欢迎访问作物学报,今天是

作物学报

• •    

引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析

李云香1,3,郭千纤1,2,侯万伟1,3,4,张小娟1,2,*   

  1. 1 青海大学, 青海西宁 810016; 2青海大学生态环境工程学院, 青海西宁 810016; 3青海省农林科学院, 青海西宁 810016; 4国家农作物种质资源复份库, 青海西宁 810016
  • 收稿日期:2025-02-19 修回日期:2025-06-01 接受日期:2025-06-01 网络出版日期:2025-06-10
  • 基金资助:
    本研究由青海省昆仑英才·高端创新人才·培养拔尖(千人计划)项目资助。

Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA

I Yun-Xiang1,3, GUO Qian-Qian1,2, HOU Wan-Wei1,3,4,ZHANG Xiao-Juan1,2,*   

  1. 1 Qinghai University, Xining 810016, Qinghai, China;2 College of Eco-Environmental Engineering, Qinghai University, Xining 810016, Qinghai, China; 3 Qinghai Academy of Agriculture and Forestry Sciences, Xining 810016, Qinghai, China; 4 National Crop Germplasm Resources Duplicate, Xining 810016, Qinghai, China
  • Received:2025-02-19 Revised:2025-06-01 Accepted:2025-06-01 Published online:2025-06-10
  • Supported by:
    This study was supported by the Kunlun Talents, High-end Innovative Talents, and Cultivation of Top-notch Talents (Thousand Talents Program) Project of Qinghai Province.

摘要: 小麦是世界上重要的粮食作物之一,干旱会严重影响小麦的生长发育。因此解析小麦干旱相关的遗传基础以及挖掘与抗旱相关的优异基因,对于保证国家粮食安全具有重要意义。本研究以引进ICARDA的159份小麦为材料,苗期采用20% PEG-6000模拟干旱环境进行水培试验,以正常营养液作为对照,对小麦根部的总根长、根表面积、根体积、根平均直径和根叉数等5个性状进行表型数据统计,并进行相关性分析,再结合55K SNP芯片对5个根部性状的抗旱系数进行全基因组关联分析。研究结果表明,2种处理下,根部性状表现出丰富的表型变异,在正常处理下,变异系数为27.1%~40.46%;在干旱处理下,变异系数为24.95%~57.04%。5个根部性状抗旱系数的相关性分析表明,根平均直径抗旱系数与根表面积抗旱系数、根叉数抗旱系数之间没有明显的相关性,与总根长抗旱系数呈显著负相关,其余各性状的抗旱系数之间均呈极显著正相关。全基因组关联分析结果显示,在P≤0.001水平下共定位到39个与根部性状相显著关联的SNP位点,分布于小麦的1B、1D、2B、3A、3B、3D、4A、4B、4D、5A、5B、6A、6D、7A、7B和7D等16条染色体上,贡献率为7.12%~14.44%。检测到6个多效应位点,均与根表面积与总根长显著相关,分别位于3B和4A染色体上,贡献率为7.15%~14.44%。将39个显著关联的位点进行候选基因预测,共获得TraesCS5B01G556300 (MYB转录因子60)、TraesCS7A01G508700 (WRKY转录因子WRKY28)、TraesCS2B01G002700 (脱水反应元件结合蛋白1C)和TraesCS3D01G055500 (14-3-3样蛋白)等12个可能与小麦抗旱相关的候选基因,这些候选基因可能在小麦抗旱方面具有重要作用。

关键词: 小麦, 根系, 抗旱, 55K SNP, 全基因组关联分析

Abstract:

Wheat is one of the most important staple crops globally, and drought stress can severely impact its growth and development. Therefore, understanding the genetic basis of drought tolerance in wheat and identifying superior drought-resistance-related genes is of great importance for ensuring national food security. In this study, 159 wheat accessions introduced from ICARDA were used as experimental materials. A 20% PEG-6000 solution was applied to simulate drought conditions at the seedling stage in hydroponic experiments. Phenotypic data were collected for five root traitstotal root length, root surface area, root volume, average root diameterand root fork number. Correlation analysis was conducted, and drought tolerance coefficients for the five traits were calculated using data obtained from a 55K SNP chip. The results revealed substantial phenotypic variation in root traits under both control and drought conditions. Under normal conditions, the coefficients of variation ranged from 27.1% to 40.46%, while under drought stress they ranged from 24.95% to 57.04%. Correlation analysis of the drought tolerance coefficients showed no significant relationship between the coefficient for average root diameter and those for root surface area and root fork number. However, a significant negative correlation was observed between average root diameter and total root length, while the other traits exhibited significant positive correlations with each other. Genome-wide association analysis (GWAS) identified a total of 39 SNP loci significantly associated with root traits at the P 0.001 level. These loci were distributed across 16 chromosomes (1B, 1D, 2B, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6A, 6D, 7A, 7Band 7D), with explained phenotypic variation ranging from 7.12% to 14.44%. Six pleiotropic loci were identified, all significantly associated with both root surface area and total root length, and located on chromosomes 3B and 4A, with contribution rates ranging from 7.15% to 14.44%. Based on these 39 significant locicandidate gene prediction identified 12 genes potentially related to drought tolerance in wheatAmong them, TraesCS5B01G556300 (MYB transcription factor 60), TraesCS7A01G508700 (WRKY transcription factor WRKY28), TraesCS2B01G002700 (dehydration-responsive element-binding protein 1C), and TraesCS3D01G055500 (14-3-3-like protein) are likely to play important roles in regulating drought tolerance in wheat.

Key words: wheat, roots, drought resistance, 55K SNP, genome-wide association analysis

[1] 张林刚, 邓西平. 小麦抗旱性生理生化研究进展. 干旱地区农业研究, 2000, 18(3): 87–92.

Zhang L G, Deng X P. Research progress on drought resistance physiology and biochemistry of wheat. Agric Res Arid Areas, 2000, 18(3): 8792 (in Chinese with English abstract).

[2] Sallam A, Alqudah A M, Dawood M F A, Stephen Baenziger P, Börner A. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci, 2019, 20: 3137.

[3] 严如玉, 赵希梅, 向风云, 李雅琼, 李绪勋, 司转运, 李鹏慧, 高阳, 李继福. 中国小麦优势区域生产格局及施肥现状研究. 麦类作物学报, 2024, 44: 230–241.

Yan R Y, Zhao X M, Xiang F Y, Li Y Q, Li X X, Si Z Y, Li P H, Gao Y, Li J F. Research on the production pattern and fertilization status in Chinas dominant regions of wheat. J Triticeae Crops, 2024, 44: 230241(in Chinese with English abstract).

[4] 黄蕾, 潘志华, 邵长秀, 董智强, 赫迪, 王立为. 北方旱作农区农业气候资源时空变化特征. 干旱地区农业研究, 2014, 32(3): 238–243.

Huang L, Pan Z H, Shao C X, Dong Z Q, He D, Wang L W. Spatiotemporal changing characteristics of agricultural climate resources in northern dry crops farming area. Agric Res Arid Areas, 2014, 32(3): 238243 (in Chinese with English abstract).

[5] 徐平印. 国际干旱地区农业研究中心(ICARDA)麦类作物育种情况. 青海农林科技, 1993, (1): 58–63.

Xu P Y. Breeding of wheat crops in international agricultural research center for arid areas (ICARDA). Sci Technol Qinghai Agric For, 1993, (1): 5863 (in Chinese).

[6] 蔡义忠. ICARDA麦类种质资源研究. 世界农业, 1993, (11): 17–19.

Cai Y Z. Study on ICARDA wheat germplasm resources. World Agric, 1993, (11): 1719 (in Chinese).

[7] 蔡义忠. ICARDA麦类作物抗虫育种. 麦类作物学报, 1993, 13(4): 37–40.

Cai Y Z. ICARDA insect-resistant breeding of wheat crops. J Triticeae Crops, 1993, 13(4): 3740 (in Chinese).

[8] 戴妙飞. ICARDA小麦种质抗条锈资源筛选和抗病基因分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019.

Dai M F. Screening of Stripe Rust Resistance Resources and Analysis of Disease Resistance Genes in ICARDA Wheat Germplasm. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract).

[9] 罗闰良. ICARDA硬粒小麦遗传资源的研究和利用. 世界农业, 1992, (10): 17–18.

Luo R L. Research and utilization of ICARDA durum wheat genetic resources. World Agric, 1992, (10): 1718 (in Chinese).

[10] Tadesse W, El-Hanafi S, El-Fakhouri K, Imseg I, Ezzahra Rachdad F, El-Gataa Z, El Bouhssini M. Wheat breeding for hessian fly resistance at ICARDA. Crop J, 2022, 10: 15281535.

[11] 温家兴, 张鑫, 王云, 王文亚. 多时间尺度干旱对青海省东部农业区小麦的影响. 灌溉排水学报, 2016, 35(4): 92–97.

Wen J X, Zhang X, Wang Y, Wang W Y. Effects of drought in multi-time scale on wheat crop in eastern agricultural region of Qinghai province. J Irrig Drain, 2016, 35(4): 9297 (in Chinese with English abstract).

[12] 徐澜, 刘艳超, 安伟, 高志强. 冬麦春播小麦对苗期干旱胁迫的生理响应. 甘肃农业大学学报, 2020, 55 (6): 40–47.

Xu L, Liu Y C, An W, Gao Z Q. Physiological response of winter wheat and spring-sown wheat to drought stress at seedling stage. J Gansu Agric Univ, 2020, 55(6): 4047 (in Chinese with English abstract).

[13] Manschadi A M, Christopher J, deVoil P, Hammer G L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol, 2006, 33: 823837.

[14] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714–727.

Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Analysis of root traits and drought resistance characteristics of wheat seedlings in Shanxi province. Acta Agron Sin, 2021, 47: 714727 (in Chinese with English abstract).

[15] 王荣荣, 王海琪, 蒋桂英, 尹豪杰, 谢冰莹, 张婷. 2个不同抗旱性小麦品种耗水特征及根系生理特性对开花期干旱的响应. 水土保持学报, 2022, 36(4): 253–264.

Wang R R, Wang H Q, Jiang G Y, Yin H J, Xie B Y, Zhang T. Response of water consumption and root physiological characteristics of two different drought-tolerant wheat varieties to anthesis stage drought. J Soil Water Conserv, 2022, 36(4): 253264 (in Chinese with English abstract).

[16] Adeleke E, Millas R, McNeal W, Faris J, Taheri A. Variation analysis of root system development in wheat seedlings using root phenotyping system. Agronomy, 2020, 10: 206.

[17] 魏良迪. 小麦苗期抗旱品种资源的筛选与抗旱性全基因组关联分析. 山西农业大学硕士学位论文, 山西太谷, 2022.

Wei L D. Screening of Drought Resistant Varieties and Genome-wide Association Analysis of Drought Resistance in Wheat at Seedling Stage. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2022 (in Chinese with English abstract).

[18] Sallam A, Awadalla R A, Elshamy M M, Börner A, Heikal Y M. Genome-wide analysis for root and leaf architecture traits associated with drought tolerance at the seedling stage in a highly ecologically diverse wheat population. Comput Struct Biotechnol J, 2024, 23: 870882.

[19] Nouraei S, Mia M S, Liu H, Turner N C, Yan G J. Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. Mol Genet Genomics, 2024, 299: 22.

[20] Zaman Z, Iqbal R, Jabbar A, Zahra N, Saleem B, Kiran A, Maqbool S, Rasheed A, Naeem M K, Khan M R. Genetic signature controlling root system architecture in diverse spring wheat germplasm. Physiol Plant, 2024, 176: e14183.

[21] 张颖, 石婷瑞, 曹瑞, 潘文秋, 宋卫宁, 王利, 聂小军. ICARDA引进小麦苗期抗旱性的全基因组关联分析. 中国农业科学, 2024, 57: 16581681.

Zhang Y, Shi T R, Cao R, Pan W Q, Song W N, Wang L, Nie X J. Genome-wide association study of drought tolerance at seedling stage in ICARDA introduced wheat. Sci Agric Sin, 2024, 57: 16581681 (in Chinese with English abstract).

[22] 王继庆, 任毅, 时晓磊, 王丽丽, 张新忠, 苏力坛·姑扎丽阿依, 谢磊, 耿洪伟. 小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析. 中国农业科学, 2021, 54: 2249–2265.

Wang J Q, Ren Y, Shi X L, Wang L L, Zhang X Z, Sulitan·G Z L A Y, Xie L, Geng H W. Genome-wide association analysis of superoxide dismutase (SOD) activity in wheat grain. Sci Agric Sin, 2021, 54: 22492265 (in Chinese with English abstract).

[23] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析. 作物学报, 2024, 50: 2742–2753.

Li Y X, Zhang S T, Hou W W, Zhang X J. Drought resistance identification and SNP association analysis of wheat germplasm introduced by ICARDA at seedling stage. Acta Agron Sin, 2024, 50: 27422753 (in Chinese with English abstract).

[24] 职蕾, 者理, 孙楠楠, 杨阳, Dauren Serikbay, 贾汉忠, 胡银岗, 陈亮. 小麦苗期铅耐受性的全基因组关联分析. 中国农业科学, 2022, 55: 1064–1081.

Zhi L, Zhe L, Sun N N, Yang Y, Serikbay D, Jia H Z, Hu Y G, Chen L. Genome-wide association analysis of lead tolerance in wheat at seedling stage. Sci Agric Sin, 2022, 55: 10641081 (in Chinese with English abstract).

[25] Maulana F, Huang W Q, Anderson J D, Ma X F. Genome-wide association mapping of seedling drought tolerance in winter wheat. Front Plant Sci, 2020, 11: 573786.

[26] 张余周, 王一钊, 高茹茜, 刘逸凡. 小麦根系构型及抗旱性研究进展. 中国农业科学, 2024, 57: 16331645.

Zhang Y Z, Wang Y Z, Gao R X, Liu Y F. Research progress on root system architecture and drought resistance in wheat. Sci Agric Sin, 2024, 57: 16331645 (in Chinese with English abstract).

[27] 滕政凯, 王春艳, 卜明娜, 周苏玫, 胡乃月, 谢松鑫, 贾晓雯, 杨习文, 贺德先. 抗旱小麦品种根系垂直分布和根尖特征分析研究. 麦类作物学报, 2024, 44 : 1172–1184.

Teng Z K, Wang C Y, Bu M A, Zhou S M, Hu N Y, Xie S X, Jia X W, Yang X W, He D X. Analysis of vertical root distribution and root tip characteristics of drought-resistant wheat varieties. J Triticeae Crops, 2024, 44: 11721184 (in Chinese with English abstract).

[28] Lucas S J, Salantur A, Yazar S, Budak H. High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Funct Integr Genomics, 2017, 17: 667685.

[29] 曲可佳, 时晓磊, 王兴州, 耿洪伟, 丁孙磊, 张恒, 严勇亮. PEG胁迫下春麦根部性状全基因组关联分析. 植物遗传资源学报, 2023, 24: 396–407.

Qu K J, Shi X L, Wang X Z, Geng H W, Ding S L, Zhang H, Yan Y L. Genome-wide association analysis of root traits of spring wheat under PEG stress. J Plant Genet Resour, 2023, 24: 396407 (in Chinese with English abstract).

[30] Lin Y, Yi X, Tang S, Chen W, Wu F K, Yang X L, Jiang X J, Shi H R, Ma J, Chen G D, et al. Dissection of phenotypic and genetic variation of drought-related traits in diverse Chinese wheat landraces. Plant Genome, 2019, 12: 114.

[31] Siddiqui N, Gabi M T, Kamruzzaman M, Ambaw A M, Teferi T J, Dadshani S, Léon J, Ballvora A. Genetic dissection of root architectural plasticity and identification of candidate loci in response to drought stress in bread wheat. BMC Genom Data, 2023, 24: 38.

[32] Mathew I, Shimelis H, Shayanowako A I T, Laing M, Chaplot V. Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS One, 2019, 14: e0225383.

[33] Ma J H, Zhao D Y, Tang X X, Yuan M, Zhang D J, Xu M Y, Duan Y Z, Ren H Y, Zeng Q D, Wu J H, et al. Genome-wide association study on root system architecture and identification of candidate genes in wheat (Triticum aestivum L.). Int J Mol Sci, 2022, 23: 1843.

[34] 王博华, 任毅, 时晓磊, 王继庆, 谢磊, 加娜尔·拜合提, 耿洪伟. 干旱胁迫下小麦苗期根系性状的全基因组关联分析. 植物遗传资源学报, 2022, 23: 1111–1123.

Wang B H, Ren Y, Shi X L, Wang J Q, Xie L, Ganal B, Geng H W. Genome-wide association analysis of root traits in wheat seedlings under drought stress. J Plant Genet Resour, 2022, 23: 11111123.

[35] Beyer S, Daba S, Tyagi P, Bockelman H, Brown-Guedira G, IWGSC, Mohammadi M. Loci and candidate genes controlling root traits in wheat seedlings-a wheat root GWAS. Funct Integr Genomics, 2019, 19: 91107.

[36] Zhao P, Ma X Y, Zhang R Z, Cheng M Z, Niu Y X, Shi X, Ji W Q, Xu S B, Wang X M. Integration of genome-wide association study, linkage analysis, and population transcriptome analysis to reveal the TaFMO1-5B modulating seminal root growth in bread wheat. Plant J, 2023, 116: 13851400.

[37] Ghimire S, Hasan M M, Fang X W. Small ubiquitin-like modifiers E3 ligases in plant stress. Funct Plant Biol, 2024, 51: FP24032.

[38] Ren J X, Feng L, Guo L L, Gou H M, Lu S X, Mao J. Genome-wide identification and expression analysis of the BURP domain-containing genes in Malus domestica. Physiol Mol Biol Plants, 2023, 29: 17171731.

[39] Rodríguez-Hoces de la Guardia A, Ugalde M B, Lobos-Diaz V, Romero-Romero J L, Meyer-Regueiro C, Inostroza-Blancheteau C, Reyes-Diaz M, Aquea F, Arce-Johnson P. Isolation and molecular characterization of MYB6o in Solanum lycopersicum. Mol Biol Rep, 2021, 48: 15791587.

[40] Oh J E, Kwon Y, Kim J H, Noh H, Hong S W, Lee H. A dual role for MYB6o in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol, 2011, 77: 91103.

[41] Babitha K C, Ramu S V, Pruthvi V, Mahesh P, Nataraja K N, Udayakumar M. Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res, 2013, 22: 327341.

[42] Li S M, Zhang Y F, Liu Y L, Zhang P Y, Wang X M, Chen B, Ding L, Nie Y X, Li F F, Ma Z B, et al. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. Plant Cell, 2024, 36: 605625.

[43] Zhang J L, Li C N, Li L, Xi Y J, Wang J Y, Mao X G, Jing R L. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 50145025.

[44] Sugawara H, Kawano Y, Hatakeyama T, Yamaya T, Kamiya N, Sakakibara H. Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci, 2005, 14: 202208.

[45] Huang F Y, Abbas F, Rothenberg D O, Imran M, Fiaz S, Rehman N U, Amanullah S, Younas A, Ding Y, Cai X J, et al. Molecular cloning, characterization and expression analysis of two 12-oxophytodienoate reductases (NtOPR1 and NtOPR2) from Nicotiana tabacum. Mol Biol Rep, 2022, 49: 53795387.

[46] Gabay G, Wang H C, Zhang J L, Moriconi J I, Burguener G F, Gualano L D, Howell T, Lukaszewski A, Staskawicz B, Cho M J, et al. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nat Commun, 2023, 14: 539.

[47] Akhtar M, Jaiswal A, Taj G, Jaiswal J P, Qureshi M I, Singh N K. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet, 2012, 91: 385395.

[48] Zhang Y X, Tian H D, Chen D, Zhang H, Sun M H, Chen S X, Qin Z, Ding Z J, Dai S J. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. Trends Plant Sci, 2023, 28: 776794.

[49] Gupta S, Mishra S K, Misra S, Pandey V, Agrawal L, Nautiyal C S, Chauhan P S. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol Biochem, 2020, 151: 88102.

[50] Xia Y Y, Yang J F, Ma L, Yan S, Pang Y Z. Genome-wide identification and analyses of drought/salt-responsive cytochrome P450 genes in Medicago truncatula. Int J Mol Sci, 2021, 22: 9957.

[51] Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K K, Atif R M, Kashif M, Bhat J A, Zhao T J. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 4560.

[1] 吕国锋, 范金平, 吴素兰, 张晓, 赵仁慧, 李曼, 王玲, 高德荣, 别同德, 刘健. 早熟小麦品种扬麦37主要目标性状的遗传构成分析[J]. 作物学报, 2025, 51(6): 1538-1547.
[2] 吴美娟, 张寅辉, 李元昊, 刘海霞, 黄以琳, 李甜, 刘红霞, 张学勇, 郝晨阳, 郭杰, 侯健. 小麦蔗糖合酶基因TaSUS2调控籽粒淀粉合成及品质的功能研究[J]. 作物学报, 2025, 51(6): 1514-1525.
[3] 杨思杰, 杜启迪, 柴守玺, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 郭会君, 刘录祥. 小麦小旗叶突变性状基因定位与遗传分析[J]. 作物学报, 2025, 51(6): 1548-1557.
[4] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
[5] 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276.
[6] 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247.
[7] 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229.
[8] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[9] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[10] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[11] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[12] 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942.
[13] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[14] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[15] 展宗冰, 靳奇峰, 刘迪, 吕迎春, 郭莹, 张雪婷, 虎梦霞, 王尚, 杨芳萍. 甘肃省小麦农家种老芒麦分子鉴定及其重要性状评价[J]. 作物学报, 2025, 51(3): 609-620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!