 b 6.6 a 6127 a
D3 27.3 a 84.3 a 26.5 b 3.9 b 6.5 a 5825 ab
变异来源
Source of variance
B 0.147 0.048 0.417 0.489 0.348 0.218
D 0.576 0.565 0.023 0.032 0.866 0.041
B×D 0.394 0.996 0.413 0.862 0.970 0.341
[1] 乔银桃, 孙世贤, 赵素琴, 杨晓妮, 许乃银. 我国西北内陆棉花品种生态区划分与试验环境评价. 中国生态农业学报(中英文), 2022, 30: 1301-1308.
Qiao Y T, Sun S X, Zhao S Q, Yang X N, Xu N Y. Cotton mega-environment investigation and test environment evaluation for the national cotton variety trials in the northwest inland cotton production region. Chin J Eco-Agric, 2022, 30: 1301-1308 (in Chinese with English abstract).
[2] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培. 作物学报, 2022, 48: 541-552.
Zheng S F, Liu X L, Wang W, Xu D Q, Kan H C, Chen M, Li S Y. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system. Acta Agron Sin, 2022, 48: 541-552 (in Chinese with English abstract).
[3] Khan A, Tan D K Y, Afridi M Z, Luo H H, Tung S A, Ajab M, Fahad S. Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ Sci Pollut Res Int, 2017, 24: 14551-14566.
[4] McLennon E, Dari B, Jha G, Sihi D, Kankarla V. Regenerative agriculture and integrative permaculture for sustainable and technology driven global food production and security. Agron J, 2021, 113: 4541-4559.
[5] 王家勇, 李春梅, 徐文修, 李鹏程, 张娜, 李玲, 马云珍, 王芳. 种植密度对76 cm等行距机采棉冠层结构、冠层温湿度及产量的影响. 新疆农业科学, 2023, 60: 2609-2617.
Wang J Y, Li C M, Xu W X, Li P C, Zhang N, Li L, Ma Y Z, Wang F. Effects of planting density on canopy structure, canopy temperature and humidity and yield of 76 cm machine-picked cotton with equal row spacing. Xinjiang Agric Sci, 2023, 60: 2609-2617 (in Chinese with English abstract).
[6] Khan A, Kong X J, Najeeb U, Zheng J, Tan D K Y, Akhtar K, Munsif F, Zhou R Y. Planting density induced changes in cotton biomass yield, fiber quality, and phosphorus distribution under beta growth model. Agronomy, 2019, 9: 500.
[7] Dai J L, Li W J, Tang W, Zhang D M, Li Z H, Lu H Q, Eneji A E, Dong H Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Res, 2015, 180: 207-215.
[8] 张娜, 冯璐, 马云珍, 李玲, 范正义, 李小飞, 杨北方, 万素梅, 李亚兵, 徐文修. 种植密度对南疆机采棉群体农艺特征和产量的影响. 中国农业科技导报, 2021, 23(11): 172-180.
Zhang N, Feng L, Ma Y Z, Li L, Fan Z Y, Li X F, Yang B F, Wan S M, Li Y B, Xu W X. Influence of planting density on the agronomic characteristics and yield of machine picked cotton in southern Xinjiang. J Agric Sci Technol, 2021, 23(11): 172-180 (in Chinese with English abstract).
[9] Feng L, Wan S M, Zhang Y L, Dong H Z. Xinjiang cotton: achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Res, 2024, 312: 109401.
[10] 张昊, 林涛, 汤秋香, 崔建平, 郭仁松, 王亮, 郑子漂. 种植模式对机采棉冠层光能利用与产量形成的影响. 农业工程学报, 2021, 37(12): 54-63.
Zhang H, Lin T, Tang Q X, Cui J P, Guo R S, Wang L, Zheng Z P. Effects of planting pattern on canopy light utilization and yield formation in machine-harvested cotton field. Trans CSAE, 2021, 37(12): 54-63 (in Chinese with English abstract)
[11] 陈溪源, 朱淼良, 陈金湘. 基于生长类型的棉花不同果枝产量贡献率的模拟模型研究. 棉花学报, 2010, 22: 326-332.
Chen X Y, Zhu M L, Chen J X. Simulation model for percentage of total yield by fruiting branch based on different growth and development type of cotton. Cotton Sci, 2010, 22: 326-332 (in Chinese with English abstract).
[12] 吴国丽, 魏飞, 刘建国, 王超凡, 马子豪, 马怡茹. 不同种植模式对连作棉花根系生长和生理指标的影响. 中国棉花, 2019, 46(3): 11-15.
Wu G L, Wei F, Liu J G, Wang C F, Ma Z H, Ma Y R. Effects of different planting patterns on root growth and physiological traits in cotton. China Cotton, 2019, 46(3): 11-15 (in Chinese with English abstract).
[13] 李凤瑞, 赵文超, 张东楼, 董灵艳, 王汝明, 齐洪鑫, 张超, 张贵军, 杨秀凤, 史加亮. 黄河流域适宜机采的短季棉密度和行距配置. 应用生态学报, 2023, 34: 1002-1008.
Li F R, Zhao W C, Zhang D L, Dong L Y, Wang R M, Qi H X, Zhang C, Zhang G J, Yang X F, Shi J L. Density and row spacing of short-season cotton suitable for machine picking in the cotton region of Yellow River Basin. Chin J Appl Ecol, 2023, 34: 1002-1008 (in Chinese with English abstract).
[14] Khan A, Wang L S, Ali S, Tung S A, Hafeez A, Yang G Z. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Res, 2017, 214: 164-174.
[15] Virk G, Snider J L, Pilon C. Physiological contributors to early season whole-crop vigor in cotton. Crop Sci, 2019, 59: 2774-2783.
[16] Liu Y, Wen M, Li M, Zhao W Q, Li P B, Cui J, Ma F Y. Effects of reduced nitrogen application rate on drip-irrigated cotton dry matter accumulation and yield under different phosphorus and potassium managements. Agron J, 2021, 113: 2524-2533.
[17] Dai J L, Kong X Q, Zhang D M, Li W J, Dong H Z. Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Res, 2017, 214: 142-148.
[18] Siebert J D, Stewart A M, Leonard B R. Comparative growth and yield of cotton planted at various densities and configurations. Agron J, 2006, 98: 562-568.
[19] 张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧. 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 2004, 28: 164-171.
Zhang W F, Wang Z L, Yu S L, Li S K, Fang J, Tong W S. Effects of planting density on canopy photosynthesis, canopy structure and yield formation of high-yield cotton in Xinjiang, China. Acta Phytoecol Sin, 2004, 28: 164-171 (in Chinese with English abstract).
[20] 李建峰, 王聪, 梁福斌, 陈厚川, 田景山, 康鹏, 张旺锋. 新疆机采模式下棉花株行距配置对冠层结构指标及产量的影响. 棉花学报, 2017, 29: 157-165.
Li J F, Wang C, Liang F B, Chen H C, Tian J S, Kang P, Zhang W F. Row spacing and planting density affect canopy structure and yield in machine-picked cotton in Xinjiang. Cotton Sci, 2017, 29: 157-165 (in Chinese with English abstract).
[21] 娄善伟, 赵强, 高云光, 郭仁松, 阿不力克木, 张巨松. 密度对棉花冠层小气候影响及其与棉花相关生理特征和纤维品质的关系. 棉花学报, 2010, 22: 260-266.
Lou S W, Zhao Q, Gao Y G, Guo R S, Abu L K M, Zhang J S. The effect of different density to canopy-microclimate and quality of cotton. Cotton Sci, 2010, 22: 260-266 (in Chinese with English abstract).
[22] 冯国艺. 超高产棉花冠层结构形成机理及调控研究. 石河子大学博士学位论文, 新疆石河子, 2012.
Feng G Y. Study on Formation Mechanism and Regulation of Canopy Structure of Super-high Yield Cotton. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2012 (in Chinese with English abstract).
[23] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响. 作物学报, 2021, 47: 125-137.
Feng K Y, Wang N, Nan H Y, Gao J G. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton. Acta Agron Sin, 2021, 47: 125-137 (in Chinese with English abstract).
[24] 文明, 李明华, 蒋家乐, 马学花, 李容望, 赵文青, 崔静, 刘扬, 马富裕. 氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响. 中国农业科学, 2021, 54: 3473-3487.
Wen M, Li M H, Jiang J L, Ma X H, Li R W, Zhao W Q, Cui J, Liu Y, Ma F Y. Effects of nitrogen, phosphorus and potassium on drip-irrigated cotton growth and yield in northern Xinjiang. Sci Agric Sin, 2021, 54: 3473-3487 (in Chinese with English abstract).
[25] Gao X P, Guo H H, Zhang Q, Guo H X, Zhang L, Zhang C Y, Gou Z Y, Liu Y, Wei J M, Chen A Y, Chu Z H, Zeng F C. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep, 2020, 10: 2084.
[26] 李玲, 董合林, 李鹏程, 田立文, 李春梅, 马云珍, 张娜, 王芳, 徐文修. 机采棉种植方式对不同株型棉花光合特性及干物质积累的影响. 中国农业科技导报, 2022, 24(8): 172-181.
Li L, Dong H L, Li P C, Tian L W, Li C M, Ma Y Z, Zhang N, Wang F, Xu W X. Effects of machine harvesting planting methods on photosynthetic characteristics and dry matter accumulation of different plant types of cotton. J Agric Sci Technol, 2022, 24(8): 172-181 (in Chinese with English abstract).
[27] Andersen M K, Hauggaard-Nielsen H, Weiner J, Jensen E S. Competitive dynamics in two- and three-component intercrops. J Appl Ecol, 2007, 44: 545-551.
[28] Trinder C, Brooker R, Davidson H, Robinson D. Dynamic trajectories of growth and nitrogen capture by competing plants. New Phytol, 2012, 193: 948-958.
[29] 王聪. 棉花机采模式下行距变化对植株生长发育和产量形成的影响. 石河子大学硕士学位论文, 新疆石河子, 2015.
Wang C. Effect of Row Spacing Change on Plant Growth and Yield Formation under Cotton Mechanical Harvesting Mode. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2015 (in Chinese with English abstract).
[30] 张文, 刘铨义, 曾庆涛, 蔡晓莉, 冯杨, 逯涛. 不同株行距配置对机采棉成铃特性及纤维品质的影响. 作物杂志, 2021, (2): 147-152.
Zhang W, Liu Q Y, Zeng Q T, Cai X L, Feng Y, Lu T. Effects of different row spacings on boll characteristics and fiber quality of machine picked cotton. Crops, 2021, (2): 147-152 (in Chinese with English abstract).
[31] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233 (in Chinese with English abstract).
[32] 姜艳, 王鹏, 徐飞, 刘东洋. 种植模式对机采棉生长及棉田水分利用效率的影响. 西北农业学报, 2021, 30: 93-101.
Jiang Y, Wang P, Xu F, Liu D Y. Effects of planting modes on machine-picked cotton growth and water use efficiency. Acta Agric Boreali-Occident Sin, 2021, 30: 93-101 (in Chinese with English abstract).
[33] Yang G Z, Luo X J, Nie Y C, Zhang X L. Effects of plant density on yield and canopy micro environment in hybrid cotton. J Integr Agric, 2014, 13: 2154-2163.
[34] Wang C, Isoda A, Wang P. Growth and yield performance of some cotton cultivars in Xinjiang, China, an arid area with short growing period. J Agron Crop Sci, 2004, 190: 177-183.
[35] 董合忠, 杨国正, 李亚兵, 田立文, 代建龙, 孔祥强. 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017, 43: 631-639.
Dong H Z, Yang G Z, Li Y B, Tian L W, Dai J L, Kong X Q. Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms. Acta Agron Sin, 2017, 43: 631-639 (in Chinese with English abstract).
[36] 张友昌, 黄晓莉, 胡爱兵, 李洪菊, 冯常辉, 李蔚, 张贤红, 罗艳萍, 杨国正. 长江流域麦/油后直播棉花播种时间下限研究. 棉花学报, 2021, 33: 155-168.
Zhang Y C, Huang X L, Hu A B, Li H J, Feng C H, Li W, Zhang X H, Luo Y P, Yang G Z. Study on the limitation of late sowing date on cotton planted after wheat/rape in the Yangtze River Basin. Cotton Sci, 2021, 33: 155-168 (in Chinese with English abstract).
[37] 董合忠, 张艳军, 张冬梅, 代建龙, 张旺锋. 基于集中收获的新型棉花群体结构. 中国农业科学, 2018, 51: 4615-4624.
Dong H Z, Zhang Y J, Zhang D M, Dai J L, Zhang W F. New grouped harvesting-based population structures of cotton. Sci Agric Sin, 2018, 51: 4615-4624 (in Chinese with English abstract).
[38] Bednarz C W, Bridges D C, Brown S M. Analysis of cotton yield stability across population densities. Agron J, 2000, 92: 128.
[39] Zhou J Y, Nie J J, Kong X Q, Dai J L, Zhang Y J, Zhang D M, Cui Z P, Hua Z Q, Li Z H, Dong H Z. Cotton yield stability achieved through manipulation of vegetative branching and photoassimilate partitioning under reduced seedling density and double seedlings per hole. Field Crops Res, 2023, 303: 109117.
[40] Zhi X Y, Han Y C, Li Y B, Wang G P, Du W L, Li X X, Mao S C, Feng L. Effects of plant density on cotton yield components and quality. J Integr Agric, 2016, 15: 1469-1479.
[41] 冯璐, 董合忠. 棉花熟性及其评价指标和方法. 棉花学报, 2022, 34: 458-470.
Feng L, Dong H Z. A review: cotton crop maturity and its predictors. Cotton Sci, 2022, 34: 458-470 (in Chinese with English abstract).
[42] Baker S H. Response of cotton to row patterns and plant Populations. Agron J, 1976, 68: 85-88.
[43] Hawkins B S, Peacock H A. Response of ‘atlas’ cotton to variations in plants per hill and within-row spacings. Agron J, 1971, 63: 611-613.
[44] 敦磊, 李鹏程, 余超, 万素梅, 董合林. 早熟棉区行距与密度互作对棉花产量的影响. 新疆农业科学, 2020, 57: 981-989.
Dun L, Li P C, Yu C, Wan S M, Dong H L. Effects of row spacing and density on cotton yield in early maturity cotton area. Xinjiang Agric Sci, 2020, 57: 981-989 (in Chinese with English abstract).
[45] 杨长琴, 张国伟, 王晓婧, 刘瑞显, 倪万潮. 不同种植模式棉花产量、种植效益与氮素利用率比较分析. 棉花学报, 2021, 33: 307-318.
Yang C Q, Zhang G W, Wang X J, Liu R X, Ni W C. Comparative analysis of cotton yield, benefit and nitrogen efficiency in different planting systems. Cotton Sci, 2021, 33: 307-318 (in Chinese with English abstract).
[46] 王家勇, 张俊尧, 唐江华, 娄善伟, 李文珊, 徐文修, 孟令贻, 何洪涛, 桑军民. 种植密度与缩节胺用量对76 cm等行距棉花株型结构及产量的影响. 干旱地区农业研究, 2024, 42(2): 97-109.
Wang J Y, Zhang J Y, Tang J H, Lou S W, Li W S, Xu W X, Meng L Y, He H T, Sang J M. Effects of planting density and DPC dosage on plant structure and yield of cotton under 76 cm equidistant cultivation. Agric Res Arid Areas, 2024, 42(2): 97-109 (in Chinese with English abstract).
[47] 周相, 冯璐, 刘锦涛, 李亚兵, 杨北方, 李志鹏, 马云珍, 范正义, 王冀川. 不同种植方式和密度对棉花干物质积累特征及产量形成的影响. 山东农业科学, 2022, 54(3): 43-48.
Zhou X, Feng L, Liu J T, Li Y B, Yang B F, Li Z P, Ma Y Z, Fan Z Y, Wang J C. Effects of different planting methods and densities on dry matter accumulation characteristics and yield formation of cotton. Shandong Agric Sci, 2022, 54(3): 43-48 (in Chinese with English abstract).
[48] 史加亮. 行株距配置和密度对棉花生长发育及产量品质的影响. 山东农业大学硕士学位论文, 山东泰安, 2017.
Shi J L. Effects of Row-plant Spacing and Density on Cotton Growth, Yield and Quality. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2017 (in Chinese with English abstract).
[49] 陈兵, 张国蕾, 王静, 刘景德, 李少昆, 余渝, 王方永, 韩焕勇. 机采棉等行距密植模式下棉花脱叶催熟效果研究. 西北农业学报, 2019, 28: 1594-1601.
Chen B, Zhang G L, Wang J, Liu J D, Li S K, Yu Y, Wang F Y, Han H Y. Effect of different defoliants on machine-picked cotton under equal spacing and dense planting model. Acta Agric Boreali-Occident Sin, 2019, 28: 1594-1601 (in Chinese with English abstract).
[50] 李健伟, 吴鹏昊, 肖绍伟, 崔建平, 张巨松. 机采种植模式对不同株型棉花脱叶及纤维品质的影响. 干旱地区农业研究, 2019, 37(1): 82-88.
Li J W, Wu P H, Xiao S W, Cui J P, Zhang J S. Effects of cotton planting modes with machine picking on defoliation and fiber quality of different plant types. Agric Res Arid Areas, 2019, 37(1): 82-88 (in Chinese with English abstract).
[1] 谢章书, 谢学方, 屠小菊, 刘爱玉, 董合忠, 周仲华. 植物激素对棉花蕾铃脱落的调控研究进展[J]. 作物学报, 2025, 51(1): 1-29.
[2] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[3] 张琪祺, 陈杰昌, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 赵思明, 贾才华, 周广生. 高密度直播对油菜冷榨菜籽油品质的影响[J]. 作物学报, 2024, 50(9): 2358-2370.
[4] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[5] 艾莎, 李莎, 方治伟, 李论, 李甜甜, 高利芬, 陈利红, 肖华锋, 万人静, 闫多子, 武星廷, 彭海, 韩瑞玺, 周俊飞. 棉花MNP标记位点开发及其在DNA指纹图谱构建中的应用[J]. 作物学报, 2024, 50(9): 2267-2278.
[6] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响[J]. 作物学报, 2024, 50(6): 1554-1567.
[7] 徐泽, 吴莘玲, 刘震宇, 李涵佳, 冷鑫华, 吴天凡, 陈媛, 张祥, 陈德华. 密度与氮素对夏播棉氮素吸收利用的影响[J]. 作物学报, 2024, 50(6): 1584-1596.
[8] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[9] 乐愉, 王涛, 张献龙, 林忠旭. 陆地棉重组自交系再生能力和遗传转化效率筛选[J]. 作物学报, 2024, 50(5): 1172-1180.
[10] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[11] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[12] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[13] 聂晓玉, 李真, 王天尧, 周元委, 徐正华, 王晶, 汪波, 蒯婕, 周广生. 种植密度对角果期弱光胁迫油菜籽粒油脂积累的影响[J]. 作物学报, 2024, 50(2): 493-505.
[14] 刘雨杭, 赵书宏, 祝婷婷, 梁振宇, 贺大海, 陈佳博, 任勇, 黄林, 樊高琼, 伍碧华. 二氢赤霉素对不同增密条件下蜀麦133冠层光能截获和产量的影响[J]. 作物学报, 2024, 50(11): 2787-2800.
[15] 尚红燕, 普静, 柯会锋, 谷淇深, 孙正文, 杨君, 王国宁, 张艳, 卢怀玉, 徐东永, 吴立强, 马峙英, 王省芬, 吴金华. 不同种植环境下国内外棉花种质资源的遗传多样性分析与评价[J]. 作物学报, 2024, 50(10): 2528-2537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!