欢迎访问作物学报,今天是 2025年4月13日 星期日

作物学报 ›› 2025, Vol. 51 ›› Issue (1): 103-116.doi: 10.3724/SP.J.1006.2025.44056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于甘蔗及其近缘属参考基因组开发SSR标记及数据库

匡博文1,2(), 韦妳1,2, 刘金典1,2, 陈美燕1,2, 毛兴洁1,2, 段维兴3,*(), 杨细平1,2,*()   

  1. 1广西大学亚热带农业生物资源保护与利用国家重点实验室, 广西南宁 530004
    2广西大学农学院植物科学国家级实验教学示范中心, 广西南宁 530004
    3广西壮族自治区农业科学院甘蔗研究所, 广西南宁 530004
  • 收稿日期:2024-04-03 接受日期:2024-09-18 出版日期:2025-01-12 网络出版日期:2024-10-10
  • 通讯作者: *段维兴, E-mail: duanweixing84@126.com; 杨细平, E-mail: xipingyang@gxu.edu.cn
  • 作者简介:E-mail: kuangbowen97@163.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1200204);广西科技重大专项项目(桂科AA22117002);崇左市科技计划项目(崇科20220619);广西高校引进海外高层次人才“百人计划”和广西大学大学生创新创业训练计划项目(202110593243)

Development of SSR markers and database based on genomes of sugarcane and its relatives

KUANG Bo-Wen1,2(), WEI Ni1,2, LIU Jin-Dian1,2, CHEN Mei-Yan1,2, MAO Xing-Jie1,2, DUAN Wei-Xing3,*(), YANG Xi-Ping1,2,*()   

  1. 1State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
    2National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    3Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530004, Guangxi, China
  • Received:2024-04-03 Accepted:2024-09-18 Published:2025-01-12 Published online:2024-10-10
  • Contact: *E-mail: duanweixing84@126.com; E-mail: xipingyang@gxu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1200204);Guangxi Science and Technology Major Program(GK-AA22117002);Chongzuo Science and Technology Project(CK20220619);Guangxi Universities Introduce Overseas High-level Talents “Hundred Talent Program”, and the Guangxi University Student Innovation and Entrepreneurship Training Program(202110593243)

摘要:

甘蔗(Saccharum spp. hybrid)是重要的糖料和能源作物。甘蔗基因组复杂, 群体遗传学研究相对落后。目前, 甘蔗参考基因组仍有待完善。利用甘蔗及其近缘属参考基因组开发甘蔗SSR标记及数据库有助于推动甘蔗群体遗传学的研究。本研究基于3个甘蔗种(割手密种、热带种和栽培种)和2个甘蔗近缘种(芒和高粱)的基因组进行SSR检测, 统计各基因组SSR的数量和类型, 挑选多态性好的SSR标记对104份甘蔗及近缘属种质材料进行遗传多样性分析。在5个物种的基因组中共鉴定到了1,860,645个SSR, 以单核苷酸、二核苷酸和三核苷酸重复单元类型为主。基因组间SSR的共线性信息显示, 甘蔗栽培种和其他物种间的亲缘关系由近到远为: R570、热带种、割手密种、芒、高粱; 基于SSR及InDels标记的甘蔗种质资源的遗传多样性分析显示, 斑茅92-105最先被单独划分, 割手密种为一个类群, 大茎野生种和热带种分为一个类群, 栽培种为一个类群。最后, 围绕5个基因组鉴定的SSR以及引物等相关信息, 开发了一个基于Web界面的甘蔗SSR数据库。本研究为甘蔗研究和育种提供了重要的分子工具。

关键词: 甘蔗, SSR标记, 数据库, 全基因重测序

Abstract:

Sugarcane (Saccharum spp. hybrid) is an important crop for both sugar production and bioenergy. However, due to the complexity of the sugarcane genome, research in its population genetics has lagged behind other crops. Currently, the reference genome for sugarcane still requires significant improvements. The development of SSR (Simple Sequence Repeat) markers and databases based on the genomes of sugarcane and its relatives will be instrumental in advancing population genetics research. In this study, we identified SSRs from the genomes of three sugarcane species (Saccharum spontaneum, Saccharum officinarum, and Saccharum spp. hybrid) and two related species (Miscanthus sinensis and Sorghum bicolor). We quantified and categorized the SSRs for each genome, selecting those with high polymorphism for the genetic diversity analysis of 104 sugarcane-related materials. A total of 1,860,645 SSRs were identified across the five genomes, with mononucleotide, dinucleotide, and trinucleotide repeats being the most common. Synteny analysis of SSRs across the genomes revealed the evolutionary relationships among species, with the kinship order from closest to most distant being: R570, Saccharum officinarum, Saccharum spontaneum, Miscanthus sinensis, and Sorghum bicolor. Genetic diversity analysis using SSR and InDel markers showed that Banmao 92-105 was the first to diverge from other samples, with Saccharum spontaneum forming a distinct group, Saccharum robustum and Saccharum officinarum clustering together, and Saccharum spp. hybrid forming its own separate group. Additionally, we developed a web-based database for sugarcane SSRs, which includes the identified SSRs from the five genomes, along with corresponding primers and other related information. This study provides a valuable molecular tool for sugarcane research and breeding efforts.

Key words: sugarcane, SSR marker, database, whole genome re-sequencing

表1

全基因组重测序的甘蔗及近缘种种质"

品种名称
Variety name
物种
Species
来源
Origin
51NG3 Saccharum robustum 中国广西Guangxi, China
福建大野Fujiandaye Saccharum robustum 中国广西Guangxi, China
NG57-012 Saccharum robustum 美国USA
IN84-045 Saccharum robustum 美国USA
IS76-184 Saccharum robustum 美国USA
NG77-043 Saccharum officinarum 美国USA
IJ76-470 Saccharum officinarum 美国USA
Hawaiian Original Saccharum officinarum 美国USA
NG77-042 Saccharum officinarum 美国USA
IJ76-324 Saccharum officinarum 美国USA
CP88-1762 Saccharum spp. hybrid 中国广西Guangxi, China
桂糖42 Guitang 42 Saccharum spp. hybrid 中国广西Guangxi, China
POJ2878 Saccharum spp. hybrid 中国广西Guangxi, China
Q158 Saccharum spp. hybrid 中国广西Guangxi, China
新台糖25 ROC25 Saccharum spp. hybrid 中国广西Guangxi, China
云蔗89-7 Yunzhe 89-7 Saccharum spp. hybrid 中国广西Guangxi, China
SP79-9 Saccharum spontaneum 中国云南Yunnan, China
IN84089 Saccharum spontaneum 美国国家生物技术信息中心National Center for Biotechnology Information, USA
IND81013 Saccharum spontaneum 美国国家生物技术信息中心National Center for Biotechnology Information, USA
SES4A Saccharum spontaneum 美国国家生物技术信息中心National Center for Biotechnology Information, USA
SES517 Saccharum spontaneum 美国国家生物技术信息中心National Center for Biotechnology Information, USA
红高粱Honggaoliang Sorghum bicolor 美国国家生物技术信息中心National Center for Biotechnology Information, USA
斑茅87-36 Banmao 87-36 Erianthus arundinaceum 中国广西Guangxi, China
HBW-1 Narenga porphyrocoma 中国广西Guangxi, China
NG77-022 Miscanthus floridulus 美国国家生物技术信息中心National Center for Biotechnology Information, USA

表2

参考基因组信息"

基因型
Genotype
物种
Species
AP85-441 割手密种Saccharum spontaneum
LA-purple 热带种Saccharum officinarum
R570 栽培种Saccharum spp. hybrid
DH1 Miscanthus sinensis
BTx623 高粱Sorghum bicolor

表3

验证材料信息"

基因型
Genotype
物种
Species
福建大野Fujiandaye 大茎野生种Saccharum robustum
崖城一号Yacheng 1 割手密种Saccharum spontaneum
桂林竹蔗Guilinzhuzhe 热带种Saccharum officinarum
云蔗71-545 Yunzhe 71-545 栽培种Saccharum spp. hybrid
斑茅87-36 Banmao 87-36 斑茅Erianthus arundinaceum

表4

基因组中SSR的分布情况"

物种
Species
割手密种
Saccharum spontaneum
热带种
Saccharum officinarum
栽培种
Saccharum spp. hybrid

Miscanthus sinensis
高粱
Sorghum bicolor
基因组大小Genome size (Mb) 3141 6805 427 2079 709
SSR总数Total SSR number (K) 476 959 67 242 116
基因组中SSR密度 Density of SSR in genomes (No. Mb-1) 152 141 157 117 164
基因区域SSR密度 Density of SSR in the genes (No. Mb-1) 199 189 177 206 284
外显子区域SSR密度 Density of SSR in the exons (No. Mb-1) 138 133 118 166 245

表5

SSR的筛选和多态性分析"

物种
Species
SSR数量 SSR number 多态性信息量
Polymorphism
information
content (PIC)
平均等位基因数
Average
number of
alleles
PIC大于0.5的SSR数量
SSR numbers (PIC > 0.5)
去重前
Before filtering
去重后
After filtering
(%)
重测序数据
可检测
Detected in
resequencing data
具有多态性
Polymorphic SSR
割手密种
Saccharum spontaneum
475,899 288,390 (61%) 103,493 76,457 0.034-0.970 4.14 64,812
热带种
Saccharum officinarum
959,080 441,994 (46%) 183,098 133,053 0.007-0.960 3.88 117,697
栽培种
Saccharum spp. hybrid
67,219 43,172 (64%) 17,326 11,092 0.013-0.960 6.53 9900
高粱
Sorghum bicolor
116,124 72,566 (62%) 9723 1382 0.011-0.940 3.45 955

Miscanthus floridulus
242,323 162,686 (67%) 15,042 2499 0.012-0.880 3.77 1171

图1

SSR在染色体上的分布 A: 热带种; B: 割手密种。a: 单倍染色体基因组; b: 基因组中SSR密度; c: 全基因组重测序中SSR密度; d: 多态性好的SSR的密度; e: 不同基序类型SSR的密度(个 Mb−1)。"

表6

基因组中SSR的去重结果"

物种
Species
初始SSR数量
Raw SSRs number
保留SSR数量
Retained SSRs number
占比
Proportion (%)
栽培种Saccharum spp. hybrid 67,219 52,418 84
Miscanthus floridulus 242,323 175,647 79
高粱Sorghum bicolor 116,124 82,258 78
割手密种Saccharum spontaneum 475,899 252,458 57
热带种Saccharum officinarum 959,080 394,732 45

图2

甘蔗及其近缘属基因组种间与种内SSR共线性 A: 割手密种同源染色体间: 以1号染色体为例; B: 热带种同源染色体间: 以1号染色体为例; C: 不同物种染色体间。"

表7

物种间的SSR共线性信息"

物种
Species
高粱
Sorghum bicolor

Miscanthus sinensis
割手密种
Saccharum
spontaneum
热带种
Saccharum
officinarum
栽培种
Saccharum spp. hybrid
高粱Sorghum bicolor
Miscanthus sinensis 1962
割手密种Saccharum spontaneum 2323 10,993
热带种Saccharum officinarum 3521 15,382 80,127
栽培种Saccharum spp. hybrid 1280 3221 14,751 35,865

表8

不同基序类型的SSR密度"

物种
Species
割手密种
Saccharum
spontaneum
栽培种
Saccharum spp. hybrid
热带种
Saccharum
officinarum
高粱
Sorghum
bicolor

Miscanthus
sinensis
单核苷酸Mono 66.22 75.48 60.35 69.18 51.18
二核苷酸Di 34.30 34.60 34.93 40.65 30.76
三核苷酸Tri 36.78 31.12 31.30 32.33 23.73
四核苷酸Tetra 2.73 3.03 2.46 5.69 1.27
五核苷酸Penta 1.02 1.52 1.22 1.10 0.43
六核苷酸Hexa 0.86 0.97 0.91 0.82 0.60

表9

用于甘蔗种质资源材料鉴定的21个分子标记的信息"

引物名称
Primer name
基序类型
Motif type
引物序列
Primer sequence (5°-3°)
1D15 (GT)6 F: ACTTCGTAGCATCCCTGTTC
R: TCACCATACGTAATAGTGGC
2A43 (TC)11 F: AGTCGTGCTAAACATAAGCC
R: ATGTCGACAGTCAGCCATTA
2A63 (AGAA)12 F: CATTTGTATTCAACGAGCAC
R: CGTGCAGGAATGAAGAACCT
2B56 (AGAA)5 F: CATTTGTATTCAACGAGCAC
R: CGTGCAGGAATGAAGAACCT
2C63 (AGAA)12 F: CATTTGTATTCAACGAGCAC
R: CGTGCAGGAATGAAGAACCT
2D38 (TCT)11 F: CAGGTTTCCAGTGCCTTACG
R: ATTGAGTCCACAACCAGCTG
2D94 (AGC)7 F: CTGTAAAGCCCGAGTCACTG
R: TCGATGGCGTACAATCACTA
3B87 (CT)7 F: GTCCTCGATTGGCCTGTCAA
R: GTGTACGGGGTTCAGATCTT
4A61 (A)14 F: CGGGATTCCTTACAAACTCA
R: GACGGACGTCCTGAGCATTA
4B15 (CT)9 F: AGGTATACATGCTCAAGTGC
R: GGCACGAAGAATAGCACTTC
5A15 (AAC)6 F: TAGCCGGTGGTTTCGAACAC
R: GTGCCTGAACCGTGATTAGG
5A39 (TG)38 F: ATTTCCTCAGTTGGCAACTC
R: CACGGCCATTGCTAATTTTC
5B17 (AC)20 F: CACGGCCATTGCTAATTTTC
R: ATTTCCTCAGTTGGCAACTC
5D17 (AAC)6 F: TAGCCGGTGGTTTCGAACAC
R: CGTGCCTGAACCGTGATTAG
5D36 (GTTG)7 F: ACTCGGAATTTCGATGTGGC
R: CGAATCCACTCGTACATGCA
IRG2 A/AACACAAACCTATGTCCATGAACATAAA F: TTGCTTACAGTTTAGTTTCGTGGC
R: ACCCAAGTGAGTACATGTTTAGGC
IRG4 A/AGAGGGTGGTTCT F: TTGCATGTCTAAGGATTTGGCAAG
R: GCAAAGAGAGCAAAAGAGTCATCA
IRG5 T/TCTGGCTACGAGCAAGCTGCTCTCCAGGCTATATCCTTCCTGCA F: GGGATTGAAATTGAAGTTCCCTGT
R: TGCACTGAACTACACCCTCAAAAT
ID_1 A/AAGTTCATCTGGAATAGTCATGCTCCTCCAA F: AAACTTGATTCCGGCAGCCTTTA
R: CAAAGACTATGTGTGTGCTTGTCT
ID_4 T/TTACTATAAGAGTCA F: AGGCTTGTAGCCTCCCAAAAGATG
R: GGTTAACTGCACAACTGAGACCAA
ID_6 C/CCTACAATCCTCCGGGAGAGCTGTGGCATCATCCTCA F: ATATCCAAAGTCCTCATCCGATCC
R: TGATGGGTTCTTCACACTACCAAT

图3

SSR标记的验证 A: 引物2A43电泳结果; B: 引物5A15电泳结果。M: 500 bp DNA Ladder; 1: 福建大野(大茎野生种); 2: 崖城1号(割手密种); 3: 桂林竹蔗(热带种); 4: 云蔗71-545 (栽培种); 5: 斑茅87-36 (斑茅)。"

图4

甘蔗及甘蔗近缘种材料的UPGMA聚类图"

图5

甘蔗及其近缘种基因组SSR数据库 A: 网站主页; B: SSR标记页; C: SSR分析页; D: 物种介绍页; E: JBrowse功能页; F: BLAST页。"

[1] 陈如凯, 林彦铨, 张木清. 现代甘蔗育种的理论与实践. 北京: 中国农业出版社, 2003.
Chen R K, Lin Y Q, Zhang M Q. Theory and Practice of Modern Sugarcane Breeding. Beijing: China Agriculture Press, 2003 (in Chinese).
[2] Goldemberg J, Coelho S T, Guardabassi P. The sustainability of ethanol production from sugarcane. Energy Policy, 2008, 36: 2086-2097.
[3] 董广蕊, 石佳仙, 侯藹玲, 张积森. 甘蔗基因组研究进展. 生物技术, 2018, 28: 296-301.
Dong G R, Shi J X, Hou A L, Zhang J S. Advances of research on Saccharum L. genomics. Biotechnology, 2018, 28: 296-301 (in Chinese with English abstract).
[4] Kim C, Lee T H, Compton R O, Robertson J S, Pierce G J, Paterson A H. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin. Plant Mol Biol, 2013, 81: 139-147.
[5] 王海莲, 管延安, 张华文, 杨延兵, 秦岭. 高粱基因组学研究进展. 基因组学与应用生物学, 2009, 28: 549-556.
Wang H L, Guan Y A, Zhang H W, Yang Y B, Qin L. Advances in the study on sorghum genomics. Genom Appl Biol, 2009, 28: 549-556 (in Chinese with English abstract).
[6] Zhang G B, Ge C X, Xu P P, Wang S K, Cheng S N, Han Y B, Wang Y C, Zhuang Y B, Hou X W, Yu T, Xu X T, Deng S H, Li Q Q, Yang Y Q, Yin X R, Wang W D, Liu W X, Zheng C X, Sun X Z, Wang Z L, Ming R, Dong S T, Ma J X, Zhang X S, Chen C X. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Nat Plants, 2021, 7: 608-618.
[7] 方静平, 阙友雄, 陈如凯. 甘蔗属起源及其与近缘属进化关系研究进展. 热带作物学报, 2014, 35: 816-822.
Fang J P, Que Y X, Chen R K. A review of Saccharum origin and its evolutionary relationship with related Genera. Chin J Trop Crops, 2014, 35: 816-822 (in Chinese with English abstract).
[8] Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Van Sluys M A, Swaminathan K, Town C, Bergès H, Simmons B, Glaszmann J C, van der Vossen E, Henry R, Schmutz J, D’Hont A. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018, 9: 2638.
[9] Healey A L, Garsmeur O, Lovell J T, Shengquiang S, Sreedasyam A, Jenkins J, Plott C B, Piperidis N, Pompidor N, Llaca V, Metcalfe C J, Doležel J, Cápal P, Carlson J W, Hoarau J Y, Hervouet C, Zini C, Dievart A, Lipzen A, Williams M, Boston L B, Webber J, Keymanesh K, Tejomurthula S, Rajasekar S, Suchecki R, Furtado A, May G, Parakkal P, Simmons B A, Barry K, Henry R J, Grimwood J, Aitken K S, Schmutz J, D’Hont A. The complex polyploid genome architecture of sugarcane. Nature, 2024, 628: 804-810.
[10] Zhang J S, Zhang X T, Tang H B, Zhang Q, Hua X T, Ma X K, Zhu F, Jones T, Zhu X G, Bowers J, Wai C M, Zheng C F, Shi Y, Chen S, Xu X M, Yue J J, Nelson D R, Huang L X, Li Z, Xu H M, Zhou D, Wang Y J, Hu W C, Lin J S, Deng Y J, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L M, Yu L, Xin Y H, Ge L F, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W P, Ma Y H, Ma P P, Lyu M J, Chen F M, Zheng G Y, Xu J S, Yang Z H, Deng F, Chen X Q, Liao Z Y, Zhang X X, Lin Z C, Lin H, Yan H S, Kuang Z, Zhong W M, Liang P P, Wang G F, Yuan Y, Shi J X, Hou J X, Lin J X, Jin J J, Cao P J, Shen Q C, Jiang Q, Zhou P, Ma Y Y, Zhang X D, Xu R R, Liu J, Zhou Y M, Jia H F, Ma Q, Qi R, Zhang Z L, Fang J P, Fang H K, Song J J, Wang M J, Dong G R, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X P, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q Y, Wang J P, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
[11] Mitros T, Session A M, James B T, Wu G A, Belaffif M B, Clark L V, Shu S Q, Dong H X, Barling A, Holmes J R, Mattick J E, Bredeson J V, Liu S Y, Farrar K, Głowacka K, Jeżowski S, Barry K, Chae W B, Juvik J A, Gifford J, Oladeinde A, Yamada T, Grimwood J, Putnam N H, De Vega J, Barth S, Klaas M, Hodkinson T, Li L G, Jin X L, Peng J H, Yu C Y, Heo K, Yoo J H, Ghimire B K, Donnison I S, Schmutz J, Hudson M E, Sacks E J, Moose S P, Swaminathan K, Rokhsar D S. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Plant Cell, 2020, 11: 5442.
[12] 周胜芳, 夏豫川, 刘钰, 邓春莉, 孙蕾, 任羽. 石斛SSR分子标记的研究进展. 分子植物育种, 2023, 21: 1239-1254.
Zhou S F, Xia Y C, Liu Y, Deng C L, Sun L, Ren Y. Advances in SSR molecular markers of Dendrobium. Plant Cell, 2023, 21: 1239-1254 (in Chinese with English abstract).
[13] 陈跃进, 张桂权, 卢永根. 利用微卫星分子标记法研究水稻亲缘关系. 湖南农业大学学报(自然科学版), 2007, 33: 258-261.
Chen Y J, Zhang G Q, Lu Y G. Genetic relationship of rice based on STMS analysis. J Hunan Agric Univ (Nat Sci), 2007, 33: 258-261 (in Chinese with English abstract).
[14] 郭衍龙, 郭承亮, 周广成, 袁国保, 耿月明, 王世才, 王清华. 利用SSR标记分析24份玉米种质亲缘关系. 中国种业, 2014, (12): 48-49.
Guo Y L, Guo C L, Zhou G C, Yuan G B, Geng Y M, Wang S C, Wang Q H. Genetic relationship analysis of 24 maize germplasm by SSR markers. China Seed Ind, 2014, (12): 48-49 (in Chinese).
[15] Wang H Y, Wang X E, Chen P D, Liu D J. Assessment of genetic diversity of Yunnan, Tibetan, and Xinjiang wheat using SSR markers. J Genet Genomics, 2007, 34: 623-633.
[16] 胡杨, 李赟, 黄有总, 刘平武. 利用SSR与RAPD分子标记评估甘蔗品种的遗传多样性. 基因组学与应用生物学, 2016, 35: 2494-2503.
Hu Y, Li Y, Huang Y Z, Liu P W. Genetic diversity evaluation of sugarcane varieties using SSR and RAPD markers. Genom Appl Biol, 2016, 35: 2494-2503 (in Chinese with English abstract).
[17] 汪洲涛, 游倩, 高世武, 王春风, 李竹, 马晶晶, 阙友雄, 许莉萍, 罗俊. 甘蔗品种的AFLP和SSR标记鉴定及其应用. 作物学报, 2018, 44: 723-736.
Wang Z T, You Q, Gao S W, Wang C F, Li Z, Ma J J, Que Y X, Xu L P, Luo J. Identification of sugarcane varieties by AFLP and SSR markers and its application. Acta Agron Sin, 2018, 44: 723-736 (in Chinese with English abstract).
[18] 单红丽, 李文凤, 黄应昆, 王晓燕, 张荣跃, 李婕, 尹炯, 仓晓燕. 甘蔗抗褐锈病基因定位亲本间多态性SSR标记筛选. 核农学报, 2019, 33: 2119-2125.
Shan H L, Li W F, Huang Y K, Wang X Y, Zhang R Y, Li J, Yin J, Cang X Y. Screening of polymorphic SSR molecular markers between resistant and susceptible parents for localization of brown rust resistance gene. J Nucl Agric Sci, 2019, 33: 2119-2125 (in Chinese with English abstract).
[19] 徐超华, 刘新龙, 毛钧, 刘洪博, 林秀琴, 陆鑫, 苏火生. 基于SSR分子标记数据构建割手密核心种质库. 湖南农业大学学报(自然科学版), 2020, 46: 657-663.
Xu C H, Liu X L, Mao J, Liu H B, Lin X Q, Lu X, Su H S. Construction of a core-collection of Saccharum spontaneum based on SSR molecular markers. J Hunan Agric Univ (Nat Sci), 2020, 46: 657-663 (in Chinese with English abstract).
[20] Pan Y B. Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. Am J Plant Sci, 2010, 1: 87-94.
[21] Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics, 2017, 33: 2583-2585.
[22] Quinlan A R, Hall I M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010, 26: 841-842.
[23] Gu Z G, Gu L, Eils R, Schlesner M, Brors B. Circlize Implements and enhances circular visualization in R. Bioinformatics, 2014, 30: 2811-2812.
[24] Gu Z G, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 2016, 32: 2847-2849.
[25] Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 2016, 4: e2584.
[26] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
[27] Shen W, Le S, Li Y, Hu F Q. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One, 2016, 11: e0163962.
[28] Langmead B, Trapnell C, Pop M, Salzberg S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009, 10: R25.
[29] Boratyn G M, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden T L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinf, 2019, 20: 405.
[30] Zhang Z H, Deng Y J, Tan J, Hu S N, Yu J, Xue Q Z. A genome- wide microsatellite polymorphism database for the indica and Japonica rice. DNA Res, 2007, 14: 37-45.
[31] 吕远大, 李坦, 石丽, 张晓林, 赵涵. 基于全基因组重测序信息开发玉米H99自交系特异分子标记. 作物学报, 2014, 40: 191-197.
Lyu Y D, Li T, Shi L, Zhang X L, Zhao H. Next-generation sequencing for molecular marker development in maize inbred H99. Acta Agron Sin, 2014, 40: 191-197 (in Chinese with English abstract).
[32] 崔婷, 王长彪, 韩斌, 赵兴华, 刘江, 任永康, 牛瑜琦, 唐朝晖. “中国春”小麦全基因组中特异SSR标记的发掘及其分布特征. 山西农业科学, 2017, 45: 877-880.
Cui T, Wang C B, Han B, Zhao X H, Liu J, Ren Y K, Niu Y Q, Tang Z H. Excavation and distribution characteristics of specific SSR markers in genome-wide of “Chinese spring” wheat. J Shanxi Agric Sci, 2017, 45: 877-880 (in Chinese with English abstract).
[33] 李珂, 王宇龙, 李栋, 史新娥, 杨公社, 于太永. 畜禽泛基因组研究进展. 畜牧兽医学报, 2023, 54: 3595-3604.
Li K, Wang Y L, Li D, Shi X E, Yang G S, Yu T Y. Advances in pan-genome study of livestock and poultry. Acta Vet Zootechnica Sin, 2023, 54: 3595-3604 (in Chinese with English abstract).
[34] Zhao X Y, Tian Y L, Yang R H, Feng H P, Ouyang Q J, Tian Y, Tan Z Y, Li M F, Niu Y L, Jiang J H, Shen G L, Yu R Q. Coevolution between simple sequence repeats (SSRs) and virus genome size. BMC Genomics, 2012, 13: 435.
[35] Behura S K, Severson D W. Motif mismatches in microsatellites: insights from genome-wide investigation among 20 insect species. DNA Res, 2015, 22: 29-38.
[36] 林恩文, 林榕榕, 陈钦常, 雷雯, 徐秀明, 方静平. 龙眼全基因组和转录本序列SSR位点的鉴定. 福建农林大学学报(自然科学版), 2022, 51: 493-501.
Lin E W, Lin R R, Chen Q C, Lei W, Xu X M, Fang J P. SSR loci analysis in genome and transcriptome of Longan. J Fujian Agric For Univ (Nat Sci Edn), 2022, 51: 493-501 (in Chinese with English abstract).
[37] Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res, 2000, 10: 967-981.
[38] Lawson M J, Zhang L Q. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol, 2006, 7: R14.
[39] Yu J K, Rota M L, Kantety R V, Sorrells M E. EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics, 2004, 271: 742-751.
[40] Chen H M, Li L Z, Wei X Y, Li S S, Lei T D, Hu H Z, Wang H G, Zhang X S. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328-2336.
[41] Biswas M K, Chai L J, Mayer C, Xu Q, Guo W W, Deng X X. Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus. Mol Biol Rep, 2012, 39: 5373-5386.
[42] 李雪. 苜蓿种质资源表型和SSR分子标记遗传多样性研究. 宁夏大学硕士学位论文, 宁夏银川, 2020.
Li X. Study on Genetic Diversity of Alfalfa (Medicago sativa) Germplasm Phenotypes and SSR Molecular Markers. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2020 (in Chinese with English abstract).
[43] Grivet L, Daniels C, Glaszmann J C, D’Hont A. A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobot Res Appl, 2004, 2: 9.
[44] D’Hont A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res, 2005, 109: 27-33.
[45] Zhang J S, Zhang Q, Li L T, Tang H B, Zhang Q, Chen Y, Arrow J, Zhang X T, Wang A Q, Miao C Y, Ming R. Recent polyploidization events in three Saccharum founding species. Plant Biotechnol J, 2019, 17: 264-274.
[46] 蔡斌, 李成慧, 姚泉洪, 周军, 陶建敏, 章镇. 葡萄全基因组SSR分析和数据库构建. 南京农业大学学报, 2009, 32(4): 28-32.
Cai B, Li C H, Yao Q H, Zhou J, Tao J M, Zhang Z. Analysis of SSRs in grape genome and development of SSR database. J Nanjing Agric Univ, 2009, 32(4): 28-32 (in Chinese with English abstract).
[47] 陈峥. 甘蔗割手密种基因组数据库的构建. 福建农林大学硕士学位论文, 福建福州, 2019.
Chen Z. SGD: the Sugarcane Saccharum spontaneum Genome Database. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2019 (in Chinese with English abstract).
[48] Wang T Y, Wang B Y, Hua X T, Tang H B, Zhang Z Y, Gao R T, Qi Y Y, Zhang Q, Wang G, Yu Z H, Huang Y J, Zhang Z, Mei J, Wang Y H, Zhang Y X, Li Y H, Meng X, Wang Y J, Pan H R, Chen S Q, Li Z, Shi H H, Liu X L, Deng Z H, Chen B S, Zhang M Q, Gu L F, Wang J P, Ming R, Yao W, Zhang J S. A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus. Nat Plants, 2023, 9: 554-571.
[49] 徐志军, 赵胜, 胡小文, 孔冉, 苏俊波, 刘洋. 基于甘蔗AP85-441和R570基因组参考序列的微卫星位点鉴定和SSR标记开发. 热带作物学报, 2020, 41: 722-729.
Xu Z J, Zhao S, Hu X W, Kong R, Su J B, Liu Y. Development, characterization and speciality of microsatellite markers in AP85-441 and R570 genomic reference sequences. Chin J Trop Crops, 2020, 41: 722-729 (in Chinese with English abstract).
[1] 郑栋, 周仙莉, 滕长才, 侯万伟, 张红岩, 刘玉皎. 基于SSR标记的青海蚕豆品种亲缘关系分析与指纹图谱构建[J]. 作物学报, 2025, 51(1): 79-90.
[2] 李旭娟, 李纯佳, 田春艳, 孔春艳, 徐超华, 刘新龙. 甘蔗硝酸盐转运蛋白1/肽转运蛋白家族6.4基因(ScNPF6.4)克隆及其调控分蘖功能分析[J]. 作物学报, 2024, 50(8): 2131-2142.
[3] 玉泉馨, 杨宗桃, 张海, 程光远, 焦文迪, 曾康, 罗廷绪, 黄国强, 王璐, 徐景升. 甘蔗类钙调素ScCML13与SCMV运动蛋白P3N-PIPO的互作研究[J]. 作物学报, 2024, 50(7): 1855-1866.
[4] 薛丽, 李心怡, 黄勇泰, 欧财篮, 吴小青, 余泽怀, 崔泽田, 张木清, 邓祖湖, 余凡. 甘蔗与斑茅杂交染色体组构成特征研究[J]. 作物学报, 2024, 50(3): 633-644.
[5] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324.
[6] 陈志凯, 周仙莉, 张红岩, 滕长才, 侯万伟. 320份蚕豆蛋白质含量的SSR关联分析[J]. 作物学报, 2024, 50(11): 2775-2786.
[7] 王恒波, 冯春燕, 张以星, 谢婉婕, 杜翠翠, 吴明星, 张积森. 甘蔗割手密种转录因子NAP亚家族的鉴定及SsNAP2a参与叶片衰老的功能分析[J]. 作物学报, 2024, 50(1): 110-125.
[8] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397.
[9] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[10] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[11] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[12] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[13] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[14] 李赢, 刘海翠, 石吕, 石晓旭, 韩笑, 刘建, 魏亚凤. 江苏裸大麦种质资源遗传多样性和群体结构分析[J]. 作物学报, 2023, 49(10): 2687-2697.
[15] 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676.
Viewed
Full text
182
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 5 4 0 173

  From Others local
  Times 11 171
  Rate 6% 94%

Abstract
207
Just accepted Online first Issue
26 0 181
  From local
  Times 207
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .