欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (3): 744-754.doi: 10.3724/SP.J.1006.2025.44116

• 耕作栽培·生理生化 • 上一篇    下一篇

不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响

阳新月(), 肖人滈(), 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春()   

  1. 西南大学农学与生物科技学院 / 薯类生物学与遗传育种重庆市重点实验室, 重庆 400702
  • 收稿日期:2024-07-17 接受日期:2024-12-12 出版日期:2024-12-16 网络出版日期:2024-12-12
  • 通讯作者: 王季春
  • 作者简介:阳新月, E-mail: hi_yangxinyue@163.com;
    肖人滈, E-mail: 213314725@qq.com第一联系人:

    **同等贡献

  • 基金资助:
    重庆市农业农村委员会种业“薯类科企联合体专项”(2021-2025);重庆市现代农业产业技术体系薯类创新团队专项(CQMAITS2023-4);宜宾双城市校协议专项(YBSCXY2023020013)

Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato

YANG Xin-Yue(), XIAO Ren-Hao(), ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun()   

  1. College of Agronomy and Biotechnology, Southwest University / Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Chongqing 400702, China
  • Received:2024-07-17 Accepted:2024-12-12 Published:2024-12-16 Published online:2024-12-12
  • Contact: WANG Ji-Chun
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Seed Industry ‘Potato Science and Enterprise Consortium Special Program’ of Chongqing Agriculture and Rural Committee(2021-2025);Special Program for Potato Innovation Team of Chongqing Modern Agricultural Industrial Technology System(CQMAITS2023-4);Yibin Twin Cities School Agreement Special(YBSCXY2023020013)

摘要:

涝渍胁迫是造成甘薯产量下降的重要原因之一, 但不同生育期涝渍胁迫对甘薯生长发育及产量的影响尚未见报道。为此, 于2022—2023年以渝红心薯98为试验材料在人工控水条件下进行不同时期的涝渍胁迫处理。设置全生育期正常浇水(CK, 对照)、薯蔓并长期涝渍胁迫(T1)、块根盛长期涝渍胁迫(T2)、薯蔓并长期与块根盛长期均涝渍胁迫(T3) 4个处理, 探究不同生育期涝渍胁迫对甘薯抗逆生理特性与产量的影响。结果表明, 涝渍胁迫条件下, 甘薯根冠比、功能叶相对含水量下降, 脯氨酸、可溶性糖含量增加, CAT、POD、SOD活性显著提高。涝渍胁迫改变了甘薯同化产物在地上部与地下部间的分配, 使得地上部徒长而地下部发育受抑制, 最终导致2022年及2023年块根产量较对照分别显著降低22.67%、40.05%、66.93%和31.20%、40.80%、64.60%。薯蔓并长期和块根盛长期均发生涝渍对甘薯生长发育影响最为显著。与薯蔓并长期相比, 块根盛长期对涝渍响应更为敏感, 且复水后恢复甘薯生长的能力更弱。

关键词: 甘薯, 涝渍胁迫, 渗透调节, 抗氧化酶, 产量

Abstract:

Waterlogging stress is a major factor contributing to yield losses in sweet potato; however, limited research has been conducted on the impacts of waterlogging at different developmental stages on sweet potato growth and yield. To address this gap, a controlled waterlogging experiment was carried out in 2022 and 2023 using the cultivar Yuhongxin 98 as the test material. Treatments included a normal watering control (CK), waterlogging stress during the storage root initiation stage (T1), waterlogging stress during the storage root bulking stage (T2), and waterlogging stress during both the storage root initiation and bulking stages (T3). The effects of waterlogging stress at different growth stages on physiological characteristics and yield were analyzed. The results showed that waterlogging stress reduced the root-to-shoot ratio and leaf relative water content, while significantly increasing the levels of proline and soluble sugars. Activities of antioxidant enzymes, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), were significantly enhanced under waterlogging stress, indicating that waterlogging altered assimilate distribution between aboveground and belowground parts. This promoted aboveground growth but inhibited storage root development, ultimately leading to significant yield reductions of 22.67%, 40.05%, and 66.93% in 2022, and 31.20%, 40.80%, and 64.60% in 2023 under T1, T2, and T3 treatments, respectively, compared to the control. The greatest yield loss occurred when waterlogging coincided with both the storage root initiation and bulking stages (T3). Notably, waterlogging during the storage root bulking stage (T2) caused greater sensitivity to stress and a reduced ability to recover growth after rewatering compared to waterlogging during the storage root initiation stage (T1). These findings highlight the critical importance of water management during the storage root bulking stage to mitigate the adverse effects of waterlogging on sweet potato yield.

Key words: sweet potato, waterlogging stress, osmotic adjustment, antioxidant enzymes, yield

表1

供试土壤养分基本理化情况"

年份
Year
全氮含量
Total N
(g kg-1)
全磷含量
Total P
(g kg-1)
全钾含量
Total K
(g kg-1)
碱解氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available N
(mg kg-1)
有机质
Organic matter
(g kg-1)
pH
2022 1.03 1.24 23.56 101.54 15.68 96.50 13.47 7.27
2023 0.84 1.05 20.68 92.41 9.18 88.45 11.53 7.12

图1

2017-2022年西南主产区甘薯生育时期平均降水分布"

图2

不同时期涝渍处理对甘薯叶片相对含水量的影响 CK: 全生育期正常浇水; T1: 薯蔓并长期涝渍; T2: 块根盛长期涝渍; T3: 薯蔓并长期间与块根盛长期涝渍。误差线表示3次重复的标准差。相同时期不同字母表示处理间差异在0.05水平上差异显著。"

图3

不同涝渍时期处理对甘薯功能叶脯氨酸(a)和可溶性糖(b)的影响 处理同图2。误差线表示3次重复的标准差。相同时期不同字母表示处理间差异在0.05水平上差异显著。"

图4

不同涝渍时期处理对甘薯功能叶CAT (a)、POD (b)和SOD (c)活性的影响 处理同图2。误差线表示3次重复的标准差。相同时期不同字母表示处理间差异在0.05水平上差异显著。CAT: 过氧化氢酶; POD: 过氧化物; SOD: 超氧化物歧化酶。"

表2

2022年及2023年不同涝渍时期处理对甘薯地上部与地下部鲜重的影响"

年份
Year
处理
Treatment
地上部鲜重
Fresh weight of aboveground part (g plant-1)
地下部鲜重
Fresh weight of underground part (g plant-1)
50 d 90 d 110 d 50 d 90 d 110 d
2022 CK 302.33±22.23 b 373.33±11.67 b 577.22±15.75 d 71.54±4.20 a 287.67±1.31 a 511.25±7.34 a
T1 371.11±14.37 a 456.00±39.40 a 763.33±6.01 b 39.41±1.71 b 119.77±3.04 b 371.84±19.47 b
T2 298.33±12.58 b 366.11±17.82 b 717.78±20.37 c 70.26±3.17 a 280.95±6.18 a 311.34±5.98 c
T3 387.22±17.66 a 466.67±32.44 a 922.22±21.17 a 40.99±2.23 b 123.75±7.76 b 198.87±13.23 d
2023 CK 215.08±9.79 b 345.00±6.01 b 409.44±3.47 d 80.25±4.16 a 445.36±19.22 a 618.05±10.01 a
T1 255.63±5.41 a 445.56±16.69 a 512.78±3.47 b 46.06±2.21 b 220.36±6.55 b 506.36±8.89 b
T2 215.86±10.66 b 349.45±10.72 b 492.78±0.96 c 79.61±2.80 a 423.35±16.58 a 435.76±16.59 c
T3 240.87±13.70 a 442.78±30.30 a 611.67±13.02 a 45.85±1.63 b 240.37±4.37 b 271.69±8.80 d
F
F-value
年份
Year (Y)
308.57** 5.31* 2034.57** 38.40** 948.32** 490.75**
处理Treatment (T) 27.54** 33.84** 453.65** 245.13** 662.32** 767.97**
年份×处理Y×T 5.76** 0.71 31.37** 0.73 9.62** 7.49**

表3

2022年及2023年不同涝渍时期处理对甘薯根冠比(地下部鲜重/地上部鲜重)的影响"

年份
Year
处理
Treatment
根冠比 Root-shoot ratio
50 d 90 d 110 d
2022 CK 0.24±0.03 a 0.77±0.02 a 0.89±0.03 a
T1 0.11±0.01 b 0.26±0.02 b 0.49±0.02 b
T2 0.24±0.02 a 0.77±0.03 a 0.43±0.02 c
T3 0.11±0.01 b 0.27±0.01 b 0.22±0.02 d
2023 CK 0.37±0.03 a 1.29±0.06 a 1.51±0.03 a
T1 0.18±0.01 b 0.49±0.03 b 0.99±0.02 b
T2 0.37±0.02 a 1.21±0.08 a 0.89±0.04 c
T3 0.19±0.01 b 0.54±0.03 b 0.44±0.03 d
F
F-value
年份 Year (Y) 216.99** 510.08** 2150.72**
处理 Treatment (T) 156.18** 486.06** 1354.94**
年份×处理 Y×T 4.46* 17.21** 72.40**

表4

2022年及2023年不同涝渍时期处理对甘薯产量及构成因素的影响"

年份
Year
处理
Treatment
鲜薯产量
Fresh weight (kg hm-2)
单株薯数
Tuber number per plant (No.)
单薯重
Single tuber weight (g)
2022 CK 53,281.33±577.33 a 4.10±0.24 a 217.27±11.51 a
T1 39,270.67±693.78 b 3.37±0.12 b 194.57±4.72 b
T2 30,941.33±636.36 c 4.03±0.21 a 128.08±4.67 c
T3 16,322.67±337.53 d 2.57±0.12 c 106.17±3.92 d
2023 CK 50,000.00±616.44 a 5.10±0.29 a 164.02±10.75 a
T1 34,900.00±565.69 b 4.20±0.14 b 138.61±4.10 b
T2 32,550.73±924.66 c 4.73±0.25 a 114.87±5.70 c
T3 16,200.14±244.95 d 2.80±0.14 c 96.62±3.82 d
F
F-value
年份 Year (Y) 25.99** 47.51** 93.84**
处理 Treatment (T) 2334.41** 73.22** 143.82**
年份×处理 Y×T 20.93** 2.69 13.50**

图5

指标的相关性分析 *和**分别表示在0.05和0.01水平相关性显著。CAT: 过氧化氢酶; POD: 过氧化物; SOD: 超氧化物歧化酶。"

[1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003
[2] Hwang S Y, Lin H W, Chern R H, Lo H F, Li L. Reduced susceptibility to waterlogging together with high-light stress is relatedto increases in superoxide dismutase and catalase activities in sweet potato. Plant Growth Regul, 1999, 27: 167-172.
[3] Eguchi T, Yoshida S. Effects of gas exchange inhibition and hypoxia on tuberous root morphogenesis in sweetpotato (Ipomoea batatas (L.)Lam.). Environ Control Biol, 2007, 45: 103-111.
[4] Ghuman B S, Lal R. Growth and plant-water relations of sweet potato (Ipomea batata) as affected by soil moisture regimes. Plant Soil, 1983, 70: 95-106.
[5] Pardales J R, Bañoc D M, Yamauchi A, Iijima M, Esquibel C B. The effect of fluctuations of soil moisture on root development during the establishment phase of sweetpotato. Plant Prod Sci, 2000, 3: 134-139.
[6] 闫彩霞, 曾波, 董元昌, 铁永波, 范瑜越. 中国西南地区暴雨时空变化特征分析. 西南师范大学学报(自然科学版), 2023, 48(8): 71-82.
Yan C X, Zeng B, Dong Y C, Tie Y B, Fan Y Y. Analysis on spatial-temporal variation characteristics of heavy rain over Western China. J Southwest Univ (Nat Sci Edn), 2023, 48(8): 71-82 (in Chinese with English abstract).
[7] 刘周斌, 周宇健, 杨博智, 欧立军, 邹学校. 植物抗涝性研究进展. 湖北农业科学, 2015, 54: 4385-4389.
Liu Z B, Zhou Y J, Yang B Z, Ou L J, Zou X X. Research progress in waterlogging of plant. Hubei Agric Sci, 2015, 54: 4385-4389 (in Chinese with English abstract).
[8] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46: 1760-1770.
doi: 10.3724/SP.J.1006.2020.04079
Zhang H Y, Wang B Q, Feng X Y, Li G L, Xie B T, Dong S X, Duan W X, Zhang L M. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.)Lam.]. Acta Agron Sin, 2020, 46: 1760-1770 (in Chinese with English abstract).
[9] 田礼欣. 涝渍胁迫对玉米农艺性状、生理特性及产量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Tian L X. Effects of Waterlogging Stress on Agronomic Characteristics, Physiological Characteristics and Yield of Maize. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[10] 余波, 盛文静, 韩蒙蒙, 鲍飞燕, 李祖林, 宋有洪, 刘惠惠. 玉米不同类型根形态及活力对淹水胁迫的响应特征. 华北农学报, 2023, 38(增刊1): 102-111.
Yu B, Sheng W J, Han M M, Bao F Y, Li Z L, Song Y H, Liu H H. Morphological characteristics and activities in different kinds of maize roots in response to flooding stress. Acta Agric Boreali-Sin, 2023, 38(S1): 102-111 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20194232
[11] 李从锋, 贾春兰, 陶志强, 杨今胜, 柳京国, 赵明. 拔节期淹水对不同株高夏玉米产量、形态特征及物质生产的影响. 玉米科学, 2019, 27(6): 62-67.
Li C F, Jia C L, Tao Z Q, Yang J S, Liu J G, Zhao M. Effects of waterlogging at jointing stage on grain yield, plant morphology and dry matter production in different plant height of summer maize. J Maize Sci, 2019, 27(6): 62-67 (in Chinese with English abstract).
[12] 马仲文, 李祖亮. 涝渍胁迫下施氮量对玉米生物量积累、分配和氮素利用率的影响. 山东农业科学, 2023, 55(11): 138-143.
Ma Z W, Li Z L. Effects of nitrogen application rate on maize biomass accumulation and distribution and nitrogen use efficiency under waterlogging stress. Shandong Agric Sci, 2023, 55(11): 138-143 (in Chinese with English abstract).
[13] 俞建河, 王本来, 曹秀清, 沈涛. 淹水时期与天数对油菜生长性状和产量的影响. 安徽农业科学, 2021, 49: 184-187.
Yu J H, Wang B L, Cao X Q, Shen T. Effects of flooding period and days on the growth traits and yield of rapeseed. Anhui Agric Sci, 2021, 49: 184-187 (in Chinese with English abstract).
[14] 马青荣, 左璇, 胡程达, 成林, 李彤霄. 涝渍对夏花生光合特性及产量影响. 应用气象学报, 2021, 32: 479-490.
Ma Q R, Zuo X, Hu C D, Cheng L, Li T X. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteorol Sci, 2021, 32: 479-490 (in Chinese with English abstract).
[15] Sharma D B, Swarup A. Effects of short-term flooding on growth, yield and mineral composition of wheat on sodic soil under field conditions. Plant Soil, 1988, 107: 137-143.
[16] Park S U, Lee C J, Kim S E, Lim Y H, Lee H U, Nam S S, Kim H S, Kwak S S. Selection of flooding stress tolerant sweetpotato cultivars based on biochemical and phenotypic characterization. Plant Physiol Biochem, 2020, 155: 243-251.
[17] 王芳, 宋伟, 杨松涛, 乔帅, 廖安忠, 谭文芳. 水淹胁迫对甘薯生长和养分分配的影响. 植物生理学报, 2022, 58: 1864-1872.
Wang F, Song W, Yang S T, Qiao S, Liao A Z, Tan W F. Effects of waterlogging stress on growth and nutrient distribution of sweet potato. Plant Physiol J, 2022, 58: 1864-1872 (in Chinese with English abstract).
[18] Lin K H R, Tsou C C, Hwang S Y, Chen L F O, Lo H F. Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato. J Plant Physiol, 2006, 163: 750-760.
[19] Araki H, Hamada A, Hossain M A, Takahashi T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Res, 2012, 137: 27-36.
[20] Yin D M, Chen S M, Chen F D, Guan Z Y, Fang W M. Morphological and physiological responses of two Chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot, 2009, 67: 87-93.
[21] Sairam R K, Kumutha D, Ezhilmathi K, Chinnusamy V, Meena R C. Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biol Plant, 2009, 53: 493-504.
[22] Alhdad G M, Seal C E, Al-Azzawi M J, Flowers T J. The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environ Exp Bot, 2013, 87: 120-125.
[23] Candan N, Tarhan L. Tolerance or sensitivity responses of Mentha pulegium to osmotic and waterlogging stress in terms of antioxidant defense systems and membrane lipid peroxidation. Environ Exp Bot, 2012, 75: 83-88.
[24] Arbona V, Hossain Z, López-Climent M F, Pérez-Clemente R M, Gómez-Cadenas A. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in Citrus. Physiol Plant, 2008, 132: 452-466.
[25] Zhou W G, Chen F, Meng Y J, Chandrasekaran U, Luo X F, Yang W Y, Shu K. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol Biochem, 2020, 148: 228-236.
[26] Wu S W, Hu C X, Tan Q L, Nie Z J, Sun X C. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat under drought stress. Plant Physiol Biochem, 2014, 83: 365-374.
[27] 叶玉秀. 水分胁迫影响糯玉米产量形成的生理机制研究. 扬州大学博士学位论文, 江苏扬州, 2021.
Ye Y X. Effects of Water Stress on Yield Fermation and Physiological Mechanism of Waxy Maize. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[28] 田一丹, 韩亮亮, 周琴, 张国正, 邢邯, 江海东. 大豆对渍水的生理响应I: 光合特性和糖代谢. 中国油料作物学报, 2012, 34: 262-267.
Tian Y D, Han L L, Zhou Q, Zhang G Z, Xing H, Jiang H D. Physiological response of soybean to waterlogging I: photosynthetic characteristics and sugar metabolism. Chin J Oil Crop Sci, 2012, 34: 262-267 (in Chinese with English abstract).
[29] Tian L X, Bi W S, Ren X S, Li W L, Sun L, Li J. Flooding has more adverse effects on the stem structure and yield of spring maize (Zea mays L.)than waterlogging in Northeast China. Eur J Agron, 2020, 117: 126054.
[30] 陈建勋, 王晓峰. 植物生理学实验指导, 第2版. 广州: 华南理工大学出版社, 2006.
Chen J X, Wang X F. Experimental Instruction of Plant Physiology, 2nd edn. Guangzhou: South China University of Technology Press, 2006 (in Chinese).
[31] Bailey-Serres J, Voesenek L A C J. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol, 2008, 59: 313-339.
doi: 10.1146/annurev.arplant.59.032607.092752 pmid: 18444902
[32] 王赞文, 梁宗锁, 韩蕊莲. 水涝胁迫对党参的生长、生理特性及多糖含量的影响. 浙江理工大学学报(自然科学版), 2017, 37: 893-900.
Wang Z W, Liang Z X, Han R L. Effect of waterlogging stress on the growth, physiological characteristics and polysaccharide content of codonopsis pilosula. J Zhejiang Sci-Tech Univ (Nat Sci), 2017, 37: 893-900 (in Chinese with English abstract).
[33] 丁锦峰, 苏盛楠, 梁鹏, 江孟孟, 郑丽洁, 汪先鹏, 李春燕, 朱新开, 郭文善. 拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响. 麦类作物学报, 2017, 37: 1473-1479.
Ding J F, Su S N, Liang P, Jiang M M, Zheng L J, Wang X P, Li C Y, Zhu X K, Guo W S. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat. J Triticeae Crops, 2017, 37: 1473-1479 (in Chinese with English abstract).
[34] 王本来, 俞建河, 曹秀清, 沈涛. 淹水时期与天数对大豆生长性状和产量的影响. 安徽农业科学, 2023, 51: 174-177.
Wang B L, Yu J H, Cao X Q, Shen T. Effect of Flooding Period and Days on the Growth Traits and Yield of Soybean. Anhui Agric Sci, 2023, 51: 174-177 (in Chinese with English abstract).
[35] 张凤. 淹水对花生生理特性及产量、品质的影响. 山东农业大学硕士学位论文, 山东泰安, 2012.
Zhang F. Effects of Water-logging on Physiological Characters, Pod Yield and Seed Quality of Peanut. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2012 (in Chinese with English abstract).
[36] 徐东忆, 李福建, 董金鑫, 杨迪迪, 陈立, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 生长调节物质对深播和渍水小麦幼苗生长和籽粒产量的影响. 麦类作物学报, 2022, 42: 1257-1265.
Xu D Y, Li F J, Dong J X, Yang D D, Chen L, Zhu M, Li C Y, Zhu X K, Ding J F, Guo W S. Effects of growth regulating substances on seedling growth and grain yield of deep-sown and waterlogged wheat. J Triticeae Crops, 2022, 42: 1257-1265 (in Chinese with English abstract).
[37] Morgan J M, Hare R A, Fletcher R J. Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments. Austr J Agric Res, 1986, 37: 449-457.
[38] Huang C, Zhang W Q, Wang H, Gao Y, Ma S T, Qin A Z, Liu Z G, Zhao B, Ning D F, Zheng H J, Liu Z D. Effects of waterlogging at different stages on growth and ear quality of waxy maize. Agric Water Manag, 2022, 266: 107603.
[39] Yu M, Zhou Z Q, Deng X Y, Li J W, Mei F Z, Qi Y H. Physiological mechanism of programmed cell death aggravation and acceleration in wheat endosperm cells caused by waterlogging. Acta Physiol Plant, 2017, 39: 23.
[40] Parvin D, Karmoker J L. Effects of waterlogging on ion accumulation and sugar, protein and proline contents in Corchorus capsularis L. Bangladesh J Bot, 2013, 42: 55-64.
[41] Puyang X H, An M Y, Xu L X, Han L B, Zhang X Z. Antioxidant responses to waterlogging stress and subsequent recovery in two Kentucky bluegrass (Poa pratensis L.)cultivars. Acta Physiol Plant, 2015, 37: 197.
[42] Li W, Li G, Wen T, Gao L, Liu J, Hu J, Mo W, Ashraf U, Abrar M. Evaluation of physiological indices of waterlogging tolerance of different maize varieties in south China. Appl Ecol Environ Res, 2018, 16: 2059-2072.
[43] 孙建伟. 淹水对玉米细胞抗氧化酶系统的影响. 安徽农业科学, 2020, 48: 44-45.
Sun J W. Effects of waterflooding on antioxidant enzyme system in maize cells. Anhui Agric Sci, 2020, 48: 44-45 (in Chinese with English abstract).
[44] Tian L X, Bi W S, Liu X, Sun L, Li J. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L.)under field conditions. Acta Physiol Plant, 2019, 41: 63.
[45] 张淋淋, 孙海, 于红霞, 孟洪涛, 张舒娜, 张亚玉. 水分胁迫对西洋参叶片生理生化指标的影响. 吉林农业大学学报, 2020, 42: 403-408.
Zhang L L, Sun H, Yu H X, Meng H T, Zhang S N, Zhang Y Y. Effects of water stress on physiological and biochemical indexes of panax quinquefolius leaves. J Jilin Agric Univ, 2020, 42: 403-408 (in Chinese with English abstract).
[46] Alhoshan M, Zahedi M, Ramin A A, Sabzalian M R. Effect of soil drought on biomass production, physiological attributes and antioxidant enzymes activities of potato cultivars. Russ J Plant Physiol, 2019, 66: 265-277.
[47] 陈娟, 梁明霞, 潘开文. 涝渍胁迫下生姜幼苗生长及体内保护酶活性变化. 江苏农业科学, 2015, 43(5): 152-155.
Chen J, Liang M X, Pan K W. Study on growth and antioxidant enzyme activity of Zingiber officinale Rosc seedling under waterlogging stress. Jiangsu Agric Sci, 2015, 43(5): 152-155 (in Chinese with English abstract).
[48] 马尚宇, 韩笑, 王艳艳, 黄正来, 张文静, 樊永惠, 马元山. 花后渍水对小麦根系形态、生理及地上部干物质分配和产量的影响. 南京农业大学学报, 2021, 44: 614-621.
Ma S Y, Han X, Wang Y Y, Huang Z L, Zhang W J, Fan Y H, Ma Y S. Effect of waterlogging stress after anthesis on the root morphology, physiology, dry matter distribution and yield in wheat. J Nanjing Agric Univ, 2021, 44: 614-621 (in Chinese with English abstract).
[49] Jiang L, Yang H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Safe, 2009, 72: 1687-1693.
[50] Misra N, Gupta A K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol, 2006, 163: 11-18.
[1] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[2] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[3] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[4] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[5] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[6] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[7] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[8] 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311.
[9] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[10] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[11] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[12] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性[J]. 作物学报, 2025, 51(2): 459-469.
[13] 覃金华, 洪卫源, 冯向前, 李子秋, 周子榆, 王爱冬, 李瑞杰, 王丹英, 张运波, 陈松. 基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析[J]. 作物学报, 2025, 51(2): 485-502.
[14] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[15] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!