作物学报 ›› 2025, Vol. 51 ›› Issue (4): 1077-1090.doi: 10.3724/SP.J.1006.2025.41035
李乔1,2(), 叶杨春2, 常旭虹2, 王德梅2, 王艳杰2, 杨玉双2, 马瑞琦2, 赵广才2, 蔡瑞国1, 张敏1,*(
), 刘希伟2,*(
)
LI Qiao1,2(), YE Yang-Chun2, CHANG Xu-Hong2, WANG De-Mei2, WANG Yan-Jie2, YANG Yu-Shuang2, MA Rui-Qi2, ZHAO Guang-Cai2, CAI Rui-Guo1, ZHANG Min1,*(
), LIU Xi-Wei2,*(
)
摘要:
为了明确花后高温干旱逆境对小麦产量的影响及其生理机制, 本研究于2022—2023年冬小麦生长季, 选用中麦36 (ZM36)和济麦22 (JM22) 2个小麦品种, 在北京和河北赵县大田试验条件下设置花后高温(HT)、干旱(DS)、高温干旱复合胁迫(DHS) 3种逆境处理, 以自然环境为对照(CK), 比较了不同逆境处理对小麦光合特性、叶片衰老和籽粒产量的影响。 结果表明,与CK相比, 在逆境下北京试验点ZM36的产量、穗粒数、千粒重分别降低了18.0%~40.2%、10.4%~16.3%和6.9%~22.7%; JM22分别降低了18.2%~32.8%、3.1%~8.7%和4.0%~14.6%。赵县试验点ZM36的产量、穗粒数、千粒重分别降低了6.4%~27.8%、8.2%~23.1%和2.9%~11.0%; JM22分别降低了6.8%~35.3%、8.0%~19.0%和0.6%~7.7%。2个试验点不同逆境对2个小麦品种产量的影响程度均为DHS>DS>HT。花后逆境下2个小麦品种叶面积指数(LAI)降低14.4%~36.9%, 旗叶叶绿素相对含量(SPAD)减少11.2%~24.6%、叶片持绿时间(Chltotal)缩短1.8~5.0 d, PSII最大光化学效率(Fv/Fm)降低3.5%~10.5%, 非光化学淬灭系数(NPQ)增加9.3%~27.8%, 致使旗叶净光合速率(Pn)降低14.3%~39.6%, 且花后高温干旱复合胁迫对小麦旗叶光合特性的影响远大于单一干旱、高温胁迫。由结构方程可知, 叶片温度(Tleaf)与土壤体积含水量(SVC)、SPAD、Pn呈负相关, SVC与LAI、SPAD、Pn、Fv/Fm呈正相关, 表明较高的土壤体积含水量(0~20 cm土层30%~32%)可降低冠层和叶片温度, 延缓小麦叶片衰老, 提高光合效率。研究结果为小麦高产稳产抗逆栽培提供理论依据。
[1] | 樊永惠, 葛婷, 杨咏, 李宇星, 武倩倩, 秦博雅, 杨文俊, 黄正来. 外源水杨酸对高温胁迫下小麦籽粒灌浆特性的影响. 麦类作物学报, 2022, 42: 835-845. |
Fan Y H, Ge T, Yang Y, Li Y X, Wu Q Q, Qin B Y, Yang W J, Huang Z L. Effect of exogenous salicylic acid on grain filling characteristics of wheat under high temperature stress. J Triticeae Crops, 2022, 42: 835-845 (in Chinese with English abstract). | |
[2] | Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell D, Martre P, Ruane A, Wallach D, Jones J, et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Change, 2016, 6: 1130-1136. |
[3] | 岳鹏莉, 王晨阳, 卢红芳, 刘卫星, 马耕, 王强, 胡阳阳. 灌浆期高温干旱胁迫对小麦籽粒淀粉积累的影响. 麦类作物学报, 2016, 36: 1489-1496. |
Yue P L, Wang C Y, Lu H F, Liu W X, Ma G, Wang Q, Hu Y Y. Effect of heat and drought stress on starch accumulation during grain filling stage. J Triticeae Crops, 2016, 36: 1489-1496 (in Chinese with English abstract). | |
[4] | Ru C, Hu X T, Wang W E. Nitrogen mitigates the negative effects of combined heat and drought stress on winter wheat by improving physiological characteristics. Physiol Plant, 2024, 176: e14236. |
[5] | Tiryakioğlu M. Dry matter remobilization from different plant parts of six durum wheat genotypes under water-restricted conditions and its compensatory effects on grain yield. Cereal Res Commun, 2024, 52: 1527-1540. |
[6] |
张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响. 作物学报, 2024, 50: 981-990.
doi: 10.3724/SP.J.1006.2024.31042 |
Zhang Z, Zhao J Y, Shi Y, Zhang Y L, Yu Z W. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat. Acta Agron Sin, 2024, 50: 981-990 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.31042 |
|
[7] | Hu J, Zhao X Y, Gu L M, Liu P, Zhao B, Zhang J W, Ren B Z. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agric Water Manag, 2023, 289: 108525. |
[8] |
Posch B C, Kariyawasam B C, Bramley H, Coast O, Richards R A, Reynolds M P, Trethowan R, Atkin O K. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J Exp Bot, 2019, 70: 5051-5069.
doi: 10.1093/jxb/erz257 pmid: 31145793 |
[9] | Farooq M, Hussain M, Siddique K H M. Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci, 2014, 33: 331-349. |
[10] | Urban O, Hlaváčová M, Klem K, Novotná K, Rapantová B, Smutná P, Horáková V, Hlavinka P, Škarpa P, Trnka M. Combined effects of drought and high temperature on photosynthetic characteristics in four winter wheat genotypes. Field Crops Res, 2018, 223: 137-149. |
[11] | Kim J, Slafer G A, Savin R. Are portable polyethylene tents reliable for imposing heat treatments in field-grown wheat? Field Crops Res, 2021, 271: 108206. |
[12] | 刘阿康. 播期及调控措施对小麦苗期生长的影响. 中国农业科学院硕士学位论文, 北京, 2021. |
Liu A K. Effects of Sowing Date and Regulation Measures on Wheat Seedling Growth. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract). | |
[13] | Luo Y L, Pang D W, Jin M, Chen J, Kong X, Li W Q, Chang Y L, Li Y, Wang Z L. Identification of plant hormones and candidate hub genes regulating flag leaf senescence in wheat response to water deficit stress at the grain-filling stage. Plant Direct, 2019, 3: e00152. |
[14] | 汝晨. 花后高温和干旱胁迫对冬小麦生长生理特性和产量的影响及氮肥调控机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2023. |
Ru C. Effects of Post-anthesis Heat and Drought Stress on Growth, Physiological Characteristics and Yield of Winter Wheat and the Regulatory Mechanism of Nitrogen Fertilization. PhD Dissertation of Northwest A & F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract). | |
[15] |
汝晨, 胡笑涛, 吕梦薇, 陈滇豫, 王文娥, 宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响. 中国农业科学, 2022, 55: 3303-3320.
doi: 10.3864/j.issn.0578-1752.2022.17.004 |
Ru C, Hu X T, Lyu M W, Chen D Y, Wang W E, Song T Y. Effects of nitrogen on nitrogen accumulation and distribution, nitrogen metabolizing enzymes, protein content, and water and nitrogen use efficiency in winter wheat under heat and drought stress after anthesis. Sci Agric Sin, 2022, 55: 3303-3320 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.17.004 |
|
[16] | Lobell D B, Banziger M, Magorokosho C, Vivek B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Change, 2011, 1: 42-45. |
[17] |
Zaveri E, Lobell D B. The role of irrigation in changing wheat yields and heat sensitivity in India. Nat Commun, 2019, 10: 4144.
doi: 10.1038/s41467-019-12183-9 pmid: 31515485 |
[18] | 刘希伟, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 小麦生育中后期干旱高温对籽粒产量形成过程的影响机制及缓解措施. 作物杂志, 2023, (6): 17-25. |
Liu X W, Wang D M, Wang Y J, Yang Y S, Zhao G C, Chang X H. Impacts mechanism of drought and heat stress in the middle and late growing period on wheat grain yield formation process and mitigation measures. Crops, 2023, (6): 17-25 (in Chinese with English abstract). | |
[19] | Mahrookashani A, Siebert S, Hüging H, Ewert F. Independent and combined effects of high temperature and drought stress around anthesis on wheat. J Agron Crop Sci, 2017, 203: 453-463. |
[20] |
Semenov M A, Stratonovitch P, Alghabari F, Gooding M J. Adapting wheat in Europe for climate change. J Cereal Sci, 2014, 59: 245-256.
pmid: 24882934 |
[21] |
Girousse C, Inchboard L, Deswarte J C, Chenu K. How does post-flowering heat impact grain growth and its determining processes in wheat? J Exp Bot, 2021, 72: 6596-6610.
doi: 10.1093/jxb/erab282 pmid: 34125876 |
[22] |
Brugiere N, Jiao S P, Hantke S, Zinselmeier C, Roessler J A, Niu X M, Jones R J, Habben J E. Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol, 2003, 132: 1228-1240.
pmid: 12857805 |
[23] | Veselova S V, Farhutdinov R G, Veselov S Y, Kudoyarova G R, Veselov D S, Hartung W. The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). J Plant Physiol, 2005, 162: 21-26. |
[24] | Sattar A, Sher A, Ijaz M, Ullah M S, Ahmad N, Umar U U D. Individual and combined effect of terminal drought and heat stress on allometric growth, grain yield and quality of bread wheat. Pak J Bot, 2020, 52: 405-412. |
[25] | Kunz K, Hu Y C, Boincean B, Postolatii A, Schmidhalter U. Evaluating the impact of a 2.5-3℃ increase in temperature on drought-stressed German wheat cultivars under natural stress conditions. Agric For Meteor, 2023, 332: 109378. |
[26] | Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551-560. |
[27] | Hlaváčová M, Klem K, Rapantová B, Novotná K, Urban O, Hlavinka P, Smutná P, Horáková V, Škarpa P, Pohanková E, et al. Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field Crops Res, 2018, 221: 182-195. |
[28] | 刘霞, 尹燕枰, 姜春明, 贺明荣, 王振林. 花后不同时期弱光和高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响. 应用生态学报, 2005, 16: 2117-2121. |
Liu X, Yin Y P, Jiang C M, He M R, Wang Z L. Effects of weak light and high temperature stress after anthesis on flag leaf fluorescence characteristics and grain fill of wheat. Chin J Appl Ecol, 2005, 16: 2117-2121 (in Chinese with English abstract). | |
[29] | Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron J, 2001, 93: 196-206. |
[30] | Ristic Z, Bukovnik U, Vara Prasad P V. Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Sci, 2007, 47: 2067-2073. |
[31] | Djanaguiraman M, Prasad P V V, Seppanen M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem, 2010, 48: 999-1007. |
[32] | Liu X Z, Huang B R. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci, 2000, 40: 503-510. |
[33] |
Lu Y Z, Li R Q, Wang R C, Wang X M, Zheng W J, Sun Q X, Tong S M, Dai S J, Xu S B. Comparative proteomic analysis of flag leaves reveals new insight into wheat heat adaptation. Front Plant Sci, 2017, 8: 1086.
doi: 10.3389/fpls.2017.01086 pmid: 28676819 |
[34] |
Zandalinas S I, Mittler R, Balfagón D, Arbona V, Gómez- Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiol Plant, 2018, 162: 2-12.
doi: 10.1111/ppl.12540 pmid: 28042678 |
[35] | Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil, 2003, 257: 219-226. |
[36] | Feng B L, Yu H, Hu Y G, Gao X L, Gao J F, Gao D L, Zhang S W. The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiol Plant, 2009, 31: 1229-1235. |
[37] | Farooq M, Bramley H, Palta J A, Siddique K H M. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci, 2011, 30: 491-507. |
[38] | Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji H M, Yang X H, Allakhverdiev S I. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res, 2013, 117: 529-546. |
[39] | Efeoğlu B, Ekmekçi Y, Çiçek N. Physiological responses of three maize cultivars to drought stress and recovery. South Afric J Bot, 2009, 75: 34-42. |
[40] | Hassan I A. Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica, 2006, 44: 312-315. |
[41] | Li X N, Kristiansen K, Rosenqvist E, Liu F L. Elevated CO2 modulates the effects of drought and heat stress on plant water relations and grain yield in wheat. J Agron Crop Sci, 2019, 205: 362-371. |
[1] | 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130. |
[2] | 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076. |
[3] | 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049. |
[4] | 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004. |
[5] | 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942. |
[6] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
[7] | 张晓丽, 刘晓燕, 夏雯雯, 李锦. 天山雪莲质膜水孔蛋白基因SiPIP1;3在番茄中的抗寒功能分析[J]. 作物学报, 2025, 51(4): 863-872. |
[8] | 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862. |
[9] | 管圣, 廖澳, 王立琦, 李茜, 卢建宁, 荣晶, 崔国贤, 杨瑞芳, 佘玮. 6-BA调控增强苎麻抗旱性的生理机制研究[J]. 作物学报, 2025, 51(3): 823-834. |
[10] | 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796. |
[11] | 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784. |
[12] | 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770. |
[13] | 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754. |
[14] | 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743. |
[15] | 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727. |
|