作物学报 ›› 2025, Vol. 51 ›› Issue (1): 91-102.doi: 10.3724/SP.J.1006.2025.41028
马敏虎1,2(
), 常华瑜1,2, 陈朝燕2, 仁增2, 刘廷辉3, 邢国芳1,*(
), 郭刚刚2,*(
)
MA Min-Hu1,2(
), CHANG Hua-Yu1,2, CHEN Zhao-Yan2, REN Zeng2, LIU Ting-Hui3, XING Guo-Fang1,*(
), GUO Gang-Gang2,*(
)
摘要:
苗草工厂为实现草食动物的饲草周年供应提供了新的解决方案。针对苗草生产的品种需求, 本研究对124份中国大麦育成品种(系)与种质开展了苗草转化率鉴定和生物量调控位点发掘。结果显示, 大麦种子萌动后, 水培条件下苗草生物量呈指数增长趋势并在7 d后进入平台期。在植物工厂条件下, 鉴定出冬青16、扎青6号等10个高苗草转化率品种且分析发现苗草生物量与籽粒千粒重呈一定的负相关。进一步通过全基因组关联分析, 共鉴定到12个苗草生物量相关QTL位点, 从中预测出8个调控苗草生物量的候选基因。本研究不仅为大麦苗草工厂化生产筛选出高转化率品种, 同时也为苗草专用型大麦品种的遗传改良奠定了基础。
| [1] | Badea A, Tucker J R, Sabra A, Netticadan T, Blackwell B, Yu L P, Kodikara C, Wijekoon C. Endogenic phenolic compounds of barley as potential biomarkers related to grain mycotoxin production and cultivar selection. Biology, 2023, 12: 1306. |
| [2] | 赵盟, 王春超, 张仁旭, 窦婷语, 裴红红, 郭爱奎, 李姗姗, 吴斌, 刘敏轩, 高佳, 张京, 邢国芳, 王化俊, 孟亚雄, 郭刚刚. 中国大麦育成品种产量相关性状鉴定评价. 植物遗传资源学报, 2022, 23: 1371-1382. |
| Zhao M, Wang C C, Zhang R X, Dou T Y, Pei H H, Guo A K, Li S S, Wu B, Liu M X, Gao J, Zhang J, Xing G F, Wang H J, Meng Y X, Guo G G. Evaluation of the yield-related traits of Chinese barley cultivars. J Plant Genet Resour, 2022, 23: 1371-1382 (in Chinese with English abstract). | |
| [3] | 邹俊杰. 大麦幼苗叶片营养成分和嫩叶汁粉制备及其提取物抗氧化研究. 西南农业大学硕士学位论文, 重庆, 2002. |
| Zou J J. Studies on Nutritional Components in Barley Leaves and Technics of Producing Leaf Juice Powder and Antioxidative Ability of Leaf Extract Solution. MS Thesis of Southwest Agricultural University, Chongqing, China, 2002 (in Chinese with English abstract). | |
| [4] | Havlíková L, Šatínský D, Opletal L, Solich P. A fast determination of chlorophylls in barley grass juice powder using HPLC fused-core column technology and HPTLC. Food Anal Method, 2014, 7: 629-635. |
| [5] | Naik P K, Swain B K, Singh N P. Production and utilization of hydroponics fodder. Indian J Anim Nutr, 2015, 32: 1-9. |
| [6] | 杨金钰. 水培大麦苗生长及饲用营养物质代谢对不同光配方和氮素的响应. 新疆农业大学博士学位论文, 新疆乌鲁木齐, 2022. |
| Yang J Y. Responses of Seedling Growth and Feed Nutrient Metabolism of Hydroponic Barley in Different Light Formulas and Nitrogen Level. PhD Dissertation of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2022 (in Chinese with English abstract). | |
| [7] | 黄万里. 不同水培时间大麦苗的营养价值测定. 河南科技大学硕士学位论文, 河南洛阳, 2019. |
| Huang W L. Determination of Nutritive Value of Barley Green Fodder Cultivated in Hydroponic System. MS Thesis of Henan University of Science and Technology, Luoyang, Henan, China, 2019 (in Chinese with English abstract). | |
| [8] | 黄万里, 王建平, 刘宁, 卜登攀. 不同水培时间下大麦苗的营养价值及CNCPS组分. 草业科学, 2019, 36: 1811-1818. |
| Huang W L, Wang J P, Liu N, Bu D P. Determination of nutritive value and analysis of the CNCPS contents in barley grass cultivated using a hydroponic system. Pratac Sci, 2019, 36: 1811-1818 (in Chinese with English abstract). | |
| [9] | 任澎, 冯娟, 李若诚, 刘建新, 王迪铭. 体外产气法评价水培大麦苗替代苜蓿、燕麦对奶牛瘤胃发酵特性的影响. 中国畜牧杂志, 2022, 58(9): 233-237. |
| Ren P, Feng J, Li R C, Liu J X, Wang D M. Evaluation of the barley seedlings replacing alfalfa and oat on rumen fermentation characteristics of dairy cows using gas production method in vitro. Chin J Anim Sci, 2022, 58(9): 233-237 (in Chinese with English abstract). | |
| [10] | 刘辉, 王建, 杨刚. 大麦芽对黑羽乌骨鸡产蛋性能的影响. 黑龙江畜牧兽医, 1999, (10): 37. |
| Liu H, Wang J, Yang G. Effect of barley malt on the egg-laying performance of black-feathered silkie. Heilongjinag J Anim Sci Vet Med, 1999, (10): 37 (in Chinese). | |
| [11] | Zang Y, Richards A T, Seneviratne N, Gutierrez Oviedo F A, Harding R, Ranathunga S, McFadden J W. Replacing conventional concentrates with sprouted barley or wheat: effects on lactational performance, nutrient digestibility, and milk fatty acid profile in dairy cows. J Dairy Sci, 2024, 107: 5529-5541. |
| [12] | Nguyen T C T, Obermeier C, Friedt W, Abrams S R, Snowdon R J. Disruption of germination and seedling development in Brassica napus by mutations causing severe seed hormonal imbalance. Front Plant Sci, 2016, 7: 322. |
| [13] | Rani H, Bhardwaj R D. Quality attributes for barley malt: “the backbone of beer”. J Food Sci, 2021, 86: 3322-3340. |
| [14] | Solgajová M, Dráb Š, Mareček J. Changes in the content of β-glucans during the malting process. J Microb Biotech Food Sci, 2022, 12: e6001. |
| [15] | Cornaggia C, Evans D E, Draga A, Mangan D, McCleary B V. Prediction of potential malt extract and beer filterability using conventional and novel malt assays. J Inst Brew, 2019, 125: 294-309. |
| [16] | Andriotis V M E, Rejzek M, Barclay E, Rugen M D, Field R A, Smith A M. Cell wall degradation is required for normal starch mobilization in barley endosperm. Sci Rep, 2016, 6: 33215. |
| [17] | Sakamoto K, Nagatani A. Nuclear localization activity of phytochrome B. Plant J, 1996, 10: 859-868. |
| [18] | Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, Bauer D, Adám E, Schäfer E, Nagy F. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell, 2002, 14: 1541-1555. |
| [19] | Zhao Y, Shi H, Pan Y, Lyu M H, Yang Z X, Kou X X, Deng X W, Zhong S W. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell, 2023, 186: 1230-1243. |
| [20] | Neumann K, Zhao Y S, Chu J T, Keilwagen J, Reif J C, Kilian B, Graner A. Genetic architecture and temporal patterns of biomass accumulation in spring barley revealed by image analysis. BMC Plant Biol, 2017, 17: 137. |
| [21] | Khan W A, Penrose B, Shabala S, Zhang X Q, Cao F B, Zhou M X. Mapping QTL for mineral accumulation and shoot dry biomass in barley under different levels of zinc supply. Int J Mol Sci, 2023, 24: 14333. |
| [22] | Tezuka D, Cho H, Tezuka D, Cho H, Onodera H, Linghu Q Y, Chijimatsu T, Hata M, Imai R. Redirecting barley breeding for grass production through genome editing of Photoperiod-H1. Plant Physiol, 2024, 195: 287-290. |
| [23] | Schilling R K, Marschner P, Shavrukov Y, Berger B, Tester M, Roy S J, Plett D C. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J, 2014, 12: 378-386. |
| [24] | Sivamani E, Bahieldin1 A, Wraith J M, Al-Niemi T, Dyer W E, Ho T D, Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci, 2000, 155: 1-9. |
| [25] | Tiong J, Sharma N, Sampath R, MacKenzie N, Watanabe S, Metot C, Lu Z J, Skinner W, Lu Y Z, Kridl J, Baumann U, Heuer S, Kaiser B, Okamoto M. Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley. Front Plant Sci, 2021, 12: 628521. |
| [26] | Huang W T, Nie H P, Feng F, Wang J, Lu K, Fang Z M. Altered expression of OsNPF7.1 and OsNPF7.4 differentially regulates tillering and grain yield in rice. Plant Sci, 2019, 283: 23-31. |
| [27] | Dai X Y, Wang Y Y, Zhang W H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot, 2016, 67: 947-960. |
| [28] | Alam M S, Kong J R, Tao R F, Ahmed T, Alamin M, Alotaibi S S, Abdelsalam N R, Xu J H. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants (Basel), 2022, 11: 1184. |
| [29] | Xu D D, Dondup D, Dou T Y, Wang C C, Zhang R X, Fan C F, Guo A K, Lhundrup N, Ga Z, Liu M X, Wu B, Gao J, Zhang J, Guo G G. HvGST plays a key role in anthocyanin accumulation in colored barley. Plant J, 2023, 113: 47-59. |
| [30] | Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904-909. |
| [31] | Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348-354. |
| [32] | Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X Q, Angessa T T, Zhou G F, Tan C, Hill C, Wang P H, Schreiber M, Boston L B, Plott C, Jenkins J, Guo Y, Fiebig A, Budak H, Xu D D, Zhang J, Wang C C, Grimwood J, Schmutz J, Guo G G, Zhang G P, Mochida K, Hirayama T, Sato K, Chalmers K J, Langridge P, Waugh R, Pozniak C J, Scholz U, Mayer K F X, Spannagl M, Li C D, Mascher M, Stein N. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588: 284-289. |
| [33] | Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q S, Barrero R A, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S J, Chapman B, Dai F, Han Y, Li H, Li X, Lin C Y, McCooke J K, Tan C, Wang P H, Wang S B, Yin S Y, Zhou G F, Poland J A, Bellgard M I, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer G J, Clark M D, Caccamo M, Schulman A H, Mayer K F X, Platzer M, Close T J, Scholz U, Hansson M, Zhang G P, Braumann I, Spannagl M, Li C D, Waugh R, Stein N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544: 427-433. |
| [34] | 王其飞. 大麦幼苗和籽粒大小性状的QTL定位及候选基因预测. 华中农业大学博士学位论文, 湖北武汉, 2019. |
| Wang Q F. QTL Mapping and Candidate Gene Prediction of Seedling and Grain Size Traits in Barley. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract). | |
| [35] | Wu Q, Liu Y F, Xie Z Z, Yu B, Sun Y, Huang J L. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Plant Physiol, 2022, 189: 1296-1313. |
| [36] | Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M. Photoperiod-H1 (ppd-H1) controls leaf size. Plant Physiol, 2016, 172: 405-415. |
| [37] | Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T. Cytosolic glutamine synthetase1; 2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol, 2013, 54: 934-943. |
| [38] | 索宝丽, 王文轩, 张盈盈, 杨开鑫, 齐军仓, 邢瑞, 张前兵. 植物工厂条件下不同营养液配方对大麦苗生长的影响. 中国草地学报, 2023, 45(11): 82-91. |
| Suo B L, Wang W X, Zhang Y Y, Yang K X, Qi J C, Xing R, Zhang Q B. Effects of different nutrient solutions on the growth of barley seedlings in plant factories. Chin J Grassland, 2023, 45(11): 82-91 (in Chinese with English abstract). | |
| [39] | Oikonomou V K, Huerta M, Sandéhn A, Dreier T, Daguerre Y, Lim H, Berggren M, Pavlopoulou E, Näsholm T, Bech M, Stavrinidou E. eSoil: a low-power bioelectronic growth scaffold that enhances crop seedling growth. Proc Natl Acad Sci USA, 2024, 121: e2304135120. |
| [40] | Füllner K, Temperton V M, Rascher U, Jahnke S, Rist R, Schurr U, Kuhn A J. Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley. Plant Cell Environ, 2012, 35: 884-892. |
| [1] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. |
| [2] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. |
| [3] | 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138. |
| [4] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. |
| [5] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. |
| [6] | 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813. |
| [7] | 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444. |
| [8] | 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568. |
| [9] | 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188. |
| [10] | 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408. |
| [11] | 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585. |
| [12] | 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394. |
| [13] | 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556. |
| [14] | 曹志洋, 高丽锋, 姜东言, 王曙光, 杨进文, 贾继增, 李宁, 孙黛珍. 小麦苗期耐低磷相关基因位点的挖掘与候选基因分析[J]. 作物学报, 2025, 51(10): 2632-2651. |
| [15] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
|
||