欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1215-1229.doi: 10.3724/SP.J.1006.2025.44129

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

油菜和小麦响应盐碱胁迫的生理特性比较

王佳婕1,5,王正楠1,BATOOL Maria1,王旺年1,4,文静1,任长忠1,3,何峰1,3,武优悠1,徐正华1,王晶1,蒯婕1,汪波1,*,周广生1,2,傅廷栋1,2   

  1. 1农业农村部长江中游作物生理生态与耕作重点实验室 / 华中农业大学植物科学技术学院,湖北武汉 430070;2湖北洪山实验室,湖北武汉 430070;3白城市农业科学院,吉林白城 137099;4玉林市农业科学院 / 广西农业科学院玉林分院,广西玉林 537000;5南通理工学院,江苏南通 226001
  • 收稿日期:2024-08-06 修回日期:2025-01-08 接受日期:2025-01-08 出版日期:2025-05-12 网络出版日期:2025-01-23
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFD1500503)和湖北洪山实验室研究基金项目(2021HSZD004)资助。

Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat

WANG Jia-Jie1,5,WANG Zheng-Nan1,BATOOL Maria1,WANG Wang-Nian1,4,WEN Jing1,REN Chang-Zhong1,3,HE Feng1,3,WU You-You1,XU Zheng-Hua1,WANG Jing1,KUAI Jie1,WANG Bo1,*,ZHOU Guang-Sheng1,2,Fu Ting-Dong1,2   

  1. 1 Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, the Ministry of Agriculture and Rural Affairs / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; 2 Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China; 3 Baicheng Academy of Agricultural Sciences, Baicheng 137099, Jilin, China; 4 Yulin Academy of Agricultural Sciences / Yulin Branch of Guangxi Academy of Agricultural Sciences, Yulin 537000, Guangxi, China; 5 Nantong Institute of Technology, Nantong 226001, Jiangsu, China
  • Received:2024-08-06 Revised:2025-01-08 Accepted:2025-01-08 Published:2025-05-12 Published online:2025-01-23
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2022YFD1500503) and the Hubei Hongshan Laboratory Research Funding (2021HSZD004)

摘要:

利用能产生经济效益的作物改良盐碱地是扩充我国后备耕地资源的重要手段。明确油菜和小麦响应盐碱胁迫的生理机制,将为挖掘油菜、小麦在盐碱地种植以用作饲料及改良利用盐碱地中的潜力提供依据。本研究将取自吉林白城的盐碱土与武汉常规土壤配制为盐浓度分别为0.2%、0.4%的盐碱土,以武汉常规土壤作对照(CK)进行盆栽试验,分别以耐盐碱能力不同的甘蓝型油菜和小麦为材料,测定生物量、渗透调节、离子平衡、抗氧化酶及H2O2、O2?等指标。研究结果表明,(1) 盐碱胁迫下,油菜叶柄中的Na+含量最高,达88.40 mg g?1;小麦则是根系中的Na+含量最高,为33.45 mg g?1;且油菜各部位中的Na+积累量均显著高于小麦,尤其是叶片中的Na+积累量,高出2~8倍。(2) 油菜和小麦在盐碱胁迫下,耐盐碱品种各部位中的K+降幅和K+/Na+比值均高于盐敏感品种,Na+增幅均低于盐敏感品种;油菜苗期根系、蕾薹期叶片中的Na+K+吸收的抑制效应最大,而小麦各个时期均为根系中的Na+K+吸收的抑制效应最大(3) 油菜和小麦在盐碱胁迫下,耐盐碱品种植株体内的可溶性糖含量、抗氧化酶活性以及O2?清除能力均高于盐敏感品种,H2O2O2?均随盐碱胁迫浓度升高而增加,但耐盐碱品种叶片增幅较小;不同的是,耐盐碱油菜品种在苗期抗盐碱生理机制中响应更快,随着生育期的推进,叶片中的可溶性糖含量以及O2?清除能力会逐渐增加;而耐盐碱小麦品种叶片中的可溶性糖含量和O2?清除能力均随生育期推进而显著降低。油菜主要通过“储钠”作用将Na+区隔化进叶柄和茎秆中,而小麦主要通过“拒钠”作用减少Na+的吸收,并将Na+更多地积累在根系中;耐盐碱能力强的品种维持钠钾离子平衡能力更强;油菜耐盐碱能力随着生育期的推进逐渐增强,而小麦的耐盐碱能力则随着生育期推进逐渐减弱。

关键词: 油菜, 小麦, 盐碱胁迫, Na+含量, 活性氧

Abstract:

Utilizing the crops which can produce economic benefits to improve the saline-alkali land is an important mean to expand potential resource of farming land in China. Different plants respond differently to saline-alkali stress and have different mechanisms of saline-alkali stress resistance. Identifying the physiological characteristics responding to salt and alkali stress of rapeseed and wheat, can provide theoretical foundations for using rapeseed and wheat as forage and enlarging the application potential of rapeseed and wheat in the improvement and utilization of saline-alkali land. In this study, saline-alkali soils from Jilin province were used for pot experiments; normal soils in Wuhan were used as CK and saline-alkali soils from Jilin with the final salt concentration of 0.2% and 0.4%, respectively, which were prepared in proportion to normal soils from Wuhan. One saline-alkali tolerant and one sensitive variety of rapeseed and wheat were selected, respectively, as research materials. We systematically compared the different salt-alkali tolerance mechanisms of rapeseed and wheat at the germination stage by measuring and analyzing growth indicators, osmotic regulation, ion balance, antioxidant enzymes, H2O2, O2? and other indicators. The results showed that: (1) Under saline-alkali stress, in petiole, Na+ content was highest among petiole, leaf, stem and root, up to 88.40 mg g?1. However, in wheat, Na+ concentration in root was the highest, up to 33.45 mg g?1. Na+ accumulation in all parts of rapeseed was higher than that of wheat, and under the same treatment, especially, the Na+ accumulation in leaves was 2–8 times higher than that of wheat. (2) The decrease of K+ and the ratio of K+/Na+ of salt-tolerant rapeseed and wheat were higher than those of salt-sensitive varieties, while the rate of increase of Na+ concentration was lower than that of salt-sensitive varieties. The inhibition effect of Na+ depressing K+ uptake in the aboveground part of rapeseed is significant higher than those in the root, while it is opposite in wheat. (3) Under saline-alkali stress, the sugar content, antioxidant enzyme activity and O2? scavenging ability in saline-alkali tolerant rapeseed and wheat were higher than those in the sensitive varieties. The content of H2O2 and O2? increased by the increasing of salt concentration in the soil, while the tolerant variety showed a smaller increase than the sensitive one. The saline-alkali-tolerant rapeseed variety respond faster to the saline-alkali stress at the seedling stage, and the SOD, POD, and CAT activities in leaves and petioles can respond rapidly and increase gradually. While in the leaves of salt-tolerant wheat, the SOD and POD variety were the main antioxidant enzymes at the tillering stage, but POD and CAT in the leaves at the jointing stage were the main antioxidant enzymes, and with the advancement of the growth stage, the soluble sugar of the leaves and the scavenging ability of O2? were significantly reduced. Rapeseed mainly distributed Na+ into petioles and stems through "sodium storage", but wheat mainly reduced Na+ absorption through "sodium rejection" and accumulated more Na+ in the root system. And varieties with strong saline-alkali tolerance had better ability to maintain sodium and potassium ion homeostasis. Furthermore, the salt-alkali tolerance of rapeseed increased gradually with the advancement of growth period, while the salt-alkali tolerance of wheat decreased gradually with the advancement of growth period.

Key words: rapeseed, wheat, saline-alkali stress, Na+ content, ROS

[1] Pérez-Alfocea F, Balibrea M E, Cruz A S, Estañ M T. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil, 1996, 180: 251–257.

[2] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313–324.

[3] Ci L J, Yang X H. Desertification and Its Control in China. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[4] 于宝勒. 盐碱地修复利用措施研究进展. 中国农学通报, 2021, 37(7): 81–87.

Yu B L. Remediation measures of saline-alkali land: a review. Chin Agric Sci Bull, 2021, 37(7): 81–87 (in Chinese with English abstract).

[5] Gul H, Ahmad R. Effect of different irrigation intervals on growth of canola (Brassica napus L.) under different salinity levels. Pak J Bot, 2004, 36: 359–372.

[6] 汪波, 文静, 张凤华, 李立军, 来永才, 任长忠, 鲁剑巍, 沈金雄, 郭亮, 周广生, . 耐盐碱油菜品种选育及修复利用盐碱地研究进展. 科技导报, 2021, 39(23): 59–64.

Wang B, Wen J, Zhang F H, Li L J, Lai Y C, Ren C Z, Lu J W, Shen J X, Guo L, Zhou G S, et al. Research progress in breeding of saline-alkaline tolerant rapeseed and restoring the salinate land. Sci Technol Rev, 2021, 39(23): 59–64 (in Chinese with English abstract).

[7] 何中虎, 夏先春, 罗晶, 辛志勇, 孔秀英, 景蕊莲, 吴振录, 李杏普. 国际小麦育种研究趋势分析. 麦类作物学报, 2006, 26: 154–156.

He Z H, Xia X C, Luo J, Xin Z Y, Kong X Y, Jing R L, Wu Z L, Li X P. Trend analysis of international wheat breeding. J Triticeae Crops, 2006, 26: 154–156 (in Chinese with English abstract).

[8] 葛均筑, 张垚, 梁茜, 马志琪, 杨永安, 高玉平. 耐盐碱多用途油菜综合利用技术的研究进展. 土壤科学, 2019, 7(4): 312–316.

Ge J Z, Zhang Y, Liang Q, Ma Z Q, Yang Y A, Gao Y P. Advances in comprehensive utilization and multi-use technology of saline-alkali resistant rapeseed (Brassica napus L.). Hans J Soil Sci, 2019, 7(4): 312–316 (in Chinese with English abstract).

[9] 蔡阿敏, 范逸婷, 李鹏涛, 高腾云. 小麦青贮的营养价值及其在奶牛生产中的应用. 动物营养学报, 2021, 33: 2452–2460.

Cai A M, Fan Y T, Li P T, Gao T Y. Nutritional value of wheat silage and its application in dairy cow production. Chin J Anim Nutr, 2021, 33: 2452–2460 (in Chinese with English abstract).

[10] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价. 作物学报, 2022, 48: 1451–1462.

Wang W N, Ge J Z, Yang H C, Yin F T, Huang T L, Kuai J, Wang J, Wang B, Zhou G S, Fu T D. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil. Acta Agron Sin, 2022, 48: 1451–1462 (in Chinese with English abstract).

[11] Yang C W, Jianaer A, Li C Y, Shi D C, Wang D L. Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynthetica, 2008, 46: 273–278.

[12] Kaleem M, Hameed M, Ahmad F, Ashraf M, Ahmad M S A. Anatomical and physiological features modulate ion homeostasis and osmoregulation in aquatic halophyte Fimbristylis complanata (Retz.) link. Acta Physiol Plant, 2022, 44: 59.

[13] Greenway H, Munns R A. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980, 31: 149–190.

[14] Gueta-Dahan Y, Yaniv Z, Zilinskas B A Ben-Hayyim G. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta, 1997, 203: 460–469.

[15] Tester M. Na+tolerance and Na+transport in higher plants. Ann Bot, 2003, 91: 503–527.

[16] Ahmed K, Saqib M, Akhtar J, Ahmad R. Evaluation and characterization of genetic variation in maize (Zea mays L.) for salinity tolerance. Pak J Agric Sci, 2004, 49: 521–526.

[17] Anwar-ul-Haq M, Akram S, Akhtar J, Saqib M, Abbasi G H, Jan M. Morpho-physiological characterization of sunflower genotypes (Helianthus annuus L.) under saline condition. Pak J Agric Sci, 2017, 50: 49–54.

[18] Mohamed I A A, Shalby N, Bai C Y, Qin M, Agami R A, Jie K, Wang B, Zhou G S. Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus L. cultivars. Plants, 2020, 9: 62.

[19] 李凤勤. 小麦萌发期耐盐碱相关性状关联分析及种质资源的筛选山东农业大学硕士学位论文, 山东泰安, 2019.

Li F Q. Association Study of Aline-alkali Resistance Related Traits at Wheat Germination Stage and Selection of Germplasm Resources. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2019 (in Chinese with English abstract).

[20] 宋楠. 小麦种质苗期耐盐鉴定与分子标记评价山西大学硕士学位论文, 山西太原, 2023.

Song N. Salt Tolerance Identification at Seedling Stage and Molecular Marker Evaluation of Wheat Germplasms. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2023 (in Chinese with English abstract).

[21] 鲍士旦. 土壤农化分析(3). 北京: 中国农业出版社, 2000. pp 30–271.

Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 30–271 (in Chinese).

[22] 王学奎. 植物生理生化实验原理和技术(2). 北京: 高等教育出版社, 2006. pp 202–204.

Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment, 2nd edn. Beijing: Higher Education Press, 2006. pp 202–204 (in Chinese).

[23] Spitz D R, Oberley L W. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem, 1989, 179: 8–18.

[24] Reuveni R, Shimoni M, Karchi Z, Kuc J. Peroxidase activity as a biochemical marker for resistance of muskmelon (Cucumis melo) to Pseudoperonospora cubensis. Phytopathology, 1992, 82: 749.

[25] Johansson L H, Borg L A. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem, 1988, 174: 331–336.

[26] Tiryaki D, Aydın İ, Atıcı Ö. Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology, 2019, 86: 111–119.

[27] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系植物生理学通讯, 1990, 26(6): 55–57.

Wang A G, Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun, 1990, 26(6): 55–57 (in Chinese with English abstract).

[28] 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征. 植物生态学报, 2016, 40: 69–79.

Guo R, Li F, Zhou J, Li H R, Xia X, Liu Q. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses. Chin J Plant Ecol, 2016, 40: 69–79 (in Chinese with English abstract).

[29] Alemán F, Nieves-Cordones M, Martínez V, Rubio F. Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol, 2011, 52: 1603–1612.

[30] Leidi E O, Barragán V, Rubio L, El-Hamdaoui A, Teresa Ruiz M T, Cubero B, Fernández J A, Bressan R A, Hasegawa P M, Quintero F J, et al. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J, 2010, 61: 495–506.

[31] 徐鲜钧, 沈宝川, 祁建民. 植物耐盐性及其生理生化指标的研究进展. 亚热带农业研究, 2007, 3(4): 275–280.

Xu X J, Shen B C, Qi J M. Advances in study of salt-stress tolerance and its physiological and biochemical indices in plants. Subtrop Agric Res, 2007, 3(4): 275–280 (in Chinese with English abstract).

[32] Cheeseman J M. Mechanisms of salinity tolerance in plants. Plant Physiol, 1988, 87: 547–550.

[33] Munns R. Utilizing genetic resources to enhance productivity of salt-prone land. CABI Rev, 2010, 2: 8–18.

[34] 陈惠哲, Natalia Ladatko, 朱德峰, 林贤青, 张玉屏, 孙宗修. 盐胁迫下水稻苗期Na+K+吸收与分配规律的初步研究. 植物生态学报, 2007, 31: 937–945.

Chen H Z, Ladatko N, Zhu D F, Lin X Q, Zhang Y P, Sun Z X. Absorption and distribution of Na+ and K+ in rice seedling under salt stress. J Plant Ecol, 2007, 31: 937–945 (in Chinese with English abstract).

[35] 马德源, 李发良, 朱剑锋, 战伟龑, 杨洪兵. 盐胁迫下荞麦体内Na+分配与品种耐盐性的关系. 安徽农业科学, 2009, 37: 5908–5909.

Ma D Y, Li F L, Zhu J F, Zhan W Y, Yang H B. Correlation between sodium ion distribution in buckwheat and salt tolerance of varieties under salt stress. J Anhui Agric Sci, 2009, 37: 5908–5909 (in Chinese with English abstract)

[36] Shahzad M, Witzel K, Zörb C, Mühling K. Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. J Agron Crop Sci, 2012, 198: 46–56.

[37] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681.

[38] Harborne J B. Salinity tolerance in plants: Strategies for crop improvement. Phytochemistry, 1985, 24: 887.

[39] Pailles Y, Awlia M, Julkowska M, Passone L, Zemmouri K, Negrão S, Schmöckel S M, Tester M. Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. Plant Physiol, 2020, 182: 534–546.

[40] 马德源, 战伟龑, 杨洪兵, 衣艳君. 荞麦主要拒Na+部位及其Na+/H+逆向转运活性的研究. 中国农业科学, 2011, 44: 185–191

Ma D Y, Zhan W Y, Yang H B, Yi Y J. Study on main Na+ exclusion localization and Na+/H+ antiport activity of buckwheat. Sci Agric Sin, 2011, 44: 185–191 (in Chinese with English abstract).

[41] Macrobbie E A. Signalling in guard cells and regulation of ion channel activity. J Exp Bot, 1997, 48: 515–528.

[42] Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239–250.

[43] 尚玥, 刘韬, 吴丽军, 张波, 刘宝龙, 陈文杰, 张连全, 张怀刚, 刘登才. 不同倍性小麦对盐胁迫的适应性差异. 广西植物, 2017, 37: 1560–1571.

Shang Y, Liu T, Wu L J, Zhang B, Liu B L, Chen W J, Zhang L Q, Zhang H G, Liu D C. Different adaptations to salt stress in different ploidies of wheat. Guihaia, 2017, 37: 1560–1571 (in Chinese with English abstract).

[44] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, . 耐盐性不同水稻品种对盐胁迫的响应差异及其机制. 作物学报, 2022, 48: 1463–1475.

Yan J Q, Gu Y B, Xue Z Y, Zhou T Y, Ge Q Q, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C, et al. Different responses of rice cultivars to salt stress and the underlying mechanisms. Acta Agron Sin, 2022, 48: 1463–1475 (in Chinese with English abstract).

[45] 范惠玲, 刘秦, 白生文, 李华青, 李振洲, 甘满勤. 不同生态型芸芥中有机物质对盐胁迫的响应. 中国农学通报, 2017, 33(3): 52–56.

Fan H L, Liu Q, Bai S W, Li H Q, Li Z Z, Gan M Q. Response of organic substance to salt stress in different Eruca sativa Mill. ecotypes. Chin Agric Sci Bull, 2017, 33(3): 52–56 (in Chinese with English abstract).

[46] De Costa W, Zörb C, Hartung W, Schubert S. Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiol Plant, 2007, 131: 311–321.

[47] 王伟, 邓倩, 计巧灵. NaCl胁迫对6种纤维亚麻幼苗生化特性的影响. 中国农学通报, 2013, 29(18): 84–88.

Wang W, Deng Q, Ji Q L. Effects of NaCl stress on the biochemical characteristics in six species fiber flax seeding. Chin Agric Sci Bull, 2013, 29(18): 84–88 (in Chinese with English abstract).

[48] Sacher R F, Staples R C. Inositol and sugars in adaptation of tomato to salt. Plant Physiol, 1985, 77: 206–210.

[49] 李玉梅. 牛叠肚幼苗对盐碱胁迫的生理响应机制研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2016.

Li Y M. Study on the Physiological Response Mechanism of Rubus crataegifolius Bge. Seedlings under Saline Stress. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2016(in Chinese with English abstract).

[50] Adolf V I, Jacobsen S E, Shabala S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot, 2013, 92: 43–54.

[51] Shabala S N, Shabala S I, Martynenko A I, Babourina O, Newman I A. Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Funct Plant Biol, 1998, 25: 609616.

[52] Sudhir P, Murthy S D S. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 2004, 42: 481–486.

[53] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004, 55: 373–399.

[54] Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9: 490–498.

[55] 李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进. 云南植物研究, 2005, 27(2): 211–216.

Li Z G, Gong M. Improvement of measurement method for superoxide anion radical in plant. Plant Divers, 2005, 27(2): 211–216 (in Chinese).

[56] Li Q, Lyu L R, Teng Y J, Si L B, Ma T, Yang Y L. Apoplastic hydrogen peroxide and superoxide anion exhibited different regulatory functions in salt-induced oxidative stress in wheat leaves. Biol Plant, 2018, 62: 750–762.

[57] Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ, 2010, 33: 453–467.

[1] 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276.
[2] 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177.
[3] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197.
[4] 王清华, 朱格格, 方雯, 刘诗诗, 鲁剑巍. 基于高光谱遥感的油菜叶片氮磷养分含量诊断[J]. 作物学报, 2025, 51(5): 1326-1337.
[5] 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247.
[6] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[7] 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298.
[8] 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942.
[9] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[10] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[11] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[12] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[13] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[14] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[15] 厍惠洁, 孙明珠, 李世刚, 王东仙, 程泰, 蒋博, 陈爱武, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 黄腐酸、褐藻寡糖包衣对迟播油菜萌发成苗及产量的影响[J]. 作物学报, 2025, 51(4): 1022-1036.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .