作物学报 ›› 2025, Vol. 51 ›› Issue (1): 117-133.doi: 10.3724/SP.J.1006.2025.44077
郭飞翔(), 李春霞(), 周爽, 郭彬彬, 张均, 马超()
GUO Fei-Xiang(), LI Chun-Xia(), ZHOU Shuang, GUO Bin-Bin, ZHANG Jun, MA Chao()
摘要:
R2R3-MYB转录因子家族在植物次生代谢物合成、胁迫应答和生长发育等生命过程起着重要的调控作用。本研究基于生物信息学鉴定了绿豆(Vigna radiata L.)全基因组水平的R2R3-MYB转录因子, 并对其理化性质、系统进化、染色体定位、启动子顺式作用元件及基因结构做了预测分析; 此外, 转录组数据和实时荧光定量PCR (Quantitative Real-time PCR, RT-PCR)分析该转录因子在不同组织、逆境胁迫下的表达模式; 并基于相关分析及蛋白互作网络, 筛选到可能参与调控绿豆类黄酮生物合成的R2R3-MYB成员。结果表明, 共鉴定到168个R2R3-MYB成员, 其中145个分布于11条染色体, 23个成员染色体信息未知; 大多数R2R3-MYB含有3个外显子, 编码99~1645个氨基酸, 均为亲水性蛋白; 系统进化将绿豆R2R3-MYB基因家族分为30个亚组(V1~V30), 不同亚组成员的基因结构存在差异; 共线性分析表明, 片段复制事件均进行了纯化选择; 启动子顺式作用元件分析表明, 绿豆R2R3-MYB基因启动子区含有大量激素响应、胁迫响应及少量的类黄酮合成响应等元件; 基因表达分析表明, 在叶片、叶柄、下胚轴和籽粒种皮中表达量较高的成员分别占15.5%、16.1%、16.1%和10.7%。RT-PCR分析发现, 几乎所有的R2R3-MYB家族成员在低温胁迫下的相对表达量显著下调, 不同成员对逆境胁迫有不同的响应模式。蛋白互作与相关性分析可知, VrMYB6、VrMYB77、VrMYB93这3个基因可能参与了绿豆类黄酮生物合成的调控。
[1] | Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Plant Cell, 2010, 15: 573-581. |
[2] | Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553-3558. |
[3] | Wang X P, Niu Y L, Zheng Y. Multiple functions of MYB transcription factors in abiotic stress responses. Int J Mol Sci, 2021, 22: 6125. |
[4] | Jia L, Clegg M T, Jiang T. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol, 2004, 134: 575-585. |
[5] | Rosinski J A, Atchley W R. Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J Mol Evol, 1998, 46: 74-83. |
[6] | Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447-456. |
[7] | Yang J, Zhang S, Li H Q, Wang L T, Liu Y, Niu L L, Yang Q, Meng D, Fu Y J. Genome-wide analysis and characterization of R2R3-MYB family in pigeon pea (Cajanus cajan L.) and their functional identification in phenylpropanoids biosynthesis. Planta, 2021, 254: 64. |
[8] | 王古悦, 唐慕宁, 牛静雅, 冯雪. 菜豆R2R3-MYB基因家族鉴定及其在BCMV侵染后的表达分析. 山西农业科学, 2023, 51: 1020-1033. |
Wang G Y, Tang M N, Niu J Y, Feng X. Identification of R2R3- MYB gene family in common bean (Phaseolus vulgaris L.) and expression analysis after BCMV infection. J Shanxi Agric Sci, 2023, 51: 1020-1033 (in Chinese with English abstract). | |
[9] | Knight H, Trewavas A J, Knight M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J, 1997, 12: 1067-1078. |
[10] | Van Schie C C, Haring M A, Schuurink R C. Regulation of terpenoid and benzenoid production in flowers. Curr Opin Plant Biol, 2006, 9: 203-208. |
[11] | Cao Y P, Li K, Li Y L, Zhao X P, Wang L H. MYB transcription factors as regulators of secondary metabolism in plants. Biology, 2020, 9: 61. |
[12] | Xie X B, Li S, Zhang R F, Zhao J, Chen Y C, Zhao Q, Yao Y X, You C X, Zhang X S, Hao Y J. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ, 2012, 35: 1884-1897. |
[13] | Naing A H, Kim C K. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Mol Biol, 2018, 98: 1-18. |
[14] | Li S S, Zhang Y J, Shi L Y, Cao S F, Chen W, Yang Z F. Involvement of a MYB transcription factor in anthocyanin biosynthesis during Chinese bayberry (Morella rubra L.) fruit ripening. Biology, 2023, 12: 894. |
[15] | Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui M S, Grotewold E. Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Plant Cell, 2014, 240: 931-940. |
[16] | Chen X S, Wu Y, Yu Z H, Gao Z Y, Ding Q, Shah S H A, Lin W Y, Li Y, Hou X L. BcMYB111 responds to BcCBF2 and induces flavonol biosynthesis to enhance tolerance under cold stress in non-heading Chinese cabbage. Int J Mol Sci, 2023, 24: 8670. |
[17] | Yu Y, Guo D D, Min D H, Cao T, Ning L, Jiang Q Y, Sun X J, Zhang H, Tang W S, Gao S Q, Zhou Y B, Xu Z S, Chen J, Ma Y Z, Chen M, Zhang X H. Foxtail millet MYB-like transcription factor SiMYB16 confers salt tolerance in transgenic rice by regulating phenylpropane pathway. Plant Physiol Biochem, 2023, 195: 310-321. |
[18] | Song Q, Kong L F, Yang X R, Jiao B, Hu J, Zhang Z C, Xu C Z, Luo K M. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. Tree Physiol, 2022, 42: 2133-2147. |
[19] | Dahiya P K, Linnemann A R, Van Boekel M A J S, Khetarpaul N, Grewal R B, Nout M J R. Mung bean: technological and nutritional potential. Crit Rev Food Sci Nutr, 2015, 55: 670-688. |
[20] | Xu H, Zhou Q, Liu B, Cheng K W, Chen F, Wang M F. Neuroprotective potential of mung bean (Vigna radiata L.) polyphenols in alzheimer's disease: a review. J Agric Food Chem, 2021, 69: 11554-11571. |
[21] | 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析. 作物学报, 2024, 50: 957-968. |
Song M Y, Guo Z X, Su Y F, Deng K P, Lan T J, Cheng Y X, Bao S Y, Wang G F, Dou J G, Jiang Z K, Wang M H, Xu N. Transcriptome analysis of a stigma exsertion mutant in mungbean. Acta Agron Sin, 2024, 50: 957-968 (in Chinese with English abstract). | |
[22] | Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027. |
[23] | Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49. |
[24] | Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202. |
[25] | Kang C H, Jung W Y, Kang Y H, Kim J Y, Kim D G, Jeong J C, Baek D W, Jin J B, Lee J Y, Kim M O, Chung W S, Mengiste T, Koiwa H, Kwak S S, Bahk J D, Lee S Y, Nam J S, Yun D J, Cho M J. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ, 2006, 13: 84-95. |
[26] | Yang J H, Zhang B H, Gu G, Yuan J Z, Shen S J, Jin L, Lin Z Q, Lin J F, Xie X F. Genome-wide identification and expression analysis of the R2R3-MYB gene family in tobacco (Nicotiana tabacum L.). BMC Genomics, 2022, 23: 432. |
[27] | 蒋宇佳, 于元平, 孙向一, 周敏, 吴春妍, 李玉华, 刘明稀. 假俭草R2R3-MYB基因家族的鉴定及其在干旱胁迫下的表达模式分析. 草地学报, 2023, 31: 2628-2641. |
Jiang Y J, Yu Y P, Sun X Y, Zhou M, Wu C Y, Li Y H, Liu M X. Identification of R2R3-MYB gene family and analysis of its expression pattern in centipedegrass under drought stress. Acta Agrest Sin, 2023, 31: 2628-2641 (in Chinese with English abstract). | |
[28] | Ren L L, Liu Y J, Liu H J, Qian T T, Qi L W, Wang X R, Zeng Q Y. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of populus class III peroxidase family. Plant Cell, 2014, 26: 2404-2419. |
[29] | 居利香, 雷欣, 赵成志, 舒黄英, 汪志伟, 成善汉. 辣椒MYB基因家族的鉴定及与辣味关系分析. 园艺学报, 2020, 47: 875-892. |
Ju L X, Lei X, Zhao C Z, Shu H Y, Wang Z W, Cheng S H. Identification of MYB family genes and its relationship with pungency of pepper. Acta Hortic Sin, 2020, 47: 875-892 (in Chinese with English abstract). | |
[30] | Gonzalez A, Zhao M Z, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008, 53: 814-827. |
[31] | Millar A A, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 2005, 17: 705-721. |
[32] | Reyes J L, Chua N H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J, 2007, 49: 592-606. |
[33] | Agarwal M, Hao Y J, Kapoor A, Dong C H, Fujii H, Zheng X W, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 281: 37636-37645. |
[34] | Wang Y J, Zhang Y, Fan C J, Wei Y C, Meng J X, Li Z, Zhong C L. Genome-wide analysis of MYB transcription factors and their responses to salt stress in Casuarina equisetifolia. Plant Cell, 2021, 21: 328. |
[35] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析. 作物学报, 2024, 50: 779-821. |
Ju J H, Ma C, Wang T N, Wu Y, Dong Z, Fang M E, Chen Y S, Zhang J, Fu G Z. Genome wide identification and expression analysis of TaPOD family in wheat. Acta Agron Sin, 2024, 50: 779-821 (in Chinese with English abstract). | |
[36] | Byrne M E, Barley R, Curtis M, Arroyo J M, Dunham M, Hudson A, Martienssen R A. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Plant Cell, 2000, 408: 967-971. |
[37] | Cheng H, Song S S, Xiao L T, Soo H M, Cheng Z W, Xie D X, Peng J R. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet, 2009, 5: e1000440. |
[38] | Li J R, Chen X Z, Zhou X X, Huang H L, Wu D D, Shao J Q, Zhan R T, Chen L K. Identification of trihelix transcription factors in Pogostemon cablin reveals PatGT-1 negatively regulates patchoulol biosynthesis. Ind Crops Prod, 2021, 161: 113182. |
[39] | Lou X, Yao S, Chen P Z, Wang D B, Agassin R H, Hou Y Q, Zhang C, Ji K S. Transcriptome identification of R2R3-MYB gene family members in Pinus massoniana and PmMYB4 response to drought stress. Forests, 2023, 14: 410. |
[40] | Shin R, Burch A Y, Huppert K A, Tiwari S B, Murphy A S, Guilfoyle T J, Schachtman D P. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell, 2007, 19: 2440-2453. |
[41] | Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623-635. |
[42] | Fang S Y, Qiu S, Chen K X, Lyu Z Y, Chen W S. The transcription factors SbMYB45 and SbMYB86.1 regulate flavone biosynthesis in Scutellaria baicalensis. Plant Physiol Biochem, 2023, 200: 107794. |
[43] | Xu H S, Dai X, Hu X, Yu H Z, Wang Y, Zheng B S, Xu J, Wu X Q. Phylogenetic analysis of R2R3-MYB family genes in Tetrastigma hemsleyanum Diels et gilg and roles of ThMYB4 and ThMYB7 in flavonoid biosynthesis. Biomolecules, 2023, 13: 531. |
[44] | Ma C, Feng Y L, Zhou S, Zhang J, Guo B B, Xiong Y, Wu S W, Li Y, Li Y J, Li C X. Metabolomics and transcriptomics provide insights into the molecular mechanisms of anthocyanin accumulation in the seed coat of differently colored mung bean (Vigna radiata L.). Plant Physiol Biochem, 2023, 200: 107739. |
[45] | 张静. 气象因素对绿豆种植的影响. 科学大众, 2008, (11): 128. |
Zhang J. The influence of meteorological factors on mung bean cultivation. Popular Sci, 2008, (11): 128 (in Chinese with English abstract). | |
[46] | 陈旭微, 杨玲, 章艺. 低温下的绿豆下胚轴细胞超微结构变化. 植物生理学通讯, 2006, 42: 1099-1102. |
Chen X W, Yang L, Zhang Y. Changes in ultrastructure of hypocotyl cells in Phaseolus radiatus Linn. under low temperature condition. Plant Physiol Commun, 2006, 42: 1099-1102 (in Chinese with English abstract). | |
[47] | Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T A, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell- specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196-1200. |
[48] | Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78. |
[1] | 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968. |
[2] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[3] | 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839. |
[4] | 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187. |
[5] | 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868. |
[6] | 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188. |
[7] | 于奇,冯乃杰,王诗雅,左官强,郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J]. 作物学报, 2019, 45(7): 1080-1089. |
[8] | 王宏民,成小芳,樊艳平,郑海霞,张耀文,张仙红. 绿豆不同品种对绿豆象的抗性初探[J]. 作物学报, 2018, 44(8): 1136-1141. |
[9] | 樊艳平,成小芳,王宏民,张耀文,张仙红. 四个抗豆象绿豆品种的胰蛋白酶抑制剂稳定性[J]. 作物学报, 2018, 44(6): 867-875. |
[10] | 刘长友,苏秋竹,范保杰,曹志敏,张志肖,武晶,程须珍,田静. 栽培绿豆V1128抗豆象基因定位[J]. 作物学报, 2018, 44(12): 1875-1881. |
[11] | 樊艳平,张耀文,赵雪英,张仙红. 抗豆象绿豆胰蛋白酶抑制剂活性及理化性质[J]. 作物学报, 2017, 43(11): 1696-1704. |
[12] | 王建花,张耀文,程须珍,王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析[J]. 作物学报, 2017, 43(07): 1096-1102. |
[13] | 徐宁,陈冰嬬,王明海,包淑英,王桂芳,郭中校. 绿豆品种资源萌发期耐碱性鉴定[J]. 作物学报, 2017, 43(01): 112-121. |
[14] | 王兰芬,武晶,景蕊莲,程须珍,王述民. 绿豆种质资源成株期抗旱性鉴定[J]. 作物学报, 2015, 41(08): 1287-1294. |
[15] | 王兰芬,武晶,景蕊莲,程须珍,王述民. 绿豆种质资源苗期抗旱性鉴定[J]. 作物学报, 2015, 41(01): 145-153. |
|