欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1299-1311.doi: 10.3724/SP.J.1006.2025.33074

• 耕作栽培·生理生化 • 上一篇    下一篇

乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应

孟凡琦1,2,**,房孟颖1,**,罗艺3,卢霖1,董学瑞1,王亚菲1,郭丽娜1,3,闫鹏1,*,董志强1,*,张凤路3   

  1. 1 中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京100081; 2吉林农业大学农学院, 吉林长春130118; 3河北农业大学农学院, 河北保定071001
  • 收稿日期:2023-12-15 修回日期:2025-01-23 接受日期:2025-01-23 出版日期:2025-05-12 网络出版日期:2025-02-12
  • 基金资助:
    本研究由国家自然科学基金项目(32101858, 32071961)资助。

Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize

MENG Fan-Qi1,2,FANG Meng-Ying1,LUO Yi3,LU Lin1,DONG Xue-Rui1,WANG Ya-Fei1,GUO Li-Na1,3, YAN Peng1,*,DONG Zhi-Qiang1,*,ZHANG Feng-Lu3   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Areas, Beijing 100081, China; 2 College of Agriculture, Jilin Agricultural University, Changchun 130118, Jilin, China; 3 College of Agriculture, Hebei Agricultural University, Baoding 071001, Hebei, China 
  • Received:2023-12-15 Revised:2025-01-23 Accepted:2025-01-23 Published:2025-05-12 Published online:2025-02-12
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32101858, 32071961).

摘要:

高温热害已成为黄淮海地区夏玉米生产的重要限制性气候因子,增强玉米耐热性对保障该区域玉米稳产高产具有重要意义。为研究乙烯利-甜菜碱-水杨酸合剂(有效成分为乙烯利、甜菜碱和水杨酸,总有效成分含量42%,下文简称“EGS)对夏玉米耐热性和产量的调控效用及其作用机制,以郑单958 (ZD958)和豫单9953 (YD9953)为试验材料,采用随机区组试验设计,设置常温(CK)、高温(HT)和高温化控(TR) 3个处理,TR在玉米6展叶期叶面均匀喷施乙烯利-甜菜碱-水杨酸合剂,CK和HT处理喷施等量清水,2021年设置V8、V12和VT共3个高温处理时期,2022年设置V9和VT共2个高温处理时期。结果表明,相比CKHT处理对玉米株高和穗位高无显著影响,单株叶面积下降3.6%TR处理下,玉米株高、穗位高和单株叶面积相比CK分别显著下降10.9%11.9%7.3%,叶片净光合速率相比CKHT分别显著提高6.3%16.8%TR处理增强了2个玉米品种叶片耐热性,促进了高温胁迫下玉米干物质积累和根系发育,叶片SOD活性、POD活性、可溶性蛋白含量、花期植株干重和根系干重相比HT分别增加6.6%17.5%15.2%11.0%16.3%2个品种ZD958YD9953产量相比CK无显著差异,相比HT分别显著增加14.8%14.2%。相关性分析和回归分析结果表明,产量与植株干重和根系干重密切相关。综上所述,叶面喷施乙烯利-甜菜碱-水杨酸合剂增强了高温胁迫下冠层干物质生产能力并促进了根系发育、进而缓解了高温对玉米产量的影响,可作为黄淮海夏玉米区抗热增产的重要栽培措施。

关键词: 乙烯利-甜菜碱-水杨酸合剂, 夏玉米, 高温, 热形态建成, 产量

Abstract:

High-temperature stress has become a major constraint on summer maize production in the North China Plain (NCP). Enhancing maize heat tolerance is therefore essential for ensuring stable yields in this region. This study investigated the effects of an Ethephon-Glycine Betaine-Salicylic Acid (EGS) mixture on the thermal response, morphological traits, and yield of summer maize, as well as the underlying mechanisms. Two maize hybrids, Zhengdan 958 (ZD958) and Yudan 9953 (YD9953), were evaluated using a randomized block design with three treatments: normal temperature (CK), high-temperature stress (HT), and high-temperature stress with chemical treatment (TR). For the TR treatment, EGS was applied via foliar spraying at the V6 growth stage, while water was sprayed in the CK and HT treatments. In 2021, high-temperature stress was imposed during the V8, V12, and VT stages, whereas in 2022, stress occurred at the V9 and VT stages. The results showed that compared to CK, HT treatment had no significant effect on plant height or ear height, but reduced leaf area by 3.6%. Under TR treatment, plant height, ear height, and leaf area decreased by 10.9%, 11.9%, and 7.3% relative to CK, respectively. However, TR treatment increased the leaf net photosynthetic rate by 6.3% and 16.8% compared to CK and HT, respectively. TR also improved leaf heat tolerance, enhanced dry matter accumulation, and stimulated root development under high-temperature stress. Specifically, TR treatment increased leaf SOD activity, POD activity, soluble protein content, plant biomass, and root biomass by 6.6%, 17.5%, 15.2%, 11.0%, and 16.3%, respectively, compared to HT. Additionally, the grain yield of ZD958 and YD9953 under TR treatment was comparable to CK but increased by 14.8% and 14.2%, respectively, compared to HT. Correlation and regression analyses further revealed that yield was closely associated with plant and root biomass. In conclusion, foliar application of the EGS mixture enhanced canopy biomass production and root development under high-temperature stress, mitigating yield losses. This provides a promising strategy for improving heat tolerance and sustaining maize yields in the NCP.

Key words: ethephon betaine salicylic acid mixture, summer maize, high-temperature stress, heat resistance, grain yield

[1] 张健. 河南省玉米生产效率及影响因素分析. 河南农业大学硕士学位论文, 河南郑州, 2022.

Zhang J. Analysis of Maize Production Efficiency and its Influencing Factors in Henan Province. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2022 (in Chinese with English abstract).

[2] 付真真, 祝光欣, 刘志娟, 郭世博, 李娥, 杨晓光. 气候变化背景下中国玉米产区开花期高温时空分布特征. 中国农业科学, 2023, 56: 2686–2700.

Fu Z Z, Zhu G X, Liu Z J, Guo S B, Li E, Yang X G. Spatial-temporal variations of high temperature during flowering period in maize-producing areas of China under climate change. Sci Agric Sin, 2023, 56: 2686–2700 (in Chinese with English abstract).

[3付景, 孙宁宁, 刘天学, 杨豫龙, 赵霞, 李潮海. 高温胁迫对玉米形态、叶片结构及其产量的影响. 玉米科学, 2019, 27(1): 46–53.

Fu J, Sun N N, Liu T X, Yang Y L, Zhao X, Li C H. Effect of high temperature stress on morphology leaf structure and grain yield of maize. J Maize Sci, 2019, 27(1): 46–53 (in Chinese with English abstract).

[4孙宁宁, 于康珂, 詹静, 顾海靖, 潘利文, 刘刚, 刘天学. 不同成熟度玉米叶片抗氧化生理对高温胁迫的响应. 玉米科学, 2017, 25(5): 77–84.

Sun N N, Yu K K, Zhan J, Gu H J, Pan L W, Liu G, Liu T X. Responses of antioxidative physiology to high temperature in different maturity leaves of maize. J Maize Sci, 2017, 25(5): 77–84 (in Chinese with English abstract).

[5郭培国, 李荣华. 夜间高温胁迫对水稻叶片光合机构的影响. 植物学报, 2000, 42: 673–678.

Guo P G, Li R H. Effects of high nocturnal temperature on photosynthetic organization in rice leaves. J Integr Plant Biol, 2000, 42: 673–678 (in Chinese with English abstract).

[6康绍忠, 张建华, 梁建生. 土壤水分与温度共同作用对植物根系水分传导的效应. 植物生态学报, 1999, 23: 211–219.

Kang S Z, Zhang J H, Liang J S. Combined effects of soil water content and temperature on plant root hydraulic conductivity. Chin J Plant Ecol, 1999, 23: 211–219 (in Chinese with English abstract).

[7赵龙飞, 李潮海, 刘天学, 王秀萍, 僧珊珊. 花期前后高温对不同基因型玉米光合特性及产量和品质的影响. 中国农业科学, 2012, 45: 4947–4958.
Zhao L F, Li C H, Liu T X, Wang X P, Seng S S. Effect of high temperature during flowering on photosynthetic characteristics and grain yield and quality of different genotypes of maize (Zea mays L.). Sci Agric Sin, 2012, 45: 4947–4958 (in Chinese with English abstract).

[8任寒, 刘鹏, 董树亭, 张吉旺, 赵斌. 高温胁迫影响玉米生长发育的生理机制研究进展. 玉米科学, 2019, 27(5): 109–115.

Ren H, Liu P, Dong S T, Zhang J W, Zhao B. Research advancements of effect of high temperature stress on growth and development of maize. J Maize Sci, 2019, 27(5): 109–115 (in Chinese with English abstract).

[9陶志强, 陈源泉, 隋鹏, 袁淑芬, 高旺盛. 华北春玉米高温胁迫影响机理及其技术应对探讨. 中国农业大学学报, 2013, 18(4): 20–27.

Tao Z Q, Chen Y Q, Sui P, Yuan S F, Gao W S. Effects of high temperature stress on spring maize and its technologic solutions in North China Plain. J China Agric Univ, 2013, 18(4): 20–27 (in Chinese with English abstract).

[10曹庆军, 杨粉团, 王一鸣, 梁尧, 李贺, 于洪浩, 李刚, 姜晓莉. 植物生长调节剂及其在大田作物上的应用分析. 吉林农业科学, 2015, 40(5): 26–30.

Cao Q J, Yang F T, Wang Y M, Liang Y, Li H, Yu H H, Li G, Jiang X L. Advances in research of plant growth regulator application on crops. J. Jilin Agric Sci, 2015, 40(5): 26–30 (in Chinese with English abstract).

[11李彦昌, 侯现军, 闫丽慧, 王芬霞, 李建军. 不同化学调控剂浓度对夏玉米生长的影响. 湖北农业科学, 2018, 57(14): 19–22.

Li Y C, Hou X J, Yan L H, Wang F X, Li J J. Effect of chemical regulators with different concentrations on summer maize growth. Hubei Agric Sci, 2018, 57(14): 19–22 (in Chinese with English abstract).

[12李跃伟,侯金丹,孙慕芳, 雷振山. 四种生长调节剂对玉米茎秆性状及抗倒伏性的影响. 江苏农业学报, 2023, 39: 377–382.

Li Y W, Hou J D, Sun M F, Lei Z S. Effects of four growth regulators on stalk Straits and lodging resistance of maize. Jiangsu J Agric Sci, 2023,39: 377–382 (in Chinese with English abstract).

[13彭忠华, 吴盛黎, 何帮金. 植物生长调节剂对玉米自交系生长发育及产量的影响. 耕作与栽培, 1997, 17(3): 25–27.

Peng Z H, Wu S L, He B J. Effects of plant growth regulators on growth and yield of maize inbred lines. Tillage Cultiv, 1997, 17(3), 17: 25–27 (in Chinese).

[14许晅. 乙烯利甜菜碱和表油菜素内酯对玉米生长的影响. 南京农业大学硕士学位论文, 江苏南京, 2012.

Xu X. Effects of Ethephon, Betaine and Epbrassinolide on the Growth of Maize. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China. 2012 (in Chinese with English abstract).

[15彭艳, 李洋, 杨广笑, 何光源. 铝胁迫对不同小麦SODCATPOD活性和MDA含量的影响. 生物技术, 2006, 16(3): 38–42.

Peng Y, Li Y, Yang G X, He G Y. Effects of aluminum stress on the activities of SOD, POD, CAT and the contents of MDA in the seedlings of different wheat cultivars. Biotechnology, 2006, 16(3): 38–42 (in Chinese with English abstract).

[16] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导(4). 北京: 高等教育出版社, 2009.

Zhang Z L, Qu W J, Li X F. Experimental Instruction of Plant Physiology, 4th edn. Beijing: Higher Education Press, 2009 (in Chinese).

[17Peng Y F, Niu J F, Peng Z P, Zhang F S, Li C J. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crops Res, 2010, 115: 85–93.

[18] Liu X G, Zhang F C, Wang X L, Yang Q L. Effects of regulated deficit irrigation and nitrogen rate on use of water and nitrogen in maize root-zone soil. Rese Crop, 2014, 15: 358.

[19] 张川, 刘栋, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘存辉, 刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响. 中国农业科学, 2022, 55: 3710–3722.

Zhang C, Liu D, Wang H Z, Ren H, Zhao B, Zhang J W, Ren B Z, Liu C H, Liu P. Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Sci Agric Sin, 2022, 55: 3710–3722 (in Chinese with English abstract).

[20] 李小凡, 邵靖宜, 于维祯, 刘鹏, 赵斌, 张吉旺,任佰朝. 高温干旱复合胁迫对夏玉米产量及光合特性的影响. 中国农业科学, 2022, 55: 3516–3529.

Li X F, Shao J Y, Yu W Z, Liu P, Zhao B, Zhang J W, Ren B Z. Combined effects of high temperature and drought on yield and photosynthetic characteristics of summer maize. Sci Agric Sin, 2022, 55: 3516–3529 (in Chinese with English abstract).

[21] 王丹, 吕艳杰, 姚凡云, 徐文华, 陈帅民, 邵玺文, 曹玉军, 王永军. 不同栽培模式春玉米花粒期冠层不同部位叶片的衰老特性. 中国生态农业学报(中英文), 2022, 30: 1925–1937.

Wang D, Lyu Y J, Yao F Y, Xu W H, Chen S M, Shao X W, Cao Y J, Wang Y J. Leaf senescence characteristics post-anthesis at different positions of spring maize canopy under different cultivation models. Chin J Eco-Agric, 2022, 30: 1925–1937 (in Chinese with English abstract).

[22] 余梦奇, 路梦莉, 张雅婷, 陈志英, 李文阳. 灌浆期高温对玉米叶片光合特性及抗氧化酶活性的影响. 中国农业气象, 2023, 44: 599–610.

Yu M Q, Lu M L, Zhang Y T, Chen Z Y, Li W Y. Effects of high temperature on photosynthetic characteristics and antioxidant enzyme activities of maize leaves during filling stage. Chin J Agrometeorol, 2023, 44: 599–610 (in Chinese with English abstract).

[23] 卢霖, 董志强, 董学瑞, 李光彦. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响. 作物学报, 2016, 42: 561–573.

Lu L, Dong Z Q, Dong X R, Li G Y. Effects of ethylene-chlormequat-potassium on characteristics of leaf senescence at different plant positions after anthesis under different planting densities. Acta Agron Sin, 2016, 42: 561–573 (in Chinese with English abstract).

[24] 高晓萍,张婧,牛天航, 刘阳, 常有麟, 刘思恬, 颉建明. 甜菜碱对高温胁迫下茄子幼苗生理特性的影响. 浙江农业学报, 2023, 35: 2097–2108.

Gao X P, Zhang J, Niu T H, Liu Y, Chang Y L, Liu S T, Xie J M. Effect of Glycine betaine on physiological characteristics of eggplant seedlings under high temperature stress. Acta Agric Zhejiangensis. 2023, 35: 2097–2108 (in Chinese with English abstract).

[25] 陈岩, 岳丽杰, 刘永红, 杨勤. 营养生长期持续高温处理对玉米叶片转录组及生化指标的影响. 玉米科学, 2022, 30(4): 48–55.

Chen Y, Yue L J, Liu Y H, Yang Q. Effects of continuous high temperature treatment during vegetative stages on maize leaf transcriptome and biochemical indicators. J Maize Sci2022, 30(4): 48–55 (in Chinese with English abstract).

[26] 宋旭东, 章慧敏, 张振良, 周广飞, 冒宇翔, 陆虎华, 陈国清, 石明亮, 黄小兰, 薛林, 等. 外源水杨酸和氯化钙对糯玉米花期高温胁迫下光合特性及产量的调控效应. 江苏农业科学, 2022, 50(7): 87–94.

Song X D, Zhang H M, Zhang Z L, Zhou G F, Mao Y X, Lu H H, Chen G Q, Shi M L, Huang X L, Xue L, et al. Effects of exogenous salicylic acid and calcium chloride on photosynthetic characteristics and yield of waxy maize under high temperature stress at flowering stage. Jiangsu Agric Sci, 2022, 50(7): 87–94 (in Chinese).

[27] 鄂玉江, 戴俊英, 顾慰连. 玉米根系的生长规律及其与产量关系的研究玉米根系生长和吸收能力与地上部分的关系. 作物学报, 1988, 14: 149–154.

E Y J, Dai J Y, Gu W L. Studies on the relationship between root growth and yield in maize (Zea mays) ⅰ. relationships between the growth and absorption ability of the roots and the growth and development of the above-ground parts of maize. Acta Agron Sin, 1988, 14: 149–154 (in Chinese with English abstract). 

[28] 张保仁. 高温对玉米产量和品质的影响及调控研究. 山东农业大学博士学位论文, 山东泰安, 2003.

Zhang B R. Studies on Effect of High Temperature on Yield and Quality and Regulation in Maize (zea mays L.). PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2003 (in Chinese with English abstract).

[29] 于康珂, 孙宁宁, 齐红志, 詹静, 顾海靖, 刘刚, 潘利文, 刘天学. 不同成熟度玉米叶片光合生理对高温胁迫的响应特征及其基因型差异. 河南农业科学, 2017, 46(5): 34–38.

Yu K K, Sun N N, Qi H Z, Zhan J, Gu H J, Liu G, Pan L W, Liu T X. Photosynthetic physiological response character of different maturity maize

leaves to heat stress and their genotype difference. J Henan Agric Sci, 2017, 46(5): 34–38 (in Chinese with English abstract).

[30] 赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响. 作物学报, 2013, 39: 1644–1651.

Zhao F C, Jing L Q, Yan F B, Lu D L, Wang G Y, Lu W P. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agron Sin, 2013, 39: 1644–1651 (in Chinese with English abstract).

[31] 房孟颖, 卢霖, 王庆燕, 董学瑞, 闫鹏, 董志强. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响. 中国农业科学, 2022, 55: 4808–4822.

Fang M Y, Lu L, Wang Q Y, Dong X R, Yan P, Dong Z Q. Effects of ethylene-chlormequat-potassium on root morphological construction and yield of summer maize with different nitrogen application rates. Sci Agric Sin, 2022, 55: 4808–4822 (in Chinese with English abstract).

[32] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响. 作物学报, 2023, 49: 2528–2538.

Fang M Y, Ren L, Lu L, Dong X R, Wu Z H, Yan P, Dong Z Q. Effect of Ethylene-Chlormequat-Potassium on root morphological structure and grain yield in Sorghum. Acta Agron Sin, 2023, 49: 2528–2538 (in Chinese with English abstract).

[33] 祁利潘, 陶洪斌, 周祥利, 吴景玉, 赵丽晓, 王璞. 化学药剂处理对灌浆期低温条件下玉米光合特性及产量的影响. 玉米科学, 2013, 21(3): 52–56.

Qi L P, Tao H B, Zhou X L, Wu J Y, Zhao L X, Wang P. Effects of chemical regulation on maize photosynthesis and yield under low temperature stress during grain filling stage. J Maize Sci, 2013, 21(3): 52–56 (in Chinese with English abstract).

[34] 高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53: 3954–3963.

Gao Y B, Zhang H, Shan J, Xue Y F, Qian X, Dai H C, Liu K C, Li Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Sci Agric Sin, 2020, 53: 3954–3963 (in Chinese with English abstract).

[35] 卫晓轶,洪德峰,马俊峰, 马毅, 王稼苜, 魏锋. 植物受高温胁迫机理及对玉米生长影响的研究进展. 耕作与栽培, 2021, 41(1): 41–45.

Wei X Y, Hong D F, Ma J F, Ma Y, Wang J M, Wei F. Study on the mechanism of plant thermotolerance and its effect on maize. Tillage Cultiv, 2021, 41(1): 41–45 (in Chinese with English abstract).

[36] 潘正茂, 许海涛, 赵雪梅. 高温胁迫对玉米影响的研究进展. 热带农业科学, 2023, 43(2): 20–27.

Pan Z M, Xu H T, Zhao X M. Research progress on the effects of high-temperature stress on maize. Chin J Trop Agric, 2023, 43(2): 20–27 (in Chinese with English abstract).

[1] 王梦宁, 谢可冉, 高逖, 王飞, 任孝俭, 熊栋梁, 黄见良, 彭少兵, 崔克辉. 水稻幼穗分化期至抽穗期高温对籽粒形态和充实的影响及其与粒重的关系[J]. 作物学报, 2025, 51(5): 1347-1362.
[2] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[3] 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298.
[4] 翁文安, 邢志鹏, 胡群, 魏海燕, 廖萍, 朱海滨, 瞿济伟, 李秀丽, 刘桂云, 高辉, 张洪程. 无人化旱直播水稻产量形成特征及其能量与经济效益研究[J]. 作物学报, 2025, 51(5): 1363-1377.
[5] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[6] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[7] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[8] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[9] 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004.
[10] 张晓丽, 刘晓燕, 夏雯雯, 李锦. 天山雪莲质膜水孔蛋白基因SiPIP1;3在番茄中的抗寒功能分析[J]. 作物学报, 2025, 51(4): 863-872.
[11] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[12] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[13] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[14] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[15] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .