欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1189-1197.doi: 10.3724/SP.J.1006.2025.44062

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究

夏琦1,郭滢1,王坤美1,王思忆1,巨建业2,彭雅雯2,刘忠松2,* ,夏石头1,*   

  1. 1湖南农业大学 / 植物激素与生长发育湖南省重点实验室,湖南长沙 410128;2 湖南农业大学农学院, 湖南长沙 410128
  • 收稿日期:2024-04-18 修回日期:2024-12-12 接受日期:2024-12-12 出版日期:2025-05-12 网络出版日期:2024-12-18
  • 基金资助:
    本研究由国家自然科学基金项目“甘蓝型油菜黄籽性状遗传稳定性的调控机制研究” (U20A2029)和国家自然科学基金项目“油菜GYF1与互作因子对真菌病害抗性的调控机理研究” (31971836)资助。

Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus

XIA Qi1,GUO Ying1,WANG Kun-Mei1,WANG Si-Yi1,JU Jian-Ye2,PENG Ya-Wen2,LIU Zhong-Song2,*,XIA Shi-Tou1,*   

  1. 1 Hunan Agricultural University / Hunan Provincial Key Laboratory of Phytohormones, Changsha 410128, Hunan, China; 2 College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2024-04-18 Revised:2024-12-12 Accepted:2024-12-12 Published:2025-05-12 Published online:2024-12-18
  • Supported by:
    This study was supported by the National Natural Science Foundation of China “Regulatory Mechanism of Yellow Seed Genetic Stability in Brassica napus” (U20A2029) and the National Natural Science Foundation of China “Studies on Regulatory Mechanism of Canola GYF1 Protein and its Interaction Factors on Resistance to Fungal Diseases” (31971836).

摘要:

甘蓝型黄、黑籽油菜种子颜色差异显著,原花色素是色泽差异的主要影响因素。为探究植物激素水杨酸(SA)对油菜种子颜色的调控作用,本研究通过切片观察和超高效液相色谱串联质谱法,分析了甘蓝型黑籽材料“中双11(ZS11)3种甘蓝型黄籽材料“黄矮早”(HAZ)、“华黄1(HH1)GH06在不同发育时期的种子及种皮中花色素和SA的变化,发现黑籽品种ZS11在开花后25 d呈现明显色素积累,而黄籽材料HAZ没有色素积累层;开花后20 d,4个油菜材料种子和种皮中原花色素A1、B2含量逐渐上升,开花后25 d时达到峰值;此后,ZS11中原花色素A1、B2含量稳定在一个较高水平,且都极显著高于3个黄籽材料HAZ、GH06和HH1。开花后15 d,SA含量逐渐上升,20~25 d达到峰值,然后下降;开花后20 d以后,ZS11的种子和种皮中SA含量均显著高于3个黄籽材料。进一步分析发现,种子中的水杨酸含量与花色素积累之间呈正相关。在外源喷施1 mmol L?1 SA的处理下,HAZ种皮色素的积累得到了加强,褐色种子的比例极显著增加。这表明,较高水平的SA有助于甘蓝型油菜种子和种皮的花色素积累,促进黑籽的形成,而较低水平的SA则有利于黄籽的形成,从而为黄籽油菜的育种提供了新的思路。

关键词: 甘蓝型油菜, 种子颜色, 水杨酸, 原花色素

Abstract:

The color difference between yellow- and black-seeded Brassica napus is significant, with proanthocyanidins being one of the main factors influencing this variation. To explore the regulatory role of the plant hormone salicylic acid (SA) in rapeseed seed color, this study conducted in-depth analyses of anthocyanins and SA at different developmental stages in seeds and seed coats of B. napus varieties, including the black-seeded “Zhongshuang11” (ZS11) and the yellow-seeded “Huangaizao” (HAZ), “Huahuang1” (HH1), and GH06. Observations of seed sections and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were employed. The results showed that black-seeded ZS11 exhibited significant pigment accumulation at 25 days after flowering (DAF), whereas yellow-seeded HAZ lacked a pigment-accumulating layer. From 20 DAF, anthocyanins A1 and B2 in the seeds and seed coats of all four varieties gradually increased, peaking at 25 DAF. In ZS11, anthocyanin A1 and B2 levels remained stable and high after 25 DAF, and were significantly higher than those in the three yellow-seeded varieties (HAZ, GH06, and HH1) at the 0.01 significance level. SA content also gradually increased after 15 DAF, peaking between 20 and 25 DAF, and subsequently decreased. Notably, after 20 DAF, SA concentrations in the seeds and seed coats of ZS11 were significantly higher than those in the yellow-seeded varieties. Further analysis revealed a positive correlation between SA concentration and anthocyanin accumulation in B. napusMoreover, exogenous application of SA (1 mmol L-1) significantly increased pigment accumulation in the seed coats of HAZ and resulted in a higher percentage of dark brown seeds. These findings indicate that elevated SA levels promote anthocyanin accumulation in B. napus seeds and seed coats, contributing to the formation of black seeds, while lower SA levels favor the development of yellow seed traits. This study provides new insights into the role of SA in seed color regulation and offers a theoretical basis for breeding yellow-seeded B. napus varieties.

Key words: Brassica napus, seed color, salicylic acid, proanthocyanins

[1] 叶小利, 李加纳, 唐章林, 梁颖, 谌利. 甘蓝型油菜种皮色泽及相关性状的研究. 作物学报, 2001, 27: 550–556.
Ye X L, Li J N, Tang Z L, Liang Y, Chen L. Study on seedcoat color and related characters of Brassica napus. Acta Agron Sin, 2001, 27: 550–556 (in Chinese with English abstract).

[2] 杨芳杰, 叶沈华, 马晓伟, 陈延平, 易斌, 马朝芝, 沈金雄, 涂金星, 傅廷栋, 文静. 黄籽甘蓝型油菜的合成和不同颜色种皮比较代谢组分析. 分子植物育种, 2024, 22: 3979–3987.
Yang F J, Ye S H, Ma X W, Chen Y P, Yi B, Ma C Z, Shen J X, Tu J X, Fu T D, Wen J. Resynthesis of yellow-seeded Brassica napus and comparative metabonomic analysis of differently colored seed Coats. Mol Plant Breed, 2024, 22: 3979–3987 (in Chinese with English abstract).

[3] Nesi N, Lucas M O, Auger B, Baron C, Lécureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep, 2009, 28: 601–617.

[4] Marles M S, Gruber M Y. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251–262.

[5] Akhov L, Ashe P, Tan Y F, Datla R, Selvaraj G. Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada–Plant Biotechnology Institute. Botany, 2009, 87: 616–625.

[6] Wang J, Qian J, Yao L Y, Lu Y H. Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioproc, 2015, 2: 5.

[7] 田文, 郝悦君, 孙浩丁, 安晓丽, 朴炫春, 廉美兰. 水杨酸对东北刺人参黄酮和蒽醌积累的影响. 延边大学农学学报, 2019, 41(2): 15–20.
Tian W, Hao Y J, Sun H D, An X L, Piao X C, Lian M L. Effect of salicylic acid on accumulation of flavonoids and anthraquinones in Oplopanax elatus Nakai. Agric Sci J Yanbian Univ, 2019, 41(2): 15–20 (in Chinese with English abstract).

[8] 刘丽, 李姿, 马雪莲, 郭巧生, 窦道龙. 外源水杨酸处理对活血丹中次生代谢产物积累的影响. 南京农业大学学报, 2016, 39: 379–385.
Liu L, Li Z, Ma X L, Guo Q S, Dou D L. Effect of salicylic acid on the accumulation of bioactive compounds in Glechoma longituba. J Nanjing Agric Univ, 2016, 39: 379–385 (in Chinese with English abstract).

[9] 杨英, 何峰, 季家兴, 郑辉, 余龙江. 外源水杨酸对悬浮培养甘草细胞中甘草黄酮积累的影响. 植物生理学通讯, 2008, 44: 504–506.
Yang Y, He F, Ji J X, Zheng H, Yu L J. Effects of exogenous salicylic acid on the flavonoid accumulation in cell suspension culture of Glycyrrhiza in flata bat. Plant Physiol Commun, 2008, 44: 504–506 (in Chinese with English abstract).

[10] Liu M, Kang B S, Wu H J, Aranda M A, Peng B, Liu L M, Fei Z J, Hong N, Gu Q S. Transcriptomic and metabolic profiling of watermelon uncovers the role of salicylic acid and flavonoids in the resistance to cucumber green mottle mosaic virus. J Exp Bot, 2023, 74: 5218–5235.

[11] 张子龙, 李加纳. 甘蓝型黄籽油菜粒色遗传及其育种研究进展. 作物杂志, 2001, (6): 37–40.
Zhang Z L, Li J N. Study progress of the inheritance of seed colour and breeding in yellow-seeded Brassica napus L. Crops, 2001, (6): 37–40 (in Chinese with English abstract).

[12] 郭滢, 崔看, 覃磊, 张小波, 童建华, 刘忠松, 夏石头. 芥甘杂交黄籽油菜籽粒中植物激素的变化及其对脂肪酸成分与油脂含量的影响. 激光生物学报, 2019, 28: 548–555.
Guo Y, Cui K, Qin L, Zhang X B, Tong J H, Liu Z S, Xia S T. Dynamic change of phytohormones in seeds of yellow-seeded canola progeny from hybridization between Brassica juncea and Brassica napus and its effects on fatty acid composition and oil content. Acta Laser Biol Sin, 2019, 28: 548–555 (in Chinese with English abstract).

[13] 刘后利, 王纫秋, 高永同. 甘兰型黄籽油菜高含油量育种初报. 华中农学院学报, 1981, (1): 13–20.
Liu H L,Wang R Q, Gao Y T. Preliminary report about the breeding of high oil content on yellow-seded vape of Brassica napus L. J Huazhong Agric Univ, 1981, (1): 13–20 (in Chinese with English abstract).

[14] 李加纳, 涂金星, 张学昆, 傅廷栋, 张洁夫, 柴友荣, 梁颖, 唐章林, 刘列钊, 殷家明. 甘蓝型黄籽油菜遗传机理与新品种选育. 中国科技成果, 2016, 17(4): 33–34.

Li J N, Tu J X, Zhang X K, Fu Y D, Zhang J F, Chai Y R, Liang Y, Tang Z L, Liu L Z, Yin J M. Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus. China Sci Technol Achievem, 2016, 17(4): 33–34 (in Chinese with English abstract).

[15] 鲁坤存, 刘淑艳, 郭家保, 刘忠松. 芥甘杂交选育甘蓝型黄籽油菜的研究. 湖南农业大学学报(自然科学版), 2006, 32(2): 116–119.
Lu K C, Liu S Y, Guo J B, Liu Z S. Development of the novel yellow-seeded Brassica napus germplasm through the interspecific crosses B. juncea × B. napus. J Hunan Agric Univ (Nat Sci), 2006, 32(2): 116–119 (in Chinese with English abstract).

[16] Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, Novák O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol, 2018, 177: 476–489.

[17] Fraga C G, Clowers B H, Moore R J, Zink E M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal Chem, 2010, 82: 4165–4173.

[18] 刘穆. 种子植物形态解剖学导论. 4. 北京: 科学出版社, 2008. pp 117–128.
Liu M. Introduction to Morphological Anatomy of Seed Plants, 4th eds. Beijing: Science Press, 2008. pp 117–128 (in Chinese).

[19] 胡可, 韩科厅, 戴思兰. 环境因子调控植物花青素苷合成及呈色的机理. 植物学报, 2010, 45: 307–317.
Hu K, Han K T, Dai S L. Regulation of plant anthocyanin synthesis and pigmentation by environmental factors. Chin Bull Bot, 2010, 45: 307–317 (in Chinese with English abstract).

[20] 庞红霞, 祝长青, 覃建兵. 植物花青素生物合成相关基因研究进展. 种子, 2010, 29(3): 60–64.
Pang H X, Zhu C Q, Qin J B. Advancement of plant genes related with anthocyanins synthetic biology. Seed, 2010, 29(3): 60–64 (in Chinese with English abstract).

[21] 曾盔, 刘忠松, 严明理, 曾笑. 芥菜型油菜黄黑种皮色泽特征的分析化学研究. 中国油料作物学报, 2006, 28: 480–483.
Zeng K, Liu Z S, Yan M L, Zeng X. Analytical chemistry study on pigmentation characters of yellow and black seed Coats in B. juncea. Chin J Oil Crop Sci, 2006, 28: 480–483(in Chinese with English abstract).

[22] 曾盔, 刘忠松, 龙桑, 严明理. 芥菜型油菜黄黑种皮多酚差异的紫外-可见光谱研究. 作物学报, 2007, 33: 476–481.
Zeng K, Liu Z S, Long S, Yan M L. UV-vis spectrum differences of polyphenols between yellow and black seed coats of Brassica juncea. Acta Agron Sin, 2007, 33: 476–481(in Chinese with English abstract).

[23] Hu R, Zhu M C, Chen S, Li C X, Zhang Q W, Gao L, Liu X Q, Shen S L, Fu F Y, Xu X F, Liang Y, Liu L Z, Lu K, Yu H, Li J N, Qu C M. BnbHLH92a negatively regulates anthocyanin and proanthocyanidin biosynthesis in Brassica napus. Crop J, 2023, 11: 374–385.

[24] 王华, 李茂福, 杨媛, 金万梅. 果实花青素生物合成分子机制研究进展. 植物生理学报, 2015, 51: 29–43.
Wang H, Li M F, Yang Y, Jin W M. Recent advances on the molecular mechanisms of anthocyanin synthesis in fruits. Plant Physiol J, 2015, 51: 29–43 (in Chinese with English abstract).

[25] Li C X, Zhang B, Chen B, Ji L H, Yu H. Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nat Commun, 2018, 9: 571.

[26] Xuan L J, Zhang C C, Yan T, Wu D Z, Hussain N, Li Z L, Chen M X, Pan J W, Jiang L X. TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ, 2018, 41: 2773–2790.

[1] 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311.
[2] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[3] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[4] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[5] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[6] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[7] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[8] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[9] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[10] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[11] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[12] 王子然, 鲁一薇, 杨婧怡, 王成龙, 宋亚萍, 马金虎. 外源水杨酸对镉胁迫下大豆生理特性和抗逆基因表达的影响[J]. 作物学报, 2024, 50(11): 2883-2895.
[13] 肖胜华, 董贤镘, 彭鑫, 李安子, 闭兆福, 廖铭静, 黄礼豪, 管倩倩, 胡琴, 朱龙付. 转录因子GhWRKY41促进水杨酸合成增强棉花对黄萎病菌的抗性[J]. 作物学报, 2024, 50(10): 2447-2457.
[14] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[15] 项嘉铭, 戴茜, 刘立军. 外源水杨酸提高云麻1号(Cannabis sativa L.)对铜胁迫的耐受性[J]. 作物学报, 2023, 49(7): 1979-1993.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[8] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[9] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[10] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .