欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (4): 1118-1130.doi: 10.3724/SP.J.1006.2025.41044

• 研究简报 • 上一篇    

高温胁迫下冷型小麦的抗逆性评估及其生理响应研究

李培华1(), 李杰1, 孟祥宇1, 孙玉晨1, 冯永佳1, 李云丽1, 刁邓超1, 赵雯1, 吴玮1, 韩德俊1, 张嵩午2, 郑炜君1,*()   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100
    2西北农林科技大学理学院, 陕西杨凌 712100
  • 收稿日期:2024-06-24 接受日期:2024-12-12 出版日期:2025-04-12 网络出版日期:2024-12-19
  • 通讯作者: 郑炜君, E-mail: zhengweijun@nwafu.edu.cn
  • 作者简介:E-mail: 1344514662@qq.com
  • 基金资助:
    科技创新2030重大专项(2023ZD04026);陕西省重点研发计划一般项目(2023-YBNY-026)

Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress

LI Pei-Hua1(), LI Jie1, MENG Xiang-Yu1, SUN Yu-Chen1, FENG Yong-Jia1, LI Yun-Li1, DIAO Deng-Chao1, ZHAO Wen1, WU Wei1, HAN De-Jun1, ZHANG Song-Wu2, ZHENG Wei-Jun1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2024-06-24 Accepted:2024-12-12 Published:2025-04-12 Published online:2024-12-19
  • Contact: E-mail: zhengweijun@nwafu.edu.cn
  • Supported by:
    Science and Technology Innovation 2030 Major Projects(2023ZD04026);Key Research and Development Program of Shaanxi(2023-YBNY-026)

摘要:

为探究灌浆期高温胁迫对不同温型小麦的影响, 并评估冷型小麦在逆境抗性方面的表现, 本研究选用2个冷型小麦(冷资857和冷资863)、2个暖型小麦(暖资58和暖资979)以及对照品种百农207, 在灌浆期进行高温胁迫, 测定光合参数、抗氧化酶活性以及产量等指标。 结果表明:在高温胁迫下, 所有小麦品种的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Cd)均有所下降, 而胞间CO2浓度(Ci)上升。Pn下降幅度在不同品种间存在差异, 其中暖资979和暖资58的下降幅度最大, 冷资857和冷资863的下降幅度相对较小。此外, 冷型小麦品种的抗氧化酶活性普遍高于暖型小麦。高温胁迫导致小麦的灌浆快增期提前, 整体灌浆时间缩短, 千粒重和产量均有所下降。冷型小麦品种的产量损失相对较少, 表明其在高温逆境下的抗性更强。抗氧化酶活性与小麦的光合作用之间存在密切的正相关关系。这些指标对于评估小麦的产量潜力和抗逆性具有重要意义。综上所述, 本研究揭示了冷型小麦在灌浆期高温胁迫下的抗逆性优势, 并为冷型小麦品种的选育提供了科学依据, 同时为深入理解冷型小麦的抗逆机制奠定了基础。

关键词: 冷型小麦, 高温胁迫, 光合特性, 抗氧化酶活性, 产量

Abstract:

This study aimed to investigate the effects of high-temperature stress on wheat varieties with different temperature adaptations and to assess the stress resistance of cold-type wheat. Two cold-type wheat varieties (Lengzi 857 and Lengzi 863), two warm-type wheat varieties (Nuanzi 58 and Nuanzi 979), and the control variety Bainong 207 were selected as research materials. Photosynthetic parameters, antioxidant enzyme activities, and yield were measured during the grain-filling stage under high-temperature stress. The results showed that high-temperature stress reduced the net photosynthetic rate, transpiration rate, and stomatal conductance in all varieties, while intercellular CO2 concentration increased. The decline in net photosynthetic rate was most severe in the warm-type varieties (Nuanzi 979 and Nuanzi 58) and least pronounced in the cold-type varieties (Lengzi 857 and Lengzi 863). Antioxidant enzyme activity was generally higher in the cold-type varieties compared to the warm-type ones. High-temperature stress also shortened the grain-filling period by advancing the rapid filling phase, resulting in reduced thousand-grain weight and overall yield. However, yield losses in cold-type varieties were comparatively smaller, reflecting their stronger resistance to high-temperature stress. A positive correlation was observed between antioxidant enzyme activity and photosynthetic performance, suggesting that antioxidant enzyme activity is a key indicator for evaluating yield potential and stress resistance in wheat. In conclusion, this study underscores the superior stress resistance of cold-type wheat during the grain-filling stage under high-temperature stress, providing a scientific basis for breeding cold-type wheat varieties and advancing the understanding of stress resistance mechanisms in wheat.

Key words: cold-type wheat, high temperature stress, photosynthetic characteristics, antioxidant enzyme activity, yield

图1

2022年与2023年高温胁迫试验温度信息 图A与B分别为2022年和2023年大棚与自然环境的温度差异。*为显著差异(P ≤ 0.05); ** 为极显著差异 (P ≤ 0.01); ns为无显著差异。"

图2

高温胁迫与正常生长条件下不同温型小麦品种冠层温度的变化 横轴代表处理后的天数, 纵轴代表百农207与不同小麦材料的冠层温度差值。Lengzi 863: 冷资863; Lengzi 857: 冷资857; Nuanzi 979: 暖资979; Nuanzi 58: 暖资58。(A): 正常生长条件下(2022年); (B): 搭棚条件下(2022年); (C): 正常生长条件下(2023年); (D): 搭棚条件下(2023年)。"

图3

高温胁迫对不同温型小麦光合特性的影响 I: 净光合速率; II: 蒸腾速率; III: 气孔导度;IV: 胞间CO2浓度。A: 冷资857; B: 冷资863; C: 暖资58; D: 暖资979; E: 百农207。"

表1

2022年灌浆期高温胁迫对不同抗氧化酶活性的影响"

抗氧化酶Antioxidant enzyme 品种
Variety
处理第1天
Day 1
处理第6天
Day 6
处理第11天
Day 11
对照CK 热处理HT 对照CK 热处理HT 对照CK 热处理HT
超氧化物歧化酶
SOD
(U g-1)
暖资58
Nuanzi 58
286.36 ± 6.41 ab 291.31 ± 6.29 a 284.95 ± 5.30 a 265.76 ± 8.80 a 240.81 ± 3.84 a 226.67 ± 2.98 a
暖资979 Nuanzi 979 291.92 ±1.83 b 297.68 ± 2.29 ab 293.54 ± 6.24 a 278.99 ± 6.30 b 260.40 ± 5.36 b 239.60 ± 6.07 b
百农207 Bainong 207 279.60 ± 6.82 a 287.27 ± 0.91 a 285.25 ± 1.40 a 287.68 ± 2.82 bc 252.83 ± 13.57 ab 239.29 ± 3.65 b
冷资857 Lengzi 857 286.57 ± 3.79 ab 307.47 ± 12.76 b 286.36 ± 8.40 a 293.84 ± 6.48 c 258.48 ± 7.87 ab 257.47 ± 5.39 c
冷资863 Lengzi 863 289.80 ± 5.39 b 311.01 ± 8.87 b 285.66 ± 4.44 a 292.42 ± 7.47 c 267.88 ± 12.08 b 269.19 ± 1.56 d
过氧化物酶POD
(U g-1)
暖资58
Nuanzi 58
117.12 ± 11.66 ab 125.80 ± 10.03 a 139.17 ± 9.03 b 113.83 ± 12.39 ab 126.86 ± 10.33 b 100.67 ± 5.18 a
暖资979 Nuanzi 979 132.43 ± 9.30 b 123.77 ± 5.30 a 111.99 ± 5.86 a 108.64 ± 11.53 a 126.65 ± 2.02 b 103.50 ± 14.00 b
百农207 Bainong 207 111.39 ± 4.54 a 116.99 ± 4.58 a 106.75 ± 5.94 a 111.14 ± 4.47 a 95.48 ± 5.03 a 88.09 ± 7.11 a
冷资857 Lengzi 857 113.07 ± 11.92 a 128.91 ± 5.75 a 129.36 ± 11.61 b 119.78 ± 4.20 ab 123.69 ± 11.45 b 107.14 ± 4.69 b
冷资863 Lengzi 863 112.63 ± 7.91 a 121.78 ± 2.44 a 139.39 ± 5.08 b 129.92 ± 11.54 bb 111.61 ± 9.29 b 107.81 ± 0.62 b
过氧化氢酶CAT
(U g-1)
暖资58
Nuanzi 58
117.71 ± 2.46 bc 100.23 ± 4.25 ab 107.26 ± 2.79 b 90.28 ± 1.65 a 94.72 ± 1.35 ab 85.48 ± 2.04 a
暖资979 Nuanzi 979 109.70 ± 3.62 a 97.09 ± 5.34 a 102.04 ± 2.23 a 89.80 ± 4.08 a 89.75 ± 3.81 a 81.25 ± 2.60 a
百农207 Bainong 207 111.22 ± 3.12 ab 98.12 ± 3.70 a 104.39 ± 1.55 ab 91.86 ± 1.62 a 96.00 ± 2.82 b 87.20 ± 6.39 a
冷资857 Lengzi 857 121.36 ± 4.78 c 112.42 ± 4.07 c 112.36 ± 2.12 c 105.56 ± 0.56 c 106.27 ± 3.59 c 102.62 ± 3.27 c
冷资863 Lengzi 863 113.80 ± 3.48 ab 107.08 ± 0.27 bc 104.05 ± 2.85 ab 99.17 ± 2.40 b 98.04 ± 2.85 b 94.96 ± 3.07 b
抗氧化酶Antioxidant enzyme 品种
Variety
处理第16天
Day 16
处理第21天
Day 21
处理第26天
Day 26
对照CK 热处理HT 对照CK 热处理HT 对照CK 热处理HT
超氧化物歧化酶
SOD
(U g-1)
暖资58
Nuanzi 58
212.63 ± 8.65 a 182.73 ± 14.71 a 179.70 ± 7.90 ab 152.02 ± 12.06 a 146.87 ± 7.79 a 121.60 ± 10.59 a
暖资979 Nuanzi 979 220.00 ± 1.09 ab 179.80 ± 10.04 a 170.30 ± 11.65 a 153.23 ± 19.16 a 158.79 ± 10.01 a 120.91 ± 7.59 a
百农207 Bainong 207 227.07 ± 12.28 b 178.79 ± 7.50 a 187.78 ± 5.22 b 167.17 ± 9.56 a 160.00 ± 8.42 a 135.45 ± 14.86 ab
冷资857 Lengzi 857 248.08 ± 3.04 c 216.06 ± 1.39 b 217.37 ± 6.68 c 202.53 ± 10.85 b 187.37 ± 11.85 b 167.78 ± 18.10 c
冷资863 Lengzi 863 254.04 ± 6.40 c 219.19 ± 10.22 b 226.26 ± 11.02 c 199.80 ± 2.91 b 191.82 ± 3.64 b 158.08 ± 13.46 bc
过氧化物酶POD
(U g-1)
暖资58
Nuanzi 58
103.56 ± 12.95 a 91.41 ± 11.27 abc 93.08 ± 8.11 abc 62.41 ± 8.24 a 82.80 ± 7.93 b 55.05 ± 11.04 a
暖资979 Nuanzi 979 100.71 ± 9.31 a 82.51 ± 3.65 a 82.43 ± 9.13 a 88.66 ± 3.41 b 60.62 ± 1.93 a 72.40 ± 5.80 ab
百农207 Bainong 207 90.87 ± 8.04 a 87.44 ± 9.06 ab 84.05 ± 12.41 ab 81.28 ± 8.40 ab 77.93 ± 4.03 b 73.29 ± 7.81 ab
冷资857 Lengzi 857 107.43 ± 11.22 a 99.59 ± 9.27 bc 103.68 ± 5.78 c 98.11 ± 13.63 b 88.36 ± 14.96 b 84.12 ± 5.05 b
冷资863 Lengzi 863 101.94 ± 8.52 a 106.12 ± 4.52 c 100.29 ± 5.41 bc 92.01 ± 17.63 b 86.30 ± 5.74 b 82.88 ± 15.20 b
过氧化氢酶CAT
(U g-1)
暖资58
Nuanzi 58
87.97 ± 2.23 ab 73.13 ± 1.04 a 82.65 ± 2.83 b 70.83 ± 1.28 a 75.70 ± 0.54 b 65.17 ± 0.80 ab
暖资979 Nuanzi 979 84.48 ± 1.11 a 71.35 ± 1.62 a 74.67 ± 1.31 a 71.29 ± 2.55 a 70.53 ± 3.28 a 63.82 ± 1.23 a
百农207 Bainong 207 87.70 ± 1.90 ab 72.89 ± 0.67 a 75.91 ± 3.26 a 70.69 ± 1.25 a 73.24 ± 1.13 ab 68.20 ± 2.29 b
冷资857 Lengzi 857 96.56 ± 0.96 c 91.79 ± 2.58 c 91.50 ± 4.81 c 82.66 ± 1.59 c 83.04 ± 2.47 c 76.09 ± 2.13 c
冷资863 Lengzi 863 91.47 ± 3.46 b 84.62 ± 4.26 b 86.34 ± 2.81 bc 77.22 ± 1.70 b 80.51 ± 2.33 c 76.23 ± 3.32 c

表2

2023年灌浆期高温胁迫对不同抗氧化酶活性的影响"

抗氧化酶Antioxidant enzyme 品种
Variety
处理第1天
Day 1
处理第6天
Day 6
处理第11天
Day 11
对照CK 热处理HT 对照CK 热处理HT 对照CK 热处理HT
超氧化物歧化酶
SOD
(U g-1)
暖资58
Nuanzi 58
234.86 ± 2.16 a 255.86 ± 4.41 a 234.77 ± 1.44 a 242.34 ± 4.41 a 231.17 ± 5.59 a 233.33 ± 5.32 a
暖资979 Nuanzi 979 251.35 ± 12.97 b 272.16 ± 3.24 b 247.12 ± 9.10 b 257.75 ± 4.14 b 244.68 ± 11.53 a 247.84 ± 1.89 b
百农207 Bainong 207 248.74 ± 3.96 b 268.29 ± 3.87 b 253.24 ± 2.97 b 259.28 ± 4.5 b 241.98 ± 8.29 a 245.77 ± 7.48 b
冷资857 Lengzi 857 249.82 ± 5.59 b 289.10 ± 3.60 c 253.42 ± 4.41 b 279.19 ± 4.05 c 244.95 ± 8.56 a 262.97 ± 9.46 c
冷资863 Lengzi 863 250.00 ± 5.14 b 285.77 ± 4.77 c 251.80 ± 5.77 b 273.15 ± 3.87 c 244.77 ± 7.12 a 260.54 ± 2.97 c
过氧化物酶POD
(U g-1)
暖资58
Nuanzi 58
134.32 ± 8.69 ab 146.22 ± 8.43 ab 127.14 ± 7.35 ab 131.88 ± 2.48 ab 123.80 ± 8.49 a 111.54 ± 9.33 ab
暖资979 Nuanzi 979 126.36 ± 8.77 ab 135.26 ± 8.98 ab 122.29 ± 8.97 ab 124.21 ± 5.06 ab 115.04 ± 9.11 a 106.54 ± 7.45 a
百农207 Bainong 207 119.40 ± 14.63 a 129.65 ± 13.71 a 113.32 ± 9.08 a 116.73 ± 15.79 a 114.85 ± 7.19 a 111.63 ± 11.57 ab
冷资857 Lengzi 857 144.19 ± 4.01 b 163.73 ± 7.82 c 142.28 ± 6.88 b 151.44 ± 4.86 c 147.35 ± 20.28 b 145.64 ± 14.89 c
冷资863 Lengzi 863 135.86 ± 9.55 ab 152.31 ± 4.70 bc 128.10 ± 13.07 ab 139.54 ± 9.43 bc 131.06 ± 4.90 ab 130.39 ± 1.84 bc
过氧化氢酶CAT
(U g-1)
暖资58
Nuanzi 58
106.81 ± 5.73 ab 96.64 ± 1.79 a 100.15 ± 6.21 a 91.86 ± 2.00 a 89.22 ± 4.82 a 83.93 ± 8.12 a
暖资979 Nuanzi 979 100.48 ± 4.50 a 94.84 ± 2.60 a 101.37 ± 3.70 a 91.63 ± 1.75 a 89.63 ± 16.83 a 83.78 ± 7.91 a
百农207 Bainong 207 104.99 ± 5.83 ab 98.68 ± 2.20 ab 98.06 ± 3.18 a 91.56 ± 2.11 a 94.07 ± 7.14 a 87.22 ± 5.00 a
冷资857 Lengzi 857 115.07 ± 9.94 b 107.34 ± 1.94 c 110.85 ± 4.26 b 104.41 ± 1.53 c 105.93 ± 14.80 a 102.67 ± 3.80 b
冷资863 Lengzi 863 106.98 ± 4.33 ab 101.21 ± 3.06 b 104.00 ± 2.25 ab 97.04 ± 1.59 b 91.63 ± 4.63 a 91.11 ± 2.94 a
抗氧化酶Antioxidant enzyme 品种
Variety
处理第16天
Day 16
处理第21天
Day 21
处理第26天
Day 26
对照CK 热处理HT 对照CK 热处理HT 对照CK 热处理HT
超氧化物歧化酶SOD
(U g-1)
暖资58
Nuanzi 58
214.86 ± 5.68 a 201.53 ± 3.60 ab 184.23 ± 1.17 a 175.05 ± 2.25 ab 155.95 ± 5.41 a 150.00 ± 14.32 a
暖资979 Nuanzi 979 227.12 ± 12.07 ab 196.13 ± 3.60 a 190.81 ± 3.78 a 169.46 ± 5.14 a 164.68 ± 1.53 ab 140.09 ± 5.32 a
百农207 Bainong 207 223.06 ± 7.75 ab 210.54 ± 4.86 b 189.19 ± 3.24 a 185.95 ± 6.22 b 166.22 ± 5.68 ab 164.41 ± 8.02 b
冷资857 Lengzi 857 234.05 ± 0.54 b 234.50 ± 13.33 c 213.96 ± 9.01 b 220.36 ± 8.74 c 177.21 ± 5.77 b 172.34 ± 3.06 b
冷资863 Lengzi 863 235.50 ± 12.34 b 230.99 ± 4.14 c 219.46 ± 7.84 b 220.72 ± 6.76 c 174.77 ± 3.87 b 174.50 ± 6.04 b
过氧化物酶POD
(U g-1)
暖资58
Nuanzi 58
111.70 ± 5.01 bc 99.67 ± 9.27 ab 98.39 ± 10.38 ab 91.73 ± 7.16 bc 74.21 ± 12.57 a 69.58 ± 6.51 ab
暖资979 Nuanzi 979 97.70 ± 6.54 a 90.73 ± 5.77 a 83.14 ± 21.32 a 79.91 ± 5.74 ab 68.93 ± 14.41 a 64.14 ± 6.03 a
百农207 Bainong 207 101.30 ± 9.46 ab 94.91 ± 10.50 a 85.25 ± 4.32 ab 77.72 ± 4.06 a 79.40 ± 2.87 a 66.31 ± 9.00 a
冷资857 Lengzi 857 126.55 ± 7.53 d 124.65 ± 21.59 c 112.91 ± 19.98 b 106.45 ± 9.91 d 91.78 ± 15.48 a 82.91 ± 5.72 b
冷资863 Lengzi 863 121.17 ± 4.62 cd 120.43 ± 9.01 bc 108.64 ± 5.69 ab 100.37 ± 6.32 cd 92.67 ± 13.07 a 83.10 ± 7.98 b
过氧化氢酶CAT
(U g-1)
暖资58
Nuanzi 58
83.07 ± 1.84 a 76.29 ± 3.45 a 78.83 ± 3.41 a 73.16 ± 0.96 a 71.45 ± 1.57 a 69.82 ± 1.25 b
暖资979 Nuanzi 979 80.58 ± 2.29 a 72.96 ± 1.70 a 74.14 ± 3.72 a 71.07 ± 2.16 a 71.67 ± 1.79 a 67.98 ± 1.00 a
百农207 Bainong 207 83.32 ± 1.49 a 77.23 ± 3.56 a 77.40 ± 2.72 a 72.46 ± 1.33 a 74.91 ± 1.61 a 70.06 ± 0.59 b
冷资857 Lengzi 857 100.18 ± 6.92 b 95.67 ± 2.56 c 91.88 ± 2.61 c 87.06 ± 1.56 c 85.88 ± 2.23 c 82.15 ± 0.25 d
冷资863 Lengzi 863 88.29 ± 4.74 a 86.48 ± 2.57 b 85.08 ± 2.02 b 82.02 ± 1.94 b 82.21 ± 2.20 b 80.20 ± 0.75 c

图4

不同温型小麦品种在自然生长和热胁迫处理条件下千粒重增长曲线 A: 2022年; B: 2023年。A: results in 2022; B: results in 2023."

图5

不同小麦品种在自然生长和热胁迫处理条件下灌浆速率的变化趋势 A: 2022年; B: 2023年。"

表3

2022年高温处理后不同小麦品种的产量及其构成要素"

品种
Variety
处理
Treatment
单株穗数
Spikes per plant
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
减产幅度
Decrease rate
(%)
平均值
Average value
F
F-value
平均值
Average value
F
F-value
平均值
Average value
F
F-value
平均值
Average value
F
F-value
冷资857
Lengzi 857
对照CK 4.20 1.60 36.91 0.67 49.36 66.29** 9183.60 11.90* 7.04
热处理HT 4.17 36.57 47.15 8536.95
百农207
Bainong 207
对照CK 4.20 12.25* 38.46 3.71 42.45 41.36** 8227.35 66.99** 12.66
热处理HT 4.08 37.34 39.28 7186.05
暖资979
Nuanzi 979
对照CK 4.03 0.45 37.31 1.81 42.15 285.74** 7613.25 27.88** 13.04
热处理HT 3.98 36.28 38.20 6620.10
暖资58
Nuanzi 58
对照CK 4.08 3.50 35.85 1.81 44.50 281.90** 7816.35 77.31** 11.94
热处理HT 3.97 35.05 41.26 6883.20
冷资863
Lengzi 863
对照CK 4.15 4.00 37.59 0.11 50.44 42.60** 9441.00 16.73* 5.57
热处理HT 4.08 37.43 48.60 8914.80

表4

2023年高温处理后不同小麦品种的产量及其构成要素"

品种
Variety
处理
Treatment
单株穗数
Spikes per plant
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
减产幅度
Decrease rate (%)
平均值
Average value
F
F-value
平均值
Average value
F
F-value
平均值
Average value
F
F-value
平均值
Average value
F
F-value
冷资857
Lengzi 857
对照CK 4.18 0.02 36.69 0.31 46.46 147.89** 8554.65 0.59 5.61
热处理HT 4.15 36.32 44.65 8075.10
百农207
Bainong 207
对照CK 4.01 0.11 38.37 5.26 39.31 73.16** 7266.15 8.41* 8.66
热处理HT 3.98 37.58 37.02 6637.20
暖资979
Nuanzi 979
对照CK 3.96 0.94 36.25 3.98 39.30 146.43** 6775.65 19.48* 10.51
热处理HT 3.90 35.49 36.54 6063.75
暖资58
Nuanzi 58
对照CK 4.00 1.00 36.48 0.03 41.80 107.01** 7184.40 10.10* 7.11
热处理HT 3.93 35.70 39.60 6673.50
冷资863
Lengzi 863
对照CK 4.12 0.02 37.17 0.05 48.01 61.03** 8809.65 0.99 3.90
热处理HT 4.09 37.00 46.59 8466.30

表5

不同温型品种的2年热敏感指数"

年份
Year
品种
Variety
热处理
Heat treatment
对照
CK
热敏感指数
HSI
评价
Evaluation
2022 冷资857 Lengzi 857 47.15 49.36 0.71 中等耐热 Moderate heat resistant
百农207 Bainong 207 39.28 42.45 1.19 中等热敏感 Moderate heat sensitivity
暖资979 Nuanzi 979 38.20 42.15 1.49 中等热敏感 Moderate heat sensitivity
暖资58 Nuanzi 58 41.26 44.50 1.16 中等热敏感 Moderate heat sensitivity
冷资863 Lengzi 863 48.60 50.44 0.58 中等耐热 Moderate heat resistant
2023 冷资857 Lengzi 857 44.65 46.46 0.80 中等耐热 Moderate heat resistant
百农207 Bainong 207 37.02 39.31 1.19 中等热敏感 Moderate heat sensitivity
暖资979 Nuanzi 979 36.54 39.30 1.44 中等热敏感 Moderate heat sensitivity
暖资58 Nuanzi 58 39.60 41.80 1.08 中等热敏感 Moderate heat sensitivity
冷资863 Lengzi 863 46.59 48.01 0.61 中等耐热 Moderate heat resistant

图6

高温胁迫下小麦旗叶生理特性和籽粒产量的相关性分析 A: 2022年; B: 2023年。SOD: 超氧化物歧化酶; POD: 过氧化物酶; CAT: 过氧化氢酶; Pn: 净光合速率; Cd: 气孔导度; Tr: 蒸腾速率; Ci: 胞间CO2浓度; Yield: 产量。*为显著差异(P ≤ 0.05)。"

[1] 蒋赟, 王秀东. 我国小麦产业发展现状问题及对策浅析. 南方农业, 2020, 14(31): 31-34.
Jiang Y, Wang X D. Analysis on the current problems and countermeasures of wheat industry. South China Agric, 2020, 14(31): 31-34 (in Chinese with English abstract).
[2] Mishra D, Shekhar S, Chakraborty S, Chakraborty N. High temperature stress responses and wheat: impacts and alleviation strategies. Environ Exp Bot, 2021, 190: 104589.
[3] Yu Y Y, Yang X H, Guan Z Y, Zhang Q, Li X C, Gul C, Xia X. The impacts of temperature averages, variabilities and extremes on China’s winter wheat yield and its changing rate. Environ Res Commun, 2023, 5: 071002.
[4] Fan Y H, Lyu Z Y, Li Y X, Qin B Y, Song Q Y, Ma L L, Wu Q Q, Zhang W J, Ma S Y, Ma C X, et al. Salicylic acid reduces wheat yield loss caused by high temperature stress by enhancing the photosynthetic performance of the flag leaves. Agronomy, 2022, 12: 1386.
[5] Li Y B, Tao F L, Hao Y F, Tong J Y, Xiao Y G, He Z H, Reynolds M. Traits and the associated loci in wheat favoring extreme high temperature tolerance. Eur J Agron, 2023, 145: 126776.
[6] Sihag P, Kumar U, Sagwal V, Kapoor P, Singh Y, Mehla S, Balyan P, Mir R R, Varshney R K, Singh K P, Dhankher O P. Effect of terminal heat stress on osmolyte accumulation and gene expression during grain filling in bread wheat (Triticum aestivum L.). Plant Genome, 2024, 17: e20307.
[7] Scotti-Campos P, Oliveira K, Pais I P, Bagulho A S, Semedo J N, Serra O, Simões F, Lidon F C, Coutinho J, Maçãs B. Grain composition and quality in Portuguese Triticum aestivum germplasm subjected to heat stress after anthesis. Plants (Basel), 2022, 11: 365.
[8] 张宾, 贺明荣, 吴翠平, 王珊珊, 刘永环, 张洪华. 灌浆期短暂高温下减库对小麦籽粒品质的影响. 中国农学通报, 2006, 22(10): 108-110.
Zhang B, He M R, Wu C P, Wang S S, Liu Y H, Zhang H H. Effects of halving spikelet on the wheat grain quality under short period of heat shock at the middle stage of grain filling. Chin Agric Sci Bull, 2006, 22(10): 108-110 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.0610108
[9] 张嵩午, 王长发. 冷型小麦及其生物学特征. 作物学报, 1999, 25: 608-615.
Zhang S W, Wang C F. Cold type wheat and its biological characteristics. Acta Agron Sin, 1999, 25: 608-615 (in Chinese with English abstract).
[10] 张嵩午. 冷型小麦理论概述. 中国科学基金, 2022, 36: 468-476.
Zhang S W. A theoretical profile on cold-type wheat. Bull Natl Nat Sci Found China, 2022, 36: 468-476 (in Chinese with English abstract).
[11] 王长发, 张嵩午. 冷型小麦旗叶衰老和活性氧代谢特性研究. 西北植物学报, 2000, 20: 727-732.
Wang C F, Zhang S W. Characteristics of flag leaf senescence and activated oxygen metabolism for cold type wheat. Acta Bot Boreali-Occident Sin, 2000, 20: 727-732 (in Chinese with English abstract).
[12] 严菊芳, 张嵩午. 不同温型小麦灌浆结实期农田热量平衡及其气象效应. 西北农林科技大学学报(自然科学版), 2007, 35(9): 49-52.
Yan J F, Zhang S W. Study on the heat balance and the meteorological effect during milk-filling and burliness stage of the different type wheat. J Northwest A&F Univ (Nat Sci Edn), 2007, 35(9): 49-52 (in Chinese with English abstract).
[13] 冯佰利, 高小丽, 赵琳, 高金峰, 王长发, 张嵩午. 干旱条件下小麦冠层温度及其性状的关联研究. 生态学杂志, 2005, 24: 508-512.
Feng B L, Gao X L, Zhao L, Gao J F, Wang C F, Zhang S W. Relationships between canopy temperature and biological characters of wheat under drought conditions. Chin J Ecol, 2005, 24: 508-512 (in Chinese with English abstract).
[14] 拉巴扎西. 干旱条件下不同温度型小麦叶片衰老的表观性状研究. 西藏农业科技, 2006, 28(1): 26-30.
Labazhaxi. The research about the exhibition and character on the leaf effete of different temperature-type wheat in the drouthy condition. Tibet J Agric Sci, 2006, 28(1): 26-30 (in Chinese with English abstract).
[15] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 1992, 98: 1222-1227.
doi: 10.1104/pp.98.4.1222 pmid: 16668779
[16] 王小波, 关攀锋, 辛明明, 汪永法, 陈希勇, 赵爱菊, 刘曼双, 李红霞, 张明义, 逯腊虎, 等. 小麦种质资源耐热性评价. 中国农业科学, 2019, 52: 4191-4200.
doi: 10.3864/j.issn.0578-1752.2019.23.001
Wang X B, Guan P F, Xin M M, Wang Y F, Chen X Y, Zhao A J, Liu M S, Li H X, Zhang M Y, Lu L H, et al. Evaluation of heat tolerance in wheat germplasm resources. Sci Agric Sin, 2019, 52: 4191-4200 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.23.001
[17] Feng B L, Yu H, Hu Y G, Gao X L, Gao J F, Gao D L, Zhang S W. The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiol Plant, 2009, 31: 1229-1235.
[18] Saint Pierre C, Crossa J, Manes Y, Reynolds M P. Gene action of canopy temperature in bread wheat under diverse environments. Theor Appl Genet, 2010, 120: 1107-1117.
doi: 10.1007/s00122-009-1238-4 pmid: 20044743
[19] Farooq M, Bramley H, Palta J A, Siddique K H M. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci, 2011, 30: 491-507.
[20] Parry M A J, Andralojc P J, Mitchell R A C, Madgwick P J, Keys A J. Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot, 2003, 54: 1321-1333.
doi: 10.1093/jxb/erg141 pmid: 12709478
[21] da Silva J M, da Silva A B, P´dua M´. Modulated chlorophyll a fluorescence: a tool for teaching photosynthesis. J Biol Educ, 2007, 41: 178-183.
[22] Gao C H, Sun M, Anwar S, Feng B, Ren A X, Lin W, Gao Z Q. Response of physiological characteristics and grain yield of winter wheat varieties to long-term heat stress at anthesis. Photosynthetica, 2021, 59: 640-651.
doi: 10.32615/ps.2021.060
[23] 张会玲, Marian Brestic, Katarina Olsovska, 李刚, 孟庆伟, 杨兴洪. 高温胁迫下不同热敏感性小麦光化学活性和能量分配差异. 植物生理学报, 2015, 51: 1142-1150.
Zhang H L, Brestic M, Olsovska K, Li G, Meng Q W, Yang X H. Photochemical activity and energy distribution on wheat varieties with different heat-sensitivity under high temperature stress. Plant Physiol J, 2015, 51: 1142-1150 (in Chinese with English abstract).
[24] Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot, 2002, 53: 1331-1341.
pmid: 11997379
[25] Quan L J, Zhang B, Shi W W, Li H Y. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol, 2008, 50: 2-18.
doi: 10.1111/j.1744-7909.2007.00599.x
[26] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
[1] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[2] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[3] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[4] 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004.
[5] 张晓丽, 刘晓燕, 夏雯雯, 李锦. 天山雪莲质膜水孔蛋白基因SiPIP1;3在番茄中的抗寒功能分析[J]. 作物学报, 2025, 51(4): 863-872.
[6] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[7] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[8] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[9] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[10] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[11] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[12] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[13] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[14] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[15] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!