欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (3): 728-743.doi: 10.3724/SP.J.1006.2025.42026

• 耕作栽培·生理生化 • 上一篇    下一篇

基于生育期、产量和品质对70份粳糯品种(系)的综合评价

熊强强(), 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕(), 张洪程()   

  1. 扬州大学水稻产业工程技术研究院 / 江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2023-12-01 接受日期:2024-01-31 出版日期:2025-03-12 网络出版日期:2024-11-12
  • 通讯作者: *朱金燕, E-mail: zhujinyanrain@163.com; 张洪程, E-mail: hczhang@yzu.edu.cn.
  • 作者简介:E-mail: xqq_qiang@163.com
  • 基金资助:
    镇江市“金山英才”产业强市领军人才引进计划(Zhenjiang Talent Office [2021] 1);江苏省重点研发计划项目(BE2019342);江苏省种业振兴“jl1”项目(JBGS [2021] 036);江苏省高校优势学科建设工程项目(PAPD)

Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality

XIONG Qiang-Qiang(), SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan(), ZHANG Hong-Cheng()   

  1. Research Institute of Rice Industrial Engineering Technology, Yangzhou University / Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China
  • Received:2023-12-01 Accepted:2024-01-31 Published:2025-03-12 Published online:2024-11-12
  • Contact: *E-mail: zhujinyanrain@163.com; E-mail: hczhang@yzu.edu.cn.
  • Supported by:
    Zhenjiang “Jinshan Talents” Industry Strong City Leading Talent Introduction Plan(Zhenjiang Talent Office [2021] 1);Key R & D Projects in Jiangsu Province(BE2019342);Jiangsu Province Seed Industry Revitalization Project(JBGS [2021] 036);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

摘要:

本研究以70份糯稻品种(系)作为试验材料, 综合生育期、产量和稻米品质筛选出适合扬中地区种植的优质、高产粳糯稻品种(系)。试验于2021—2023年在江苏省扬中市进行, 采用随机区组设计, 3次重复。结果表明: (1) 70份糯稻品种(系) 2021年全生育期变幅为137~159 d, 2023年变幅为139~158 d。根据全生育期可划分为3个生育类型, 其中早熟晚粳17个, 中熟中粳18个, 迟熟中粳35个。(2) 2021年产量变幅为5.19~9.50 t hm-2, 2023年产量变幅为5.57~9.64 t hm-2。主成分分析表明, 每穗粒数与穗数是决定产量性状的主要指标。(3) 2021年糙米率变幅为80.45%~87.35%, 精米率变幅为59.86%~75.87%, 达到优质一级标准的品种有20个, 达到优质二级标准的品种有16个; 2023年糙米率变幅为81.60%~88.50%, 精米率变幅为65.07%~75.59%, 达到优质一级标准的品种有15个, 达到优质二级标准的品种有18个。2021年蛋白质含量变幅为7.00%~10.77%, 总淀粉含量变幅为69.42%~92.73%; 2023年蛋白质含量变幅为7.00%~10.79%, 总淀粉含量变幅为68.00%~92.68%。分子标记检测发现有35个水稻品种携带香味基因badh2。综合生育期、产量和品质的比较与评价, 筛选出4个适宜扬中地区推广种植的高产优质糯稻品种(系)扬软糯2号、苏糯7132、扬粳糯2号和盐稻93207。

关键词: 糯稻, 扬中地区, 生育期, 产量, 稻米品质

Abstract:

This study evaluated 70 glutinous rice varieties (lines) to identify high-quality, high-yield varieties suitable for cultivation in the Yangzhong region, based on comprehensive assessments of growth period, yield, and rice quality. The experiment was conducted in Yangzhong city, Jiangsu province, from 2021 to 2023, using a randomized block design with three replicates. The results showed the following: (1) The growth periods of the 70 glutinous rice varieties ranged from 137 to 159 days in 2021 and from 139 to 158 days in 2023. Based on the growth period, the varieties were classified into three categories: 17 early-maturing late-japonica types, 18 mid-maturing mid-japonica types, and 35 late-maturing mid-japonica types. (2) In 2021, yields ranged from 5.19 to 9.50 t hm-2, and in 2023, yields ranged from 5.57 to 9.64 t hm-2. Principal component analysis indicated that the number of grains per panicle and panicle number were the primary factors influencing yield traits. (3) In 2021, the brown rice rate ranged from 80.45% to 87.35%, and the milled rice rate from 59.86% to 75.87%. Twenty varieties met the first-class quality standard, while 16 met the second-class quality standard. In 2023, the brown rice rate ranged from 81.60% to 88.50%, and the milled rice rate from 65.07% to 75.59%. Fifteen varieties met the first-class quality standard, and 18 met the second-class quality standard. In 2021, protein content varied from 7.00% to 10.77%, and total starch content from 69.42% to 92.73%. In 2023, protein content ranged from 7.00% to 10.79%, and total starch content from 68.00% to 92.68%. Molecular marker analysis revealed that 35 rice varieties carried the badh2 gene. Based on the comprehensive analysis of growth period, yield, and quality, four high-yield and high-quality glutinous rice varieties (lines) suitable for cultivation in Yangzhong were selected: Yangruannuo 2, Sunuo 7132, Yangjingnuo 2, and Yandao 93207.

Key words: glutinous rice, Yangzhong region, growth period, yield, rice quality

图1

2021-2023年水稻生长季平均温度与降水"

表1

糯稻品种(系)生育期调查"

品种
Variety
编号
Number
2021年
全生育期
Full fertility period in 2021 (d)
2023年
全生育期
Full fertility period in 2023 (d)
生育
类型
Fertility type
品种
Variety
编号
Number
2021年
全生育期
Full fertility period in 2021 (d)
2023年
全生育期
Full fertility period in 2023 (d)
生育
类型
Fertility type
灵谷糯1号 Linggunuo 1 YZ01 159 156 EL 盐稻93207 Yandao 93207 YZ36 149 147 LM
武糯9612 Wunuo 9612 YZ02 150 151 LM 绿亿香糯 Lyuyixiangnuo YZ37 140 142 MM
皖垦糯2号 Wankennuo 2 YZ03 155 153 LM 粳香糯398 Jingxiangnuo 398 YZ38 143 143 MM
张育糯2号 Zhangyunuo 2 YZ04 151 152 LM 镇糯20号Zhennuo 20 YZ39 152 151 LM
金单糯100 Jindanuo 100 YZ05 152 152 LM 武糯9606 Wunuo 9606 YZ40 148 147 LM
镇糯29 Zhennuo 29 YZ06 151 152 LM 中粳糯588 Zhongjingnuo 588 YZ41 150 148 LM
武香糯9214 Wuxiangnuo 9214 YZ07 152 153 LM 喜粳糯68 Xijingnuo 68 YZ42 157 158 EL
扬产糯1号Yangchannuo 1 YZ08 146 148 LM 恒祥糯10号Hengxiangnuo 10 YZ43 144 144 MM
苏糯9202 Sunuo 9202 YZ09 152 151 LM 皖稻68 Wandao 68 YZ44 149 148 LM
金单糯8917 Jindanuo 8917 YZ10 148 149 LM 皖垦糯1116 Wankennuo 1116 YZ45 158 157 EL
镇糯19号 Zhennuo 19 YZ11 145 147 LM 中科盐2号Zhongkeyan 2 YZ46 148 145 LM
扬粳糯5号Y angjingnuo 5 YZ12 156 157 EL 盐稻93015 Yandao 93015 YZ47 138 141 MM
武香糯7368 Wuxiangnuo 7368 YZ13 156 156 EL 武香糯366 Wuxiangnuo 366 YZ48 141 144 MM
苏糯2621 Sunuo 2621 YZ14 155 153 LM 武香糯109 Wuxiangnuo 109 YZ49 146 148 LM
裕丰糯446 Yufengnuo 446 YZ15 150 148 LM 南粳糯2号Nanjingnuo 2 YZ50 146 148 LM
优香糯1号Youxiangnuo 1 YZ16 148 146 LM 丰粳糯203 Fengjingnuo 203 YZ51 140 142 MM
金香糯1号Jinxiangnuo 1 YZ17 155 153 LM 武育糯4819 Wuyunuo 4819 YZ52 158 157 EL
扬产糯2002 Yangchannuo 2002 YZ18 152 150 LM 皖垦糯3号Wankennuo 3 YZ53 155 153 LM
镇糯762 Zhennuo 762 YZ19 157 156 EL 丰糯1246 Fengnuo 1246 YZ54 142 143 MM
扬软糯2号Yangruannuo 2 YZ20 152 150 LM 皖垦糯1号Wankennuo 1 YZ55 158 156 EL
常糯09-3 Changnuo 09-3 YZ21 152 152 LM 淮糯152 Huainuo 152 YZ56 143 143 MM
银糯19 Yinnuo 19 YZ22 159 157 EL 淮糯134 Huainuo 134 YZ57 142 144 MM
扬粳M9225 Yangjing M9225 YZ23 159 156 EL 武育糯366 Wuyunuo 366 YZ58 145 145 LM
荃香糯3号 Quanxiangnuo 3 YZ24 158 158 EL 泗稻20-8 Sidao 20-8 YZ59 142 144 MM
光明糯1号 Guangmingnuo 1 YZ25 150 151 LM 连香糯516 Lianxiangnuo 516 YZ60 144 143 MM
苏糯7132 Sunuo 7132 YZ26 156 156 EL 中种香糯Zhongzhongxiangnuo YZ61 137 139 MM
南粳香糯Nanjingxiangnuo YZ27 156 156 EL 泉糯669 Quannuo 669 YZ62 141 142 MM
常糯2号Changnuo 2 YZ28 157 158 EL 恒祥糯9号Hengxiangnuo 9 YZ63 140 142 MM
扬农糯18-3370 Yangnongnuo 18-3370 YZ29 157 157 EL 皖垦糯5号Wankennuo 5 YZ64 154 153 LM
徐72909 Xu 72909 YZ30 149 148 LM 金丰糯2号Jinfengnuo 2 YZ65 139 141 MM
武香糯9106 Wuxiangnuo 9106 YZ31 152 150 LM 华浙糯1号Huazhe Nuo 1 YZ66 151 147 LM
丰登糯398 Fengdengnuo 398 YZ32 154 154 LM 盐糯13138 Yannuo 13138 YZ67 144 144 MM
武育糯180 Wuyunuo 180 YZ33 156 156 EL 连粳18307 Lianjing 18307 YZ68 143 142 MM
武香糯106 Wuxiangnuo 106 YZ34 153 150 LM 盐糯1716 Yannuo 1716 YZ69 144 142 MM
扬粳糯2号Yangjingnuo 2 YZ35 156 157 EL 金粳糯6288 Jinjingnuo 6288 YZ70 145 145 LM

表2

水稻香味基因检测的功能标记引物信息"

基因
Gene
染色体Chromosome 标记
Marker
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
参考文献
Reference
badh2 8 FMbadh2-E7 GGTTGCATTTACTGGGAGTT CAGTGAAACAGGCTGTCAAG [25]

表3

糯稻品种(系)产量及其构成因素的差异"

年份
Year
指标
Index
穗长
Length of panicle (cm)
穗数
Panicles
(×104 hm-2)
每穗粒数
Grains per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
实测产量
Harvest yield (t hm-2)
2021 最大值Maximum value 21.49 356.45 165.43 98.42 32.44 9.50
最小值Minimum value 13.35 197.78 93.63 78.15 22.60 5.19
平均值Average value 16.50 285.79 125.78 94.15 27.93 7.79
标准差Standard deviation 1.36 36.52 15.62 3.65 1.78 0.87
变异系数Coefficient of variation 0.08 0.13 0.12 0.04 0.06 0.11
2023 最大值Maximum value 19.70 353.52 170.90 97.79 30.81 9.64
最小值Minimum value 13.95 195.60 94.64 78.79 23.37 5.57
平均值Average value 16.73 278.46 131.37 94.47 27.63 7.94
标准差Standard deviation 1.27 32.98 16.23 2.91 1.43 0.84
变异系数Coefficient of variation 0.08 0.12 0.12 0.03 0.05 0.11

表4

糯稻品种(系)产量及其构成因素的相关性分析"

年份
Year
指标
Index
穗长
Length of panicle
每穗粒数
Grains per panicle
千粒重
1000-grain weight
结实率
Seed-setting rate
穗数
Panicles
2021 穗长Length of panicle 1.000
每穗粒数Grains per panicle 0.627** 1.000
千粒重1000-grain weight 0.115 -0.206 1.000
结实率Seed-setting rate -0.144 -0.320** 0.158 1.000
穗数Panicles -0.167 -0.334** -0.238* -0.068 1.000
实测产量Harvest yield 0.090 0.139 0.137 -0.180 0.256*
2023 穗长Length of panicle 1.000
每穗粒数Grains per panicle 0.426** 1.000
千粒重1000-grain weight 0.029 -0.313** 1.000
结实率Seed-setting rate -0.051 -0.290* 0.231 1.000
穗数Panicles -0.055 -0.276* -0.314** 0.063 1.000
实测产量Harvest yield 0.098 0.120 0.019 -0.032 0.280*

表5

糯稻品种(系)各指标主成分分析"

年份Year 指标Index 第1主成分PC1 第2主成分PC2 第3主成分PC3
2021 特征值Eigenvalue 1.897 1.405 1.166
贡献率Contribution rate 31.621 23.418 19.438
累积贡献率Cumulative contribution rate 31.621 55.039 74.478
穗长Length of panicle 0.801 -0.137 0.155
每穗粒数Grains per panicle 0.916 0.016 -0.154
结实率Seed-setting rate -0.477 -0.523 0.066
千粒重1000-grain weight -0.060 -0.523 0.768
穗数Panicles -0.381 0.760 0.127
实测产量Harvest yield 0.201 0.511 0.713
2023 特征值Eigenvalue 1.714 1.416 1.137
贡献率Contribution rate 28.561 23.605 18.945
累积贡献率Cumulative contribution rate 28.561 52.166 71.111
穗长Length of panicle 0.581 -0.205 0.537
每穗粒数Grains per panicle 0.877 -0.167 0.052
结实率Seed-setting rate -0.573 -0.082 0.402
千粒重1000-grain weight -0.472 -0.577 0.478
穗数Panicles -0.157 0.882 0.126
实测产量Harvest yield 0.178 0.477 0.663

表6

糯稻品种(系)产量聚类分析结果"

年份
Year
类型
Type
实测产量变幅
Harvest yield
variation
(t hm-2)
平均实测产量
Average
harvest yield
(t hm-2)
千粒重变幅
1000-grain
weight variation (g)
平均千粒重
Average 1000-grain weight
(g)
品种(系)
Varieties
(lines)
2021 I 8.10-9.50 8.62 29.19-32.44 30.14 YZ02, YZ06, YZ07, YZ10, YZ20, YZ26, YZ29, YZ35, YZ36
II 6.99-8.05 7.53 27.06-29.07 28.23 YZ05, YZ11, YZ16, YZ19, YZ23, YZ25, YZ31, YZ32, YZ34, YZ46, YZ47, YZ50, YZ59, YZ65
III 5.19-6.78 6.14 22.60-26.88 25.89 YZ60, YZ66, YZ68
2023 I 8.36-9.64 8.83 28.07-30.81 28.93 YZ06, YZ10, YZ15, YZ17, YZ20, YZ26, YZ29, YZ30, YZ35, YZ36, YZ39, YZ42, YZ48, YZ58
II 7.15-8.27 7.73 26.12-27.92 27.01 YZ05, YZ09, YZ12, YZ19, YZ24, YZ25, YZ37, YZ44, YZ45, YZ50, YZ51, YZ53, YZ57, YZ61, YZ65, YZ66, YZ70
III 5.57-6.89 6.39 23.37-26.00 25.20 YZ60

表7

糯稻品种(系)加工品质的差异"

年份
Year
指标
Index
糙米率
Brown rice rate (%)
精米率
Rice polishing rate (%)
整精米率
Whole rice rate (%)
2021 最大值Maximum value 87.35 75.87 72.75
最小值Minimum value 80.45 59.86 25.49
平均值Average value 84.56 70.82 58.86
标准差Standard deviation 1.38 3.10 10.87
变异系数Coefficient of variation 0.02 0.04 0.18
2023 最大值Maximum value 88.50 75.59 70.15
最小值Minimum value 81.60 65.07 27.47
平均值Average value 85.00 71.36 57.86
标准差Standard deviation 1.43 2.67 10.24
变异系数Coefficient of variation 0.02 0.04 0.18

表8

糯稻品种(系)营养品质的差异"

年份
Year
指标
Index
蛋白质含量
Protein content (%)
总淀粉含量
Total starch content (%)
直链淀粉含量
Amylose content (%)
2021 最大值Maximum value 10.77 92.73 3.70
最小值Minimum value 7.00 69.42 0.59
平均值Average value 8.44 82.53 1.39
标准差Standard deviation 0.97 4.28 0.53
变异系数Coefficient of variation 0.11 0.05 0.38
2023 最大值Maximum value 10.79 92.68 3.65
最小值Minimum value 7.00 68.00 0.52
平均值Average value 8.34 82.48 1.38
标准差Standard deviation 0.92 4.25 0.51
变异系数Coefficient of variation 0.11 0.05 0.37

表9

糯稻品种(系)香味基因检测"

品种编号
Variety number
是否携带badh2
Whether to carry badh2
品种编号
Variety number
是否携带badh2
Whether to carry badh2
品种编号
Variety number
是否携带badh2
Whether to carry badh2
品种编号
Variety number
是否携带badh2
Whether to carry badh2
YZ01 否No YZ19 是Yes YZ37 是Yes YZ55 否No
YZ02 是Yes YZ20 是Yes YZ38 否No YZ56 是Yes
YZ03 否No YZ21 是Yes YZ39 否No YZ57 否No
YZ04 否No YZ22 是Yes YZ40 是Yes YZ58 是Yes
YZ05 否No YZ23 否No YZ41 否No YZ59 否No
YZ06 否No YZ24 否No YZ42 是Yes YZ60 否No
YZ07 是Yes YZ25 否No YZ43 是Yes YZ61 是Yes
YZ08 否No YZ26 是Yes YZ44 否No YZ62 否No
YZ09 否No YZ27 是Yes YZ45 是Yes YZ63 是Yes
YZ10 否No YZ28 否No YZ46 否No YZ64 否No
YZ11 是Yes YZ29 是Yes YZ47 是Yes YZ65 否No
YZ12 是Yes YZ30 否No YZ48 是Yes YZ66 否No
YZ13 否No YZ31 是Yes YZ49 否No YZ67 否No
YZ14 是Yes YZ32 是Yes YZ50 否No YZ68 否No
YZ15 是Yes YZ33 是Yes YZ51 否No YZ69 是Yes
YZ16 是Yes YZ34 是Yes YZ52 是Yes YZ70 否No
YZ17 否No YZ35 是Yes YZ53 是Yes
YZ18 是Yes YZ36 是Yes YZ54 否No

表10

糯稻品种(系)加工品质及营养品质的相关性分析"

年份
Year
指标
Index
糙米率
Brown rice
rate
精米率
Rice polishing rate
整精米率
Whole rice
rate
直链淀粉含量
Amylose
content
蛋白质含量
Protein
content
2021 糙米率Brown rice rate 1.000 / / / /
精米率Rice polishing rate 0.584** 1.000 / / /
整精米率Whole rice rate 0.422** 0.767** 1.000 / /
直链淀粉含量Amylose content -0.257* -0.037 -0.037 1.000 /
蛋白质含量Protein content -0.206 -0.216 -0.256* 0.165 1.000
总淀粉含量Total starch content 0.197 0.212 0.131 -0.158 -0.092
2023 糙米率Brown rice rate 1.000 / / / /
精米率Rice polishing rate 0.500** 1.000 / / /
整精米率Whole rice rate 0.403** 0.578** 1.000 / /
直链淀粉含量Amylose content 0.039 -0.010 -0.040 1.000 /
蛋白质含量Protein content -0.170 -0.082 -0.227 0.198 1.000
总淀粉含量Total starch content 0.214 0.039 0.142 -0.187 -0.132

表11

不同糯稻品种(系)各指标主成分分析"

年份 Year 指标 Index 第1主成分 PC1 第2主成分 PC2
2021 特征值Eigenvalue 2.431 1.135
贡献率Contribution rate 40.515 18.914
累积贡献率Cumulative contribution rate 40.515 59.429
糙米率Brown rice rate 0.764 -0.095
精米率Rice polishing rate 0.879 0.312
整精米率Whole rice rate 0.817 0.355
直链淀粉含量Amylose content -0.273 0.811
蛋白质含量Protein content -0.445 0.254
总淀粉含量Total starch content 0.369 -0.425
2023 特征值Eigenvalue 1.874 1.238
贡献率Contribution rate 31.225 20.639
累积贡献率Cumulative contribution rate 31.225 51.864
糙米率Brown rice rate 0.532 0.033
精米率Rice polishing rate 0.752 0.455
整精米率Whole rice rate 0.761 0.278
直链淀粉含量Amylose content -0.483 0.429
蛋白质含量Protein content 0.407 -0.522
总淀粉含量Total starch content -0.216 0.705

表12

糯稻品种(系)稻米品质聚类分析结果"

年份
Year
类型
Type
指标
Index
变幅
Variation (%)
平均值
Average value (%)
品种编号
Variety number
2021 I 蛋白质含量Protein content 7.30-8.83 7.73 YZ01, YZ05, YZ27, YZ35, YZ40, YZ55, YZ67
总淀粉含量Total starch content 77.96-85.15 82.32
直链淀粉含量Amylose content 0.64-1.15 0.96
II 蛋白质含量Protein content 7.03-7.63 7.37 YZ09, YZ25, YZ26, YZ43, YZ62
总淀粉含量Total starch content 85.53-92.73 88.73
直链淀粉含量Amylose content 1.46-1.79 1.58
III 蛋白质含量Protein content 8.07-8.97 8.53 YZ20, YZ29, YZ30, YZ33, YZ36, YZ37, YZ46, YZ50, YZ51
总淀粉含量Total starch content 84.22-87.94 86.10
直链淀粉含量Amylose content 0.64-1.27 0.95
2023 I 蛋白质含量Protein content 7.21-7.89 7.44 YZ01, YZ05, YZ27, YZ35, YZ67
总淀粉含量Total starch content 78.46-81.48 81.67
直链淀粉含量Amylose content 0.93-1.13 1.02
II 蛋白质含量Protein content 7.00-7.79 7.37 YZ09, YZ19, YZ25, YZ26, YZ34, YZ43, YZ62
总淀粉含量Total starch content 83.93-92.68 87.29
直链淀粉含量Amylose content 1.30-1.71 1.49
III 蛋白质含量Protein content 8.10-8.88 8.48 YZ08, YZ20, YZ29, YZ30, YZ33, YZ36, YZ37, YZ51
总淀粉含量Total starch content 84.27-87.67 86.02
直链淀粉含量Amylose content 0.72-1.22 0.96
[1] 毛娟芬. 水稻种植技术优化要点. 新农业, 2022, (23): 8-9.
Mao J F. Key points of optimization of rice planting technology. Mod Agric, 2022, (23): 8-9 (in Chinese).
[2] 孙统庆, 李杰, 陈震. 江苏水稻均衡性增产的思考. 中国稻米, 2021, 27(6): 34-37.
doi: 10.3969/j.issn.1006-8082.2021.06.007
Sun T Q, Li J, Chen Z. Thoughts on the balanced yield increase of rice in Jiangsu. China Rice, 2021, 27(6): 34-37 (in Chinese with English abstract).
[3] 蔡嘉鑫. 机插条件下播期对不同熟期类型粳稻产量、稻米品质及有关生理生态特征的影响. 扬州大学硕士学位论文, 江苏扬州, 2023.
Cai J X. Effects of Sowing Date on Yield, Rice Quality and Related Physiological and Ecological Characteristics of Japonica Rice with Different Maturity Types under Mechanical Transplanting. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[4] 张柏祥. 关于扬中市乡村振兴战略实施情况的调查. 农业装备技术, 2023, 49(6): 60-61.
Zhang B X. Investigation on the implementation of rural revitalization strategy in Yangzhong city. Agric Equip Technol, 2023, 49(6): 60-61 (in Chinese).
[5] 蔡剑. 江苏扬中市水稻品种试种效果及其推广应用. 农业工程技术, 2022, 42(2): 23-24.
Cai J. Effect of rice variety trial and its popularization and application in Yangzhong city, Jiangsu province. Agric Eng Technol, 2022, 42(2): 23-24 (in Chinese).
[6] 田可, 钱婉铷. 绿色食品香糯稻生产技术规程. 农业装备技术, 2020, 46(2): 35-37.
Tian K, Qian W R. Technical regulations for the production of green food fragrant glutinous rice. Agric Equip Technol, 2020, 46(2): 35-37 (in Chinese).
[7] Qiu S, Abbaspourrad A, Padilla-Zakour O I. Prevention of the retrogradation of glutinous rice gel and sweetened glutinous rice cake utilizing pulsed electric field during refrigerated storage. Foods, 2022, 11: 1306.
[8] 陈双琴, 顾雪, 黄菊媛, 李丹丹, 李娟, 马杨永杰, 普世皇, 李继章, 杨国明, 文建成. 糯稻种质胚乳淀粉组分含量及其消化特性. 食品科学, 2023, 44(20): 309-314.
Chen S Q, Gu X, Huang J Y, Li D D, Li J, Ma Y Y J, Pu S H, Li J Z, Yang G M, Wen J C. Composition and digestion characteristics of starch in endosperm of glutinous rice varieties. Food Sci, 2023, 44(20): 309-314 (in Chinese with English abstract).
[9] 曾生元, 杜灿灿, 胡庆峰, 李闯, 景德道, 林添资, 余波, 钱华飞, 孙立亭, 周义文, 费云燕, 韩华新, 杨军, 巫章平, 龚红兵. 镇糯系列糯稻品种的主要品质特性. 江苏农业科学, 2022, 50(18): 215-220.
Zeng S Y, Du C C, Hu Q F, Li C, Jing D D, Lin T Z, Yu B, Qian H F, Sun L T, Zhou Y W, Fei Y Y, Han H X, Yang J, Wu Z P, Gong H B. Main quality characteristics of glutinous rice cultivars in Zhennuo series. Jiangsu Agric Sci, 2022, 50(18): 215-220 (in Chinese with English abstract).
[10] 常堃, 李文品, 李慧, 陈祥, 陈丽潇, 李靓靓, 李评, 肖能武, 昝荣政, 杨荣彬. 不同糯稻品种酿造房县黄酒的差异性分析. 中国稻米, 2023, 29(4): 95-97.
doi: 10.3969/j.issn.1006-8082.2023.04.017
Chang K, Li W P, Li H, Chen X, Chen L X, Li L L, Li P, Xiao N W, Zan R Z, Yang R B. Analysis of the differences of different glutinous rice varieties brewing Fangxian rice wine. China Rice, 2023, 29(4): 95-97 (in Chinese with English abstract).
[11] 丹野久. 日本寒地北海道稻作极限地带糯米蛋白质含量和白度的年度间地区间差异及其产生因素. 粮油食品科技, 2022, 30(5): 26-43.
Dan Y J. Variation of the protein content and whiteness of glutinous rice grains among years and among areas, and its occurrence factors in the coldest regions for rice cultivation in Hokkaido, Japan. Sci Technol Cereals Oils Foods, 2022, 30(5): 26-43 (in Chinese with English abstract).
[12] 蔡乔宇, 周坚, 缪礼鸿, 陈轩. 黄酒专用米的研究进展. 中国酿造, 2018, 37(6): 1-5.
doi: 10.11882/j.issn.0254-5071.2018.06.001
Cai Q Y, Zhou J, Miao L H, Chen X. Research progress on special rice for rice wine. China Brew, 2018, 37(6): 1-5 (in Chinese with English abstract).
[13] 王保君, 程旺大, 沈亚强, 陈召桂, 彭玉慧, 朱佳伟, 黄家频, 张红梅. 浙江省粽子专用糯稻品种筛选及其综合评价. 浙江农业学报, 2022, 34: 2583-2593.
doi: 10.3969/j.issn.1004-1524.2022.12.01
Wang B J, Cheng W D, Shen Y Q, Chen Z G, Peng Y H, Zhu J W, Huang J P, Zhang H M. Selection and comprehensive evaluation of special glutinous rice varieties for dumpling in Zhejiang province, China. Acta Agric Zhejiangensis, 2022, 34: 2583-2593 (in Chinese with English abstract).
doi: 10.3969/j.issn.1004-1524.2022.12.01
[14] 梁雪雨, 郭敏, 欧旭华, 陈莹, 周丹华, 黄翠红, 王慧, 杨瑰丽. 南方稻区主栽香稻品种香味基因Badh2基因型分析. 广东农业科学, 2023, 50(12): 104-111.
Liang X Y, Guo M, Ou X H, Chen Y, Zhou D H, Huang C H, Wang H, Yang G L. Genotypic analysis of aroma gene Badh2 in aromatic rice cultivars in south China. Guangdong Agric Sci, 2023, 50(12): 104-111 (in Chinese with English abstract).
[15] 刘之熙, 闵军, 刘三雄, 刘利成, 胡敏, 李咏谊. 水稻香味基因Badh2的功能和效应分析. 湖南农业科学, 2023, (10): 1-6.
Liu Z X, Min J, Liu S X, Liu L C, Hu M, Li Y Y. Function and effect analysis of Badh2 aroma gene in rice. Hunan Agric Sci, 2023, (10): 1-6 (in Chinese with English abstract).
[16] Mumm R, Hageman J A, Calingacion M N, de Vos R C H, Jonker H H, Erban A, Kopka J, Hansen T H, Laursen K H, Schjoerring J K, Ward J L, Beale M H, Jongee S, Rauf A, Habibi F, Indrasari S D, Sakhan S, Ramli A, Romero M, Reinke R F, Ohtsubo K, Boualaphanh C, Fitzgerald M A, Hall R D. Multi-platform metabolomics analyses of a broad collection of fragrant and non-fragrant rice varieties reveals the high complexity of grain quality characteristics. Metabolomics, 2016, 12: 38.
doi: 10.1007/s11306-015-0925-1 pmid: 26848289
[17] 庄坤, 谢健, 陈正行. 糯米和糯米制品发展现状及趋势. 粮食与饲料工业, 2016, (12): 1-3.
Zhuang K, Xie J, Chen Z X. Present situation and development trend of glutinous rice and its products. Cereal Feed Ind, 2016, (12): 1-3 (in Chinese with English abstract).
[18] 江谷驰弘. 引进糯稻种质资源的评价与利用. 四川农业大学硕士学位论文, 四川雅安, 2016.
Jiang G C H. Evaluation and Utilization of Introduced Glutinous Rice Germplasm Resources. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2016 (in Chinese with English abstract).
[19] 中华人民共和国国家标准(GB/T17891-2017)《优质稻谷》. 北京: 中国标准出版社, 2017.
中华人民共和国国家标准(GB/T17891-2017)《优质稻谷》. Beijing: Standards Press of China, 2017 (in Chinese).
[20] Batey I L. Starch analysis using thermostable alpha-amylases. Starch Stärke, 1982, 34: 125-128.
[21] Englyst H N, Cummings J H. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods. J Assoc Off Anal Chem, 1988, 71: 808-814.
[22] McCleary B V, Gibson T S, Mugford D C, Lukow O, Jackson D S, Rabe E, Patel N, Williams P C, Gelroth J, Camire M E, Chibbar R N, Ingelin M, Niemann C, Grant L A, Peterson D M, Corke H, Sanders P, Muir J, Choct M, Schmidt J, Walker R, Blakeney A B, Logue S, Tarr A, Gibson T, Batey I, Dynes J, Miklaszewicz T, Panozzo J, McCleary B, Li B W, Hofer P, Arndt E, Thomas M, Depalo R. Measurement of total starch in cereal products by amyloglucosidase-α-amylase method: collaborative study. J AOAC Int, 1997, 80: 571-579.
[23] 中华人民共和国国家标准(GB5009.5-2016)《食品中蛋白质的测定》. 北京: 中国标准出版社, 2016.
National Standard of the People’s Republic of China (GB5009.5-2016) “Determination of Protein in Food”. Beijing: Standards Press of China, 2016 (in Chinese).
[24] 李奥. 分子标记辅助选择改良南粳5718的稻瘟病抗性及香味. 扬州大学硕士学位论文, 江苏扬州, 2023.
Li A. Improvement of Rice Blast Resistance and Flavor of Nanjing 5718 by Molecular Marker-Assisted Selection. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[25] Shi W W, Yang Y, Chen S H, Xu M L. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed, 2008, 22: 185-192.
[26] 丁颖. 中国水稻栽培学. 北京: 中国农业出版社, 1961.
Ding Y. Rice Cultivation in China. Beijing: China Agriculture Press, 1961 (in Chinese).
[27] 卞金龙. 淮北地区优质高效粳稻品种筛选及其评价指标体系. 扬州大学博士学位论文, 江苏扬州, 2020.
Bian J L. Screening and Evaluation Index System of japonica Rice Varieties with High Quality and High Efficiency in Huaibei Area. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2020 (in Chinese with English abstract).
[28] Xue W, Lindner S, Dubbert M, Otieno D, Ko J, Muraoka H, Werner C, Tenhunen J. Supplement understanding of the relative importance of biophysical factors in determination of photosynthetic capacity and photosynthetic productivity in rice ecosystems. Agric Forest Meteorol, 2017, 232: 550-565.
[29] 张洪程, 吴桂成, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 黄幸福, 龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式. 中国农业科学, 2010, 43: 2645-2660.
doi: 10.3864/j.issn.0578-1752.2010.13.004
Zhang H C, Wu G C, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Huang X F, Gong J L. The SOI model of quantitative cultivation of super-high yielding rice. Sci Agric Sin, 2010, 43: 2645-2660 (in Chinese with English abstract).
[30] 吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010, 43: 266-276.
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Sci Agric Sin, 2010, 43: 266-276 (in Chinese with English abstract).
[31] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2012, 45: 2147-2158.
doi: 10.3864/j.issn.0578-1752.2012.11.003
Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2012, 45: 2147-2158 (in Chinese with English abstract).
[32] 许轲, 杨海生, 张洪程, 龚金龙, 沈新平, 陶小军, 戴其根, 霍中洋, 魏海燕, 高辉. 江淮下游地区水稻品种生产力纬向差异及其合理利用. 作物学报, 2014, 40: 871-890.
doi: 10.3724/SP.J.1006.2014.00871
Xu K, Yang H S, Zhang H C, Gong J L, Shen X P, Tao X J, Dai Q G, Huo Z Y, Wei H Y, Gao H. Latitudinal difference of rice varieties productivity in the lower Yangtze and Huai valleys and its rational utilization. Acta Agron Sin, 2014, 40: 871-890 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00871
[33] 陈伟, 宋锦花, 夏中华, 金彦刚, 刘海浪, 卫万娟, 赵其兵, 任仰涛, 杨永乐, 常东伟, 李珍富, 张凡, 郑雅月, 谢梦苹. 江苏省粳稻品种产量构成因素及抗病性与产量的相关分析. 中国农学通报, 2023, 39(24): 13-17.
doi: 10.11924/j.issn.1000-6850.casb2022-0631
Chen W, Song J H, Xia Z H, Jin Y G, Liu H L, Wei W J, Zhao Q B, Ren Y T, Yang Y L, Chang D W, Li Z F, Zhang F, Zheng Y Y, Xie M P. Japonica rice varieties in Jiangsu province: yield components analysis and correlation analysis between disease resistance and yield. Chin Agric Sci Bull, 2023, 39(24): 13-17 (in Chinese with English abstract).
[34] 吴小奋, 周传猛, 黄晓琴, 梁琳, 陈海凤, 肖荣华. 基于DUS测试性状的广西地区常规水稻分析评价. 农业与技术, 2023, 43(11): 18-22.
Wu X F, Zhou C M, Huang X Q, Liang L, Chen H F, Xiao R H. Analysis and evaluation of conventional rice in Guangxi region based on DUS test traits. Agric Technol, 2023, 43(11): 18-22 (in Chinese).
[35] 高虹, 李跃东, 马秀芳, 吕桂兰, 李睿, 董立强, 潘争艳, 张雪, 李小婉, 邱福林, 隋国民. 辽宁省主栽水稻品种高产群体形成规律研究. 中国稻米, 2021, 27(6): 16-19.
doi: 10.3969/j.issn.1006-8082.2021.06.004
Gao H, Li Y D, Ma X F, Lyu G L, Li R, Dong L Q, Pan Z Y, Zhang X, Li X W, Qiu F L, Sui G M. Study on formation rule of high yield population of main rice varieties in Liaoning province. China Rice, 2021, 27(6): 16-19 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2021.06.004
[36] 扶定, 霍二伟, 李霞, 鲁伟林, 全瑞兰, 沈光辉, 郭桂英, 王青林, 王轲. 三系杂交糯稻嘉糯Ⅰ优721高产途径研究. 农业科技通讯, 2020, (6): 90-93.
Fu D, Huo E W, Li X, Lu W L, Quan R L, Shen G H, Guo G Y, Wang Q L, Wang K. Study on high-yield pathway of three-line hybrid glutinous rice Jianuo I You 721. Bull Agric Sci Technol, 2020, (6): 90-93 (in Chinese).
[37] 郝留根, 张宏伟, 甘雨, 郭慧, 李树杏, 潘建慧, 龚大琨. 杂交糯稻新品种黔糯优11主要农艺性状与产量的相关性. 农技服务, 2018, 35(6): 24-26.
Hao L G, Zhang H W, Gan Y, Guo H, Li S X, Pan J H, Gong D K. Correlation between main agronomic traits and yield of new hybrid glutinous rice variety Qiannuoyou 11. Agric Technol Serv, 2018, 35(6): 24-26 (in Chinese).
[38] 纪思萌, 陈真勇. 糯稻品种产量相关性状比较研究. 农业与技术, 2018, 38(11): 11-13.
Ji S M, Chen Z Y. Comparative study on yield-related traits of glutinous rice varieties. Agric Technol, 2018, 38(11): 11-13 (in Chinese).
[39] 贾倩, 吴晓, 钱可峰, 蔡义忠, 叶荣建. 我国6个籼稻主产省93份水稻样品品质性状分析. 中国稻米, 2023, 29(1): 65-71.
doi: 10.3969/j.issn.1006-8082.2023.01.010
Jia Q, Wu X, Qian K F, Cai Y Z, Ye R J. Analysis on quality traits of 93 samples in indica rice from six major producing provinces in China. China Rice, 2023, 29(1): 65-71 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2023.01.010
[40] 徐大勇, 金军, 杜永, 潘启民, 朱庆森. 江苏省主要高产粳稻品种品质性状分析. 江苏农业学报, 2002, 18(4): 203-207.
Xu D Y, Jin J, Du Y, Pan Q M, Zhu Q S. Analysis of quality properties of high yielding japonica rice cultivars in Jiangsu province. Jiangsu J Agric Sci, 2002, 18(4): 203-207 (in Chinese with English abstract).
[41] 衣政伟, 林赵淼, 刘正辉, 李刚华, 王绍华, 王强盛, 丁艳锋. 粳稻碾米品质的基因型差异及其与稻米理化特性的关系. 中国稻米, 2013, 19(4): 66-69.
doi: 10.3969/j.issn.1006-8082.2013.04.017
Yi Z W, Lin Z M, Liu Z H, Li G H, Wang S H, Wang Q S, Ding Y F. Genotypic differences in milled quality of japonica rice and its relationship with physicochemical characteristics of rice. China Rice, 2013, 19(4): 66-69 (in Chinese with English abstract).
[42] Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016, 196: 702-711.
doi: 10.1016/j.foodchem.2015.09.112 pmid: 26593544
[43] Li H Y, Wen Y Y, Wang J, Sun B G. The molecular structures of leached starch during rice cooking are controlled by thermodynamic effects, rather than kinetic effects. Food Hydrocoll, 2017, 73: 295-299.
[44] 卢毅, 路兴花, 张青峰, 余建国, 肖雄雄, 庞林江, 成纪予. 稻米直链淀粉与米饭物性及食味品质的关联特征研究. 食品科技, 2018, 43(10): 219-223.
Lu Y, Lu X H, Zhang Q F, Yu J G, Xiao X X, Pang L J, Cheng J Y. Correlation of rice amylose with physical properties and taste quality of rice. Food Sci Technol, 2018, 43(10): 219-223 (in Chinese with English abstract).
[45] Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties. J Cereal Sci, 2002, 36: 285-294.
[46] Nawaz M A, Shu F K, Bhandari B. Effect of alkali treatment on the milled grain surface protein and physicochemical properties of two contrasting rice varieties. J Cereal Sci, 2016, 72: 16-23.
[47] 孙健, 梅淑芳, 赵华, 舒小丽, 吴殿星. 糯稻加工利用与遗传育种研究进展. 中国稻米, 2013, 19(1): 36-40.
doi: 10.3969/j.issn.1006-8082.2013.01.009
Sun J, Mei S F, Zhao H, Shu X L, Wu D X. Research progress on processing, utilization and genetic breeding of glutinous rice. China Rice, 2013, 19(1): 36-40 (in Chinese with English abstract).
[48] 黄忠民, 陈瑾, 宋会玲, 黄婉婧, 杨起恒, 潘治利, 李真, 艾志录. 糯米粉特性与速冻汤圆品质相关性分析. 食品工业科技, 2019, 40(4): 93-99.
Huang Z M, Chen J, Song H L, Huang W J, Yang Q H, Pan Z L, Li Z, Ai Z L. Correlation between the characteristics of glutinous rice flour and quality of quick-frozen glutinous soup ball. Sci Technol Food Ind, 2019, 40(4): 93-99 (in Chinese with English abstract).
[49] 马鹏阔, 周显青, 张玉荣, 李建飞. 糯米粉理化特性及与麻球品质的相关性. 粮油食品科技, 2018, 26(3): 1-6.
Ma P K, Zhou X Q, Zhang Y R, Li J F. Physicochemical properties of glutinous rice flour and its correlation with the quality of fried glutinous rice ball. Sci Technol Cereals Oils Foods, 2018, 26(3): 1-6 (in Chinese with English abstract).
[50] 林添资, 孙立亭, 景德道, 余波, 杨军, 钱华飞, 曾生元, 李闯, 杜灿灿, 胡庆峰, 周义文, 巫章平, 龚红兵. 镇糯晚粳系列品种的特征特性与育种启示. 中国种业, 2022, (12): 44-47.
Lin T Z, Sun L T, Jing D D, Yu B, Yang J, Qian H F, Zeng S Y, Li C, Du C C, Hu Q F, Zhou Y W, Wu Z P, Gong H B. Characteristics and breeding enlightenment of Zhennuo late japonica varieties. China Seed Ind, 2022, (12): 44-47 (in Chinese).
[51] Li W B, Zeng X H, Li S L, Chen F B, Gao J. Development and application of two novel functional molecular markers of BADH2 in rice. Electron J Biotechnol, 2020, 46: 1-7.
[52] Singh G, Gopala Krishnan S, Kumar A, Vinod K K, Bollinedi H, Ellur R K, Nagarajan M, Bhowmick P K, Madhav S M, Singh K, Singh A K. Molecular profiling of BADH2 locus reveals distinct functional allelic polymorphism associated with fragrance variation in Indian aromatic rice germplasm. Physiol Mol Biol Plants, 2022, 28: 1013-1027.
[53] 吴云鹏, 李祖军, 唐会会, 宫彦龙, 江学海, 姜雪, 张习春, 龙武华, 朱速松. 黔北地区优质水稻品种筛选试验. 现代农业科技, 2023, (19): 19-22.
Wu Y P, Li Z J, Tang H H, Gong Y L, Jiang X H, Jiang X, Zhang X C, Long W H, Zhu S S. Screening test of high-quality rice varieties in northern Guizhou. Mod Agric Sci Technol, 2023, (19): 19-22 (in Chinese with English abstract).
[54] 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54: 1397-1409.
doi: 10.3864/j.issn.0578-1752.2021.07.007
Liu Q Y, Zhou L, Tian J Y, Cheng S, Tao Y, Xing Z P, Liu G D, Wei H Y, Zhang H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. Sci Agric Sin, 2021, 54: 1397-1409 (in Chinese with English abstract).
[1] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[2] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[3] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[4] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[5] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[6] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[7] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[8] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[9] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[10] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性[J]. 作物学报, 2025, 51(2): 459-469.
[11] 覃金华, 洪卫源, 冯向前, 李子秋, 周子榆, 王爱冬, 李瑞杰, 王丹英, 张运波, 陈松. 基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析[J]. 作物学报, 2025, 51(2): 485-502.
[12] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[13] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[14] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[15] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!