欢迎访问作物学报,今天是 2025年5月5日 星期一

作物学报 ›› 2025, Vol. 51 ›› Issue (4): 1110-1117.doi: 10.3724/SP.J.1006.2025.42042

• 研究简报 • 上一篇    下一篇

水稻粉质胚乳突变体we2的表型分析与基因定位

朱建平1,2,3(), 李文奇1,2,3, 许扬1,2,3, 王芳权1,2,3, 李霞1,2,3, 蒋彦婕1,2,3, 范方军1,2,3, 陶亚军1,2,3, 陈智慧1,2,3, 吴莹莹1,2,3, 杨杰1,2,3,*()   

  1. 1江苏省农业科学院粮食作物研究所 / 农业农村部淮河下游种质创制重点实验室(南京) / 国家水稻改良中心南京分中心, 江苏南京 210014
    2生物育种钟山实验室, 江苏南京 210014
    3扬州大学江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2024-09-07 接受日期:2024-12-12 出版日期:2025-04-12 网络出版日期:2024-12-27
  • 通讯作者: 杨杰, E-mail: yangjie168@aliyun.com
  • 作者简介:E-mail: 1525209729@qq.com
  • 基金资助:
    国家自然科学基金项目(32201861);江苏省重点研发计划项目(BE2023362);江苏省种业振兴揭榜挂帅项目(JBGS (2021) 008)

Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice

ZHU Jian-Ping1,2,3(), LI Wen-Qi1,2,3, XU Yang1,2,3, WANG Fang-Quan1,2,3, LI Xia1,2,3, JIANG Yan-Jie1,2,3, FAN Fang-Jun1,2,3, TAO Ya-Jun1,2,3, CHEN Zhi-Hui1,2,3, WU Ying-Ying1,2,3, YANG Jie1,2,3,*()   

  1. 1Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agricultural and Rural Affairs / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, Jiangsu, China
    2Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, China
    3Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2024-09-07 Accepted:2024-12-12 Published:2025-04-12 Published online:2024-12-27
  • Contact: E-mail: yangjie168@aliyun.com
  • Supported by:
    National Natural Science Foundation of China(32201861);Jiangsu Provincial Key Research and Development Program(BE2023362);Project of Seeds Innovation in Jiangsu(JBGS (2021) 008)

摘要:

从日本晴60Co诱变突变体库中筛选到一份粉质胚乳突变体we2 (white endosperm2), 对其表型和理化性质进行分析, 并利用we2与9311杂交获得的F2群体对目标基因进行精细定位。we2胚乳表现为白色粉质, 淀粉颗粒排列疏松且不规则; 千粒重、总淀粉和直链淀粉含量显著下降, 脂肪含量显著上升。遗传分析表明we2粉质胚乳性状受单个隐性基因控制。利用we2/9311 F2群体进行基因定位, WE2被定位在第6染色体长臂P38和P39之间约244 kb区间内, 该区间包含27个开放阅读框(Open reading frames, ORFs)。qRT-PCR结果显示, we2胚乳中淀粉合成相关基因表达显著下调。本研究为WE2的克隆和功能分析奠定了基础。

关键词: 水稻, 胚乳, 淀粉, 精细定位

Abstract:

A floury endosperm mutant, we2 (white endosperm2), was identified from a 60Co-irradiated mutant pool of the rice (Oryza sativa) variety Nipponbare. The phenotype and physicochemical properties of we2 were analyzed, and an F2 population derived from a cross between we2 and the indica variety 9311 was used for fine mapping of the target gene. Compared with the wild type, we2 exhibited a white endosperm phenotype with irregularly shaped, loosely packed compound starch granules. The 1000-grain weight, total starch content, and amylose content in we2 were significantly lower than those in the wild type, whereas the lipid content was higher. Genetic analysis revealed that the floury endosperm phenotype of we2 is controlled by a single nuclear recessive gene. For map-based cloning, the we2 mutant was crossed with 9311, and F2 individuals were analyzed. The WE2 locus was initially mapped to chromosome 6 and subsequently fine-mapped to a 244 kb genomic region containing 27 predicted open reading frames (ORFs). Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the expression levels of several genes involved in starch biosynthesis were reduced in the we2 mutant. This study provides a foundation for the cloning and functional characterization of WE2, contributing to a deeper understanding of the genetic and molecular mechanisms underlying rice endosperm development.

Key words: rice, endosperm, starch, fine mapping

表1

WE2精细定位引物"

名称
Name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
P22 GACGACACGCACAGCATC GGGGGTTTATATTGATTTTTGCGA
P27 GGACATACCTAGCGCTAGC AGTACTCTGATCACCGTCAGT
P31 CGAGGACGACAGAACGAAGA CGTGTTGAGCCCCACCAG
P36 TGTTTGGAGAGAGTTGGAGATT GGATCGGTTTTCACAAACAGAC
P38 AACAATTCACTCGCCACAGC CGGCGGTTTTGGATTTGGAT
P39 AGCACAGTACTATCGACGGG GGCCATTTTGTGCTGGTACA

图1

表型分析 A, B: WT (A)与we2 (B)种子; C, D: WT (C)与we2 (D)种子横切面; E: 粒长, n = 20; F: 粒宽, n = 20; G: 粒厚, n = 20; 标尺为1 mm。数值为平均值±标准差, 采用t测验, **表示P < 0.01。"

图2

农艺性状分析 A~D: 千粒重、株高、分蘖数和结实率, n = 20。数值为平均值±标准差, 采用t测验, **表示P < 0.01。"

图3

理化性质分析 A~D: 总淀粉含量、直链淀粉含量、脂肪含量和总蛋白含量, n = 3。数值为平均值±标准差, 采用t测验, **表示P < 0.01。"

图4

扫描电镜分析 WT (A~C)和we2 (D~F)种子横切面观察。A, D标尺为1 mm; B, E标尺为50 μm; C, F标尺为10 μm。"

表2

遗传分析"

杂交组合
Cross combination
野生型种子数
No. of wild type seeds
突变体种子数
No. of mutant seeds
χ2(3:1)
we2/wild type F2 127 40 0.050
Wild type/we2 F2 148 55 0.369

图5

WE2的精细定位 WE2定位在6号染色体长臂端标记P38和P39区间内, 物理距离约为244 kb, 包括27个候选基因。"

表3

WE2候选基因"

开放阅读框
ORFs
基因登录号
Locus ID
功能注释
Functional description
ORF1 Os06g0659400 Protein of unknown function DUF231, plant domain containing protein
ORF2 Os06g0659500 Similar to Glutaredoxin
ORF3 Os06g0659800 Conserved hypothetical protein
ORF4 Os06g0660200 Similar to Auxin efflux carrier protein
ORF5 Os06g0660400 Conserved hypothetical protein
ORF6 Os06g0660600 Homeodomain-like containing protein
ORF7 Os06g0660700 Similar to Ubiquitin-conjugating enzyme E2S
ORF8 Os06g0660800 Protein kinase domain containing protein
ORF9 Os06g0661000 Plant MuDR transposase domain containing protein
ORF10 Os06g0661400 ANTH domain containing protein
ORF11 Os06g0661500 Conserved hypothetical protein
ORF12 Os06g0661600 Zinc finger, DHP-type domain containing protein
ORF13 Os06g0661700 RabGAP/TBC domain containing protein
ORF14 Os06g0661800 Similar to Cryptochrome dash
ORF15 Os06g0661900 Protein of unknown function DUF266, plant family protein
ORF16 Os06g0662000 Conserved hypothetical protein
ORF17 Os06g0662200 Eukaryotic transcription factor, DNA-binding domain containing protein
ORF18 Os06g0662300 Pollen allergen Lol p2 family protein
ORF19 Os06g0662500 Pollen allergen Lol p2 family protein
ORF20 Os06g0662600 Pollen allergen Lol p2 family protein
ORF21 Os06g0662700 Pollen allergen Lol p2 family protein
ORF22 Os06g0662800 Pollen allergen Lol p2 family protein
ORF23 Os06g0662900 Pollen allergen/expansion, C-terminal domain containing protein
ORF24 Os06g0663100 Hypothetical protein
ORF25 Os06g0663200 Similar to Protein kinase APK1B, chloroplast precursor
ORF26 Os06g0663300 Pollen allergen Lol p2 family protein
ORF27 Os06g0663400 Serine/threonine protein kinase-like protein

图6

WE2候选基因表达 开花后12 d胚乳中WE2候选基因表达检测(qRT-PCR), 以Actin作为内参, n = 3。数值为平均值±标准差, 采用t测验, **表示P < 0.01。qRT-PCR assay of the expression of WE2 candidate genes in 12 DAF endosperm. Actin was used as control. n = 3. Values are means ± SD, using Student’s t-test. ** indicates P < 0.01."

图7

淀粉合成相关基因表达 开花后12 d胚乳中WE2候选基因表达检测(qRT-PCR), 以Actin作为内参, n = 3. 数值为平均值±标准差, 采用t测验, **表示P < 0.01。"

[1] Shi J X, An G, Weber A P M, Zhang D B. Prospects for rice in 2050. Plant Cell Environ, 2023, 46: 1037-1045.
[2] 陈雅玲, 包劲松. 水稻胚乳淀粉合成相关酶的结构、功能及其互作研究进展. 中国水稻科学, 2017, 31: 1-12.
doi: 10.16819/j.1001-7216.2017.6132
Chen Y L, Bao J S. Progress in structures, functions and interactions of starch synthesis related enzymes in rice endosperm. Chin J Rice Sci, 2017, 31: 1-12 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6132
[3] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016, 49: 4267-4283.
doi: 10.3864/j.issn.0578-1752.2016.22.002
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016, 49: 4267-4283 (in Chinese with English abstract).
[4] Smith A M, Zeeman S C. Starch: a flexible, adaptable carbon store coupled to plant growth. Annu Rev Plant Biol, 2020, 71: 217-245.
doi: 10.1146/annurev-arplant-050718-100241 pmid: 32075407
[5] Huang L C, Tan H Y, Zhang C Q, Li Q F, Liu Q Q. Starch biosynthesis in cereal endosperms: an updated review over the last decade. Plant Commun, 2021, 2: 100237.
[6] 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015, 29: 431-438.
doi: 10.3969/j.issn.1001G7216.2015.04.013
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation of Wx gene and its application in rice breeding. Chin J Rice Sci, 2015, 29: 431-438 (in Chinese with English abstract).
[7] Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol, 2002, 43: 718-725.
doi: 10.1093/pcp/pcf091 pmid: 12154134
[8] Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta, 2004, 220: 9-16.
[9] Ohdan T, Francisco P B Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 2005, 56: 3229-3244.
doi: 10.1093/jxb/eri292 pmid: 16275672
[10] Utsumi Y, Utsumi C, Sawada T, Fujita N, Nakamura Y. Functional diversity of isoamylase oligomers: the ISA1 Homo-oligomer is essential for amylopectin biosynthesis in rice endosperm. Plant Physiol, 2011, 156: 61-77.
doi: 10.1104/pp.111.173435 pmid: 21436381
[11] 张习春, 鲁菲菲, 吕育松, 罗荣剑, 焦桂爱, 邬亚文, 唐绍清, 胡培松, 魏祥进. 两个垩白突变体的鉴定及突变基因的图位克隆. 中国水稻科学, 2017, 31: 568-579.
doi: 10.16819/j.1001-7216.2017.7003
Zhang X C, Lu F F, Lyu Y S, Luo R J, Jiao G A, Wu Y W, Tang S Q, Hu P S, Wei X J. Identification and gene mapping-based clone of two chalkiness mutants in rice. Chin J Rice Sci, 2017, 31: 568-579 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.7003
[12] 杜溢墨, 潘天, 田云录, 刘世家, 刘喜, 江玲, 张文伟, 王益华, 万建民. 水稻粉质皱缩胚乳突变体fse4的表型分析与基因克隆. 中国水稻科学, 2019, 33: 499-512.
Du Y M, Pan T, Tian Y L, Liu S J, Liu X, Jiang L, Zhang W W, Wang Y H, Wan J M. Phenotypic analysis and gene cloning of rice floury endosperm mutant fse4. Chin J Rice Sci, 2019, 33: 499-512 (in Chinese with English abstract).
[13] 唐小涵, 刘世家, 刘喜, 田云录, 王云龙, 滕烜, 段二超, 张元燕, 江玲, 张文伟, 等. 色氨酰-tRNA合成酶基因WRS1调控水稻种子发育. 中国水稻科学, 2020, 34: 383-396.
doi: 10.16819/j.1001-7216.2020.0302
Tang X H, Liu S J, Liu X, Tian Y L, Wang Y L, Teng X, Duan E C, Zhang Y Y, Jiang L, Zhang W W, et al. Tryptophanyl-tRNA synthetase gene WRS1 regulates rice seed development. Chin J Rice Sci, 2020, 34: 383-396 (in Chinese with English abstract).
[14] She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22: 3280-3294.
[15] Kang H G, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J, 2005, 42: 901-911.
[16] Long W H, Dong B N, Wang Y H, Pan P Y, Wang Y L, Liu L L, Chen X L, Liu X, Liu S J, Tian Y L, et al. FLOURY ENDOSPERM8, encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosperm. J Plant Biol, 2017, 60: 513-522.
[17] You X M, Zhang W W, Hu J L, Jing R N, Cai Y, Feng Z M, Kong F, Zhang J, Yan H G, Chen W W, Chen X G, et al. FLOURY ENDOSPERM15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. Plant Cell Rep, 2019, 38: 345-359.
[18] Teng X, Zhong M S, Zhu X P, Wang C M, Ren Y L, Wang Y L, Zhang H, Jiang L, Wang D, Hao Y Y, et al. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnol J, 2019, 17: 1914-1927.
[19] Lei J, Teng X, Wang Y F, Jiang X K, Zhao H H, Zheng X M, Ren Y L, Dong H, Wang Y L, Duan E C, et al. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. Plant Biotechnol J, 2022, 20: 437-453.
[20] Peng C, Wang Y H, Liu F, Ren Y L, Zhou K N, Lyu J, Zheng M, Zhao S L, Zhang L, Wang C M, et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant J, 2014, 77: 917-930.
[21] Zhang L, Ren Y L, Lu B Y, Yang C Y, Feng Z M, Liu Z, Chen J, Ma W W, Wang Y, Yu X W, et al. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. J Exp Bot, 2016, 67: 633-647.
doi: 10.1093/jxb/erv469 pmid: 26608643
[22] Yan H G, Zhang W W, Wang Y H, Jin J, Xu H C, Fu Y S, Shan Z Z, Wang X, Teng X, Li X, et al. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM6 to modulate starch biosynthesis and endosperm development. Plant Cell, 2024, 36: 1892-1912.
[23] Wu H M, Ren Y L, Dong H, Xie C, Zhao L, Wang X, Zhang F L, Zhang B L, Jiang X K, Huang Y S, et al. FLOURY ENDOSPERM24, a heat shock protein 101 (HSP101), is required for starch biosynthesis and endosperm development in rice. New Phytol, 2024, 242: 2635-2651.
doi: 10.1111/nph.19761 pmid: 38634187
[24] Yang H, Wang Y L, Tian Y L, Teng X, Lyu Z H, Lei J, Duan E C, Dong H, Yang X, Zhang Y Y, et al. Rice FLOURY ENDOSPERM22, encoding a pentatricopeptide repeat protein, is involved in both mitochondrial RNA splicing and editing and is crucial for endosperm development. J Integr Plant Biol, 2023, 65: 755-771.
[25] 于艳芳, 刘喜, 田云录, 刘世家, 陈亮明, 朱建平, 王云龙, 江玲, 张文伟, 王益华, 等. 水稻粉质胚乳fse3突变体的表型分析及基因定位. 中国农业科学, 2018, 51: 2023-2037.
doi: 10.3864/j.issn.0578-1752.2018.11.001
Yu Y F, Liu X, Tian Y L, Liu S J, Chen L M, Zhu J P, Wang Y L, Jiang L, Zhang W W, Wang Y H, et al. Phenotypic analysis and gene mapping of a floury and shrunken endosperm mutant fse3 in rice. Sci Agric Sin, 2018, 51: 2023-2037 (in Chinese with English abstract).
[26] 李景芳, 田云录, 刘喜, 刘世家, 陈亮明, 江玲, 张文伟, 徐大勇, 王益华, 万建民. 鸟苷酸激酶OsGK1对水稻种子发育至关重要. 中国水稻科学, 2018, 32: 415-426.
doi: 10.16819/j.1001-7216.2018.8003
Li J F, Tian Y L, Liu X, Liu S J, Chen L M, Jiang L, Zhang W W, Xu D Y, Wang Y H, Wan J M. The guanylate kinase OsGK1 is essential for seed development in rice. Chin J Rice Sci, 2018, 32: 415-426 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2018.8003
[27] 潘鹏屹, 朱建平, 王云龙, 郝媛媛, 蔡跃, 张文伟, 江玲, 王益华, 万建民. 水稻粉质胚乳突变体ws的表型分析及基因克隆. 中国水稻科学, 2016, 30: 447-457.
doi: 10.16819/j.1001-7216.2016.6048
Pan P Y, Zhu J P, Wang Y L, Hao Y Y, Cai Y, Zhang W W, Jiang L, Wang Y H, Wan J M. Phenotyping and gene cloning of a floury endosperm mutant ws in rice. Chin J Rice Sci, 2016, 30: 447-457 (in Chinese with English abstract).
[28] Hu T T, Tian Y L, Zhu J P, Wang Y L, Jing R N, Lei J, Sun Y L, Yu Y F, Li J F, Chen X L, et al. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. Plant Cell Rep, 2018, 37: 1667-1679.
[29] Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot, 2013, 64: 3453-3466.
[30] Xiong Y F, Ren Y, Li W, Wu F S, Yang W J, Huang X L, Yao J L. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. J Exp Bot, 2019, 70: 3765-3780.
doi: 10.1093/jxb/erz168 pmid: 31211389
[31] Bello B K, Hou Y X, Zhao J, Jiao G A, Wu Y W, Li Z Y, Wang Y F, Tong X H, Wang W, Yuan W Y, et al. NF-YB1-YC12- bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnol J, 2019, 17: 1222-1235.
[32] Wang J, Chen Z C, Zhang Q, Meng S S, Wei C X. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiol, 2020, 184: 1775-1791.
doi: 10.1104/pp.20.00984 pmid: 32989010
[33] Wu M W, Liu J X, Bai X, Chen W Q, Ren Y L, Liu J L, Chen M M, Zhao H, Yao X F, Zhang J D, et al. Transcription factors NAC20 and NAC26 interact with RPBF to activate albumin accumulations in rice endosperm. Plant Biotechnol J, 2023, 21: 890-892.
[1] 肖正午, 张珂骞, 曹放波, 陈佳娜, 郑华斌, 王慰亲, 黄敏. 糙米粉蒸煮食味品质与糙米淀粉组分含量和糊化特性的关系[J]. 作物学报, 2025, 51(4): 1102-1109.
[2] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[3] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[4] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[5] 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686.
[6] 刘建国, 陈冬东, 陈玉玉, 易琴琴, 李清, 徐正进, 钱前, 沈兰. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51(3): 598-608.
[7] 闫秉春, 万雪, 钟敏, 刘宇奇, 赵艳泽, 姜红芳, 刘雅, 刘惠玲, 马沁春, 高继平, 张文忠. 氮素水平对北方优良食味粳米品质及精碾磨粉颗粒特性的影响[J]. 作物学报, 2025, 51(2): 503-515.
[8] 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346.
[9] 李春梅, 陈洁, 郎兴宣, 庄海民, 朱靖, 杜梓君, 冯浩天, 金涵, 朱国林, 刘凯. 水稻矮化多分蘖基因DT1的图位克隆与功能分析[J]. 作物学报, 2025, 51(2): 347-357.
[10] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[11] 辛雨宁, 任昊, 王洪章, 梁明磊, 于涛, 刘鹏. 喷施6-苄氨基腺嘌呤(6-BA)对授粉后高温胁迫下夏玉米籽粒灌浆及产量的影响[J]. 作物学报, 2025, 51(2): 418-431.
[12] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[13] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[14] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[15] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
Viewed
Full text
73
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 7 15 0 51

  From Others local
  Times 1 72
  Rate 1% 99%

Abstract
97
Just accepted Online first Issue
22 0 75
  From local
  Times 97
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!