欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1363-1377.doi: 10.3724/SP.J.1006.2025.42043

• 耕作栽培·生理生化 • 上一篇    

无人化旱直播水稻产量形成特征及其能量与经济效益研究

翁文安1,邢志鹏1,胡群1,魏海燕1,廖萍1,朱海滨1,瞿济伟2,李秀丽3,刘桂云3,高辉1,张洪程1,*   

  1. 1 扬州大学水稻产业工程技术研究院 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州225009; 2 扬州大学机械工程学院 / 江苏省现代农机农艺融合技术工程中心, 江苏扬州225009; 3 大中农场集团有限公司农业科技研究所, 江苏盐城224135
  • 收稿日期:2024-09-20 修回日期:2025-01-23 接受日期:2025-01-23 出版日期:2025-05-12 网络出版日期:2025-02-11
  • 基金资助:
    本研究由江苏省重点研发计划项目(BE2022338), 江苏省水稻产业技术体系项目(JATS [2023] 443)和江苏省研究生科研与实践创新计划项目(KYCX23_3574)资助。

Study on yield formation characteristics, energy and economic benefits of unmanned dry direct-seeding rice

WENG Wen-An1,XING Zhi-Peng1,HU Qun1,WEI Hai-Yan1,LIAO Ping1,ZHU Hai-Bing1,QU Ji-Wei2,Li Xiu-Li3,LIU Gui-Yun3,GAO Hui1,ZHANG Hong-Cheng1,*   

  1. 1 Research institute of Rice Industrial Engineering Technology, Yangzhou University / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, China; 2 Collage of Mechanical Engineering / Jiangsu Engineering Center for Modern Agricultural Machinery and Agronomy Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; 3 Agricultural Science and Technology Research Institute of Jiangsu Dazhong Farm Group Co., Ltd., Yancheng 224135, Jiangsu, China
  • Received:2024-09-20 Revised:2025-01-23 Accepted:2025-01-23 Published:2025-05-12 Published online:2025-02-11
  • Supported by:
    This study was supported by the Key Research and Development Program of Jiangsu Province (BE2022338), the Jiangsu Technical System of Rice Industry (JATS [2023] 443), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_3574).

摘要:

本研究旨在探讨无人旱直播(unmanned dry direct-seeding, UDS)水稻的丰产形成规律,分析稳产栽培的关键技术,为无人旱直播技术的规模化推广提供理论依据和技术支持。于20212023年,以南粳5718为材料,以无人化毯苗机插(unmanned carpet seedling machine transplanting, UMT)为对照,在江苏省稻麦两熟制代表性地区大丰和泗洪开展了大面积丰产栽培试验,系统研究了无人化旱直播水稻的生育期特征、分蘖特性、光合物质生产和产量形成规律,分析其能量投入及经济效益。结果表明,不同生态区无人化旱直播水稻的全生育期较对照缩短12~19 d,全生育期有效积温减少226.1~329.3℃。与对照相比,无人化旱直播通过提高主茎成穗比例,利用主茎的生长优势可以提高水稻拔节期和抽穗期的叶面积指数,从而提高播种到拔节阶段的群体生长率和群体净同化率以及拔节至抽穗阶段的群体光合势。然而,较低的成穗率和群体颖花量以及干物质积累量的减少是导致减产的重要因素,无人化旱直播水稻的产量平均降低了5.4%~5.9%。从能量投入和经济效益来看,无人化旱直播水稻种植环节的机械化集成度较高,耕播环节的机械能量投入减少43.8%,能源投入减少27.8%,总体能量投入减少了5.8%,水稻生产成本降低了11.8%,经济效益增加了3.4%。综上,在生产上应当进一步优化无人化旱直播栽培质量,在充分发挥主茎生长优势下,重点调控优势蘖位分蘖的发生及最终成穗以满足无人化旱直播水稻壮主茎、攻足穗的生产目标。同时应当以合理增加生育中期的生长量为重点,促进生育后期干物质的积累,提高穗部生物量,在大群体库容的前提下获得充足的籽粒灌浆物质,以实现无人化旱直播水稻进一步增产

关键词: 水稻, 无人化旱直播, 生育特征, 产量, 能量投入, 经济效益

Abstract:

This study investigated the yield formation characteristics of unmanned dry direct-seeding rice (UDS), analyzed key cultivation techniques for stable yield production, and provided theoretical foundations and technical support for the large-scale application of this technology. From 2021 to 2023, a high-yield cultivation experiment was conducted in representative rice-wheat double-cropping areas of Jiangsu Province, using Nangeng 5718 as the test material and unmanned carpet seedling machine transplanting (UMT) as the control. The study assessed growth period characteristics, tillering dynamics, photosynthetic matter production, yield performance, energy input, and economic benefits. The results showed that the full growth period of UDS in different ecological regions was shortened by 12–19 days compared to UMT, with the effective accumulated temperature in whole growth period decreasing by 226.1–329.3°C. Compared to UMT, UDS increased the proportion of main stem spikes, leveraging the growth advantage of the main stem to enhance the leaf area index during the jointing and heading stages. This improvement boosted the population growth rate and net assimilation rate from sowing to jointing, as well as the photosynthetic potential from jointing to heading. However, UDS exhibited a lower productive tiller percentage and total spikelet number, along with reduced dry matter accumulation, which were significant factors contributing to yield loss, resulting in a 5.4%–5.9% average yield reduction. From the perspective of energy input and economic benefits, UDS demonstrated higher mechanization efficiency. Mechanical energy input during the tillage and sowing phase was reduced by 43.8%, energy resource input decreased by 27.8%, and overall energy input was reduced by 5.8%. Additionally, UDS lowered rice production costs by 11.8% and increased economic benefits by 3.4%. To further enhance UDS yields, production practices should focus on optimizing cultivation quality by regulating the emergence of advantageous tillers and ensuring their final heading to achieve robust main stems and sufficient panicles. Moreover, efforts should be directed toward increasing growth during the mid-growth stages to promote dry matter accumulation during later stages, enhancing spike biomass, and ensuring adequate grain-filling materials under a large population capacity. These improvements are critical for achieving higher yields in UDS systems.

Key words: rice, unmanned dry direct-seeding, growth characteristics, grain yield, energy input, economic benefit

[1] Yang Z Y, Zhu Y M, Zhang J Y, Li X Y, Ma P, Sun J W, Sun Y J, Ma J, Li N. Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China. Energy, 2022, 245: 123270.

[2] 国家统计局. 中国统计年鉴2023. https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm.
National Bureau of Statistics. China Statistical Yearbook 2023. https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm (in Chinese).

[3] 饶静, 欧阳威. 高投入高产出土地利用模式的成因及对策. 中国土地科学, 2011, 25(12): 35–39.
Rao J, Ouyang W. Causes of the short-term oriented farmland use and the countermeasures. China Land Sci, 2011, 25(12): 35–39 (in Chinese with English abstract).

[4] Ren S Y, Song C Q, Ye S J, Cheng C X, Gao P C. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: a meta-analysis. Sci Total Environ, 2022, 806: 150322.

[5] Liu G S, Wang H M, Cheng Y X, Zheng B, Lu Z L. The impact of rural out-migration on arable land use intensity: evidence from mountain areas in Guangdong, China. Land Use Policy, 2016, 59: 569–579.

[6] 张耗, 余超, 陈可伟, 孔祥胜, 刘海浪, 陈俊义, 顾骏飞, 刘立军, 王志琴, 杨建昌. 直播方式对水稻生理性状和产量的影响及其成本分析. 农业工程学报, 2017, 33(13): 58–64.
Zhang H, Yu C, Chen K W, Kong X S, Liu H L, Chen J Y, Gu J F, Liu L J, Wang Z Q, Yang J C. Effect of direct-seeding methods on physiological characteristics and grain yield of rice and its cost analysis. Trans CSAE, 2017, 33(13): 58–64 (in Chinese with English abstract).

[7] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47: 1273–1289.
Zhang H C, Gong J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China. Sci Agric Sin, 2014, 47: 1273–1289 (in Chinese with English abstract).

[8] 罗锡文, 王在满, 曾山, 臧英, 杨文武, 张明华. 水稻机械化直播技术研究进展. 华南农业大学学报, 2019, 40(5): 1–13.
Luo X W, Wang Z M, Zeng S, Zang Y, Yang W W, Zhang M H. Recent advances in mechanized direct seeding technology for rice. J South China Agric Univ, 2019, 40(5): 1–13 (in Chinese with English abstract).

[9] 孙永健, 郑洪帧, 徐徽, 杨志远, 贾现文, 程洪彪, 马均. 机械旱直播方式促进水稻生长发育提高产量. 农业工程学报, 2014, 30(20): 10–18.
Sun Y J, Zheng H Z, Xu H, Yang Z Y, Jia X W, Cheng H B, Ma J. Mechanical dry direct-sowing modes improving growth, development and yield of rice. Trans CSAE, 2014, 30(20): 10–18 (in Chinese with English abstract).

[10] 罗锡文, 胡炼, 何杰, 张智刚, 周志艳, 张闻宇, 廖娟, 黄培奎. 中国大田无人农场关键技术研究与建设实践. 农业工程学报, 2024, 40(1): 1–16.
Luo X W, Hu L, He J, Zhang Z G, Zhou Z Y, Zhang W Y, Liao J, Huang P K. Key technologies and practice of unmanned farm in China. Trans CSAE, 2024, 40(1): 1–16 (in Chinese with English abstract).

[11] Hashim N, Ali M M, Mahadi M R, Abdullah A F, Wayayok A, Mohd Kassim M S, Jamaluddin A. Smart farming for sustainable rice production: an insight into application, challenge, and future prospect. Rice Sci, 2024, 31: 47–61.

[12] Yang Z Y, Zhu Y M, Zhang X L, Liao Q, Fu H, Cheng Q Y, Chen Z K, Sun Y J, Ma J, Zhang J Y, et al. Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —a comparison based on energy use efficiency and economic benefits. Energy, 2023, 273: 127223.

[13] Kim J, Kim S, Ju C, Son H I. Unmanned aerial vehicles in agriculture: a review of perspective of platform, control, and applications. IEEE Access, 2019, 7: 105100–105115.

[14] Oliveira L F P, Moreira A P, Silva M F. Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics, 2021, 10: 52.

[15] 张智刚. 插秧机的DGPS自动导航控制系统研究. 华南农业大学博士论文, 广东广州, 2006.
Zhang Z G. Research on DGPS Automatic Navigation Control System of Rice Transplanter. PhD Dissertation of South China Agricultural University, Guangzhou, Guangdong, China, 2006 (in Chinese with English abstract).

[16] 罗锡文, 廖娟, 胡炼, 周志艳, 张智刚, 臧英, 汪沛, 何杰. 我国智能农机的研究进展与无人农场的实践. 华南农业大学学报, 2021, 42(6): 8–17.
Luo X W, Liao J, Hu L, Zhou Z Y, Zhang Z G, Zang Y, Wang P, He J. Research progress of intelligent agricultural machinery and practice of unmanned farm in China. J South China Agric Univ, 2021, 42(6): 8–17 (in Chinese with English abstract).

[17] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301–1321.
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation in China. Sci Agric Sin, 2021, 54: 1301–1321 (in Chinese with English abstract).

[18] 翁文安, 邢志鹏, 胡群, 魏海燕, 史扬杰, 奚小波, 李秀丽, 刘桂云, 陈娟, 袁风萍, . 无人化旱直播模式对水稻产量、品质和经济效益的影响. 中国农业科学, 2024, 57: 3350–3365.
Weng W A, Xing Z P, Hu Q, Wei H Y, Shi Y J, Xi X B, Li X L, Liu G Y, Chen J, Yuan F P, et al. Effects of unmanned dry direct-seeded mode on yield, grain quality of rice and its economic benefits. Sci Agric Sin, 2024, 57: 3350–3365 (in Chinese with English abstract).

[19] 张洪程, 胡雅杰, 戴其根, 邢志鹏, 魏海燕, 孙成明, 高辉, 胡群. 中国大田作物栽培学前沿与创新方向探讨. 中国农业科学, 2022, 55: 4373–4382.
Zhang H C, Hu Y J, Dai Q G, Xing Z P, Wei H Y, Sun C M, Gao H, Hu Q. Discussions on frontiers and directions of scientific and technological innovation in China’s field crop cultivation. Sci Agric Sin, 2022, 55: 4373–4382 (in Chinese with English abstract).

[20] 张洪程, 邢志鹏, 翁文安, 田晋钰, 陶钰, 程爽, 胡群, 胡雅杰, 郭保卫, 魏海燕. 生育约束型直播水稻生育特征与稳产关键技术. 中国农业科学, 2021, 54: 1322–1337.
Zhang H C, Xing Z P, Weng W A, Tian J Y, Tao Y, Cheng S, Hu Q, Hu Y J, Guo B W, Wei H Y. Growth characteristics and key techniques for stable yield of growth constrained direct seeding rice. Sci Agric Sin, 2021, 54: 1322–1337 (in Chinese with English abstract).

[21] Xing Z P, Hu Y J, Qian H J, Cao W W, Guo B W, Wei H Y, Xu K, Huo Z Y, Zhou G S, Dai Q G, et al. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system. J Integr Agric, 2017, 16: 1451–1466.

[22] Namikawa M, Matsunami T, Yabiku T, Takahashi T, Matsunami M, Hasegawa T. Analysis of yield constraints and seasonal solar radiation and temperature limits for stable cultivation of dry direct-seeded rice in northeastern Japan. Field Crops Res, 2023, 295: 108896.

[23] Li Z W, Huang L F, Huo Z Y, Jiang M. The effect of organ temperature on total yield of transplanted and direct-seeded rice (Oryza sativa L.). Phyton, 2023, 92: 2999–3019.

[24] Dey S, Abbhishek K, Saraswathibatla S, Singh P K, Bommaraboyina P R, Raj A, Kaliki H, Choubey A K, Rongali H B, Upamaka A. Empirical evidence for economic viability of direct seeded rice in peninsular India: an action-based research. Heliyon, 2024, 10: e26754.

[25] Li S, Lu Z, Zhao J, Luo M, Chen F, Chu Q Q. Changes in planting methods will change the potential distribution of rice in South China under climate warming. Agric For Meteor, 2023, 331: 109355.

[26] 霍中洋, 姚义, 张洪程, 夏炎, 倪晓诚, 戴其根, 许轲, 魏海燕. 不同生育期温光条件对直播稻产量的影响. 核农学报, 2012, 26: 1043–1052.
Huo Z Y, Yao Y, Zhang H C, Xia Y, Ni X C, Dai Q G, Xu K, Wei H Y. Effects of temperature and sunlight conditions on the yield of direct seeding ricein different growth stages. J Nucl Agric Sci, 2012, 26: 1043–1052 (in Chinese with English abstract).

[27] 王端飞. 栽培方式及株行距配置对超级稻宁粳3号产量形成和群体均衡性的影响. 南京农业大学硕士学位论文, 江苏南京, 2011.
Wang D F. Effects of Cultivation Methods and Row Spacing on Yield Formation and Population Balance of Super Rice Ningjing 3. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).

[28] 韩超, 许方甫, 卞金龙, 徐栋, 裘实, 赵晨, 朱盈, 刘国栋, 张洪程, 魏海燕. 淮北地区机械化种植方式对不同生育类型优质食味粳稻产量及品质的影响. 作物学报, 2018, 44: 1681–1693.
Han C, Xu F F, Bian J L, Xu D, Qiu S, Zhao C, Zhu Y, Liu G D, Zhang H C, Wei H Y. Effects of mechanical planting methods on yield and quality of Japonica rice with good taste and different growth durations in Huaibei Region. Acta Agron Sin, 2018, 44: 1681–1693 (in Chinese with English abstract).

[29] Zhang R P, Zhou N N, Ashen R G, Zhou L, Feng T Y, Zhang K Y, Liao X H, Aer L S, Shu J C, He X W, et al. Effect of sowing date on the growth characteristics and yield of growth-constrained direct-seeding rice. Plants, 2023, 12: 1899.

[30] Xu L, Yuan S, Wang X Y, Chen Z F, Li X X, Cao J, Wang F, Huang J L, Peng S B. Comparison of yield performance between direct-seeded and transplanted double-season rice using ultrashort-duration varieties in Central China. Crop J, 2022, 10: 515–523.

[31] 麦迎晓, 黄慧灵, 程思忍, 孙晓銮, 唐湘如. 不同拌种处理对超级稻机插秧苗素质的影响. 中国稻米, 2018, 24(3): 71–75.

Mai Y X, Huang H L, Cheng S R, Sun X L, Tang X R. Effects of different seed dressing treatments on seedling quality of mechanical transplanting super rice. China Rice, 2018, 24(3): 71–75 (in Chinese with English abstract).

[32] 宋云生, 张洪程, 戴其根, 杨大柳, 郭保卫, 朱聪聪, 霍中洋, 许轲, 魏海燕, 胡加敏, . 水稻机栽钵苗单穴苗数对分蘖成穗及产量的影响. 农业工程学报, 2014, 30(10): 37–47.
Song Y S, Zhang H C, Dai Q G, Yang D L, Guo B W, Zhu C C, Huo Z Y, Xu K, Wei H Y, Hu J M, et al. Effect of rice potted-seedlings per hole by mechanical transplanting on tillers emergence, panicles formation and yield. Trans CSAE, 2014, 30(10): 37–47 (in Chinese with English abstract).

[33] 陈仁天, 唐茂艳, 赵荣德, 江立庚, 王强, 陈雷, 梁天锋. 耕作方式和大田水分管理对水稻氮素吸收利用的影响. 南方农业学报, 2012, 43: 942–946.
Chen R T, Tang M Y, Zhao R D, Jiang L G, Wang Q, Chen L, Liang T F. Influence of field tillage patterns and water management on nitrogen assimilation and utilization in rice. J South Agric, 2012, 43: 942–946 (in Chinese with English abstract).

[34] 陈明, 欧阳玉朋, 王美娥, 钟宗石, 叶高潮, 曹晓利, 孙小明, 赵田芬. 机直播稻不同密度分蘖特性及其与产量构成的关系. 安徽农业科学, 2015, 43(26): 40–42.
Chen M, Ouyang Y P, Wang M E, Zhong Z S, Ye G C, Cao X L, Sun X M, Zhao T F. Tillering characteristics and its relationships with yield components of mechanical direct-seeding rice in different densities. J Anhui Agric Sci, 2015, 43(26): 40–42 (in Chinese with English abstract).

[35] 刘红江, 郑建初, 陈留根, 周炜. 不同播栽方式对水稻生长发育特性的影响. 生态学杂志, 2013, 32: 2326–2331.

Liu H J, Zheng J C, Chen L G, Zhou W. Effects of different planting modes on the growth and development characteristics of rice. Chin J Ecol, 2013, 32: 2326–2331 (in Chinese with English abstract).

[36] 石春林, 朱艳, 曹卫星. 水稻叶片几何参数的模拟分析. 中国农业科学, 2006, 39: 910–915.
Shi C L, Zhu Y, Cao W X. A simulation analysis on geometrical parameters of rice leaf blade. Sci Agric Sin, 2006, 39: 910–915 (in Chinese with English abstract).

[37] 李杰, 张洪程, 董洋阳, 倪晓诚, 杨波, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, . 不同生态区栽培方式对水稻产量、生育期及温光利用的影响. 中国农业科学, 2011, 44: 2661–2672.
Li J, Zhang H C, Dong Y Y, Ni X C, Yang B, Gong J L, Chang Y, Dai Q G, Huo Z Y, Xu K, et al. Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Sci Agric Sin, 2011, 44: 2661–2672 (in Chinese with English abstract).

[38] 朱海滨, 胡群, 陆喜瞻, 翁文安, 邢志鹏, 高辉, 魏海燕, 张洪程. 无人飞播水稻生育特征与丰产关键技术研究进展. 农业工程学报, 2024, 40(11): 1–13.
Zhu H B, Hu Q, Lu X Z, Weng W A, Xing Z P, Gao H, Wei H Y, Zhang H C. Research progress in growth characteristics and key techniques for the high yield of unmanned aerial seeding rice. Trans CSAE, 2024, 40(11): 1–13 (in Chinese with English abstract).

[39] Liao B, Peng Z L, Shu Y H, Zhang B C, Dai Y L, Liu Z Q, Wang F, Hu R G, Luo Y F, Cui Y L. Can optimizing nitrogen management improve net ecosystem economic benefits in rice cultivation. J Clean Prod, 2024, 437: 140756.

[40] Ding Z J, Hu R, Cao Y X, Li J T, Xiao D K, Hou J, Wang X X. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production. J Integr Agric, 2024, 23: 3186–3199.

[41] Zhang Y J, Ren W C, Zhu K Y, Fu J Y, Wang W L, Wang Z Q, Gu J F, Yang J C. Substituting readily available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: a global meta-analysis. Field Crops Res, 2024, 306: 109221.

[42] Lyu Y F, Yang X D, Pan H Y, Zhang X H, Cao H X, Ulgiati S, Wu J, Zhang Y Z, Wang G Y, Xiao Y L. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: a study case from Southwest China. J Clean Prod, 2021, 293: 126198.

[43] 曹兵, 丁紫娟, 侯俊, 马孝卫, 王学霞, 王磊, 王甲辰, 邹国元, 倪小会, 陈延华. 控释掺混肥结合增密对水稻氮肥利用效率和氨挥发的影响. 农业工程学报, 2022, 38(13): 56–63.
Cao B, Ding Z J, Hou J, Ma X W, Wang X X, Wang L, Wang J C, Zou G Y, Ni X H, Chen Y H. Effects of the blends of controlled-release and conventional nitrogen fertilizers combined with dense planting on nitrogen use efficiency and ammonia volatilization in a paddy field. Trans CSAE, 2022, 38(13): 56–63 (in Chinese with English abstract).

[44] Ghosh A, Singh A K, Kumar R V, Singh P D, Misra S, Ahamed S, Ojha D, Chandra A, Bhattacharyya R. Silica and polymer coated controlled release nitrogen-phosphorus fertilizer for improving nutrient and water use efficiency in semi-arid India. J Environ Chem Eng, 2024, 12: 112737.

[45] 孔飞扬, 江立庚, 文娟, 郝向阳. 直播水稻产量、产量构成因子和干物质积累的变化特点及其相互关系. 华中农业大学学报, 2018, 37(5): 11–17.
Kong F Y, Jiang L G, Wen J, Hao X Y. Changes and relationships of yield, yield components and dry matter accumulation of direct-seeded rice. J Huazhong Agric Univ, 2018, 37(5): 11–17 (in Chinese with English abstract).

[46] 晏军, 王伟义, 李斌, 李亚芳, 蒋润枝, 沈明晨, 王春云, 崔必波. 秸秆还田下化肥减施对苏北地区水稻产量与氮素吸收利用的影响. 中国土壤与肥料, 2021, 58(5): 74–82.
Yan J, Wang W Y, Li B, Li Y F, Jiang R Z, Shen M C, Wang C Y, Cui B B. Effects of straw returning and fertilizer reduction on rice yield, nitrogen uptake and utilization in northern Jiangsu. Soil Fert Sci China, 2021, 58(5): 74–82 (in Chinese with English abstract).

[47] 王成, 马杨明, 王春雨, 李志欣, 罗健升, 彭政岚, 刘儒宏基, 黄兴海, 曹云, 彭政菠, 马均. 种植方式与施氮量对杂交籼稻养分吸收特性及根系活力的影响. 作物学报, 2024, 50: 30693082.
Wang C, Ma Y M, Wang C Y, Li Z X, Luo J S, Peng Z L, Liu R H J, Huang X H, Cao Y, Ma J. Effects of cropping practices and nitrogen application on nutrient uptake characteristics and root vigor of hybrid indica rice. Acta Agron Sin, 2024, 50: 3069–3082 (in Chinese with English abstract).

[48] 王国忠, 彭斌, 陆峥嵘, 王余龙. 直播水稻物质生产特点及其高产调控技术研究. 上海农业学报, 2002, 18(2): 32–37.
Wang G Z, Peng B, Lu Z R, Wang Y L. Study on production characteristics and high-yield control techniques of direct seeding rice. Acta Agric Shanghai, 2002, 18(2): 32–37 (in Chinese with English abstract).

[49] 梁玉刚, 周政, 张利峰, 陶曙华, 荣兴枝, 刘烨, 陈伟, 汪大明, 赵正洪, 许靖波. 湖南省早稻集中育秧发展现状、存在问题及其对策. 中国稻米, 2022, 28(1): 72–77.
Liang Y G, Zhou Z, Zhang L F, Tao S H, Rong X Z, Liu Y, Chen W, Wang D M, Zhao Z H, Xu J B. Development status, existing problems and countermeasures of early rice concentrated seedling cultivation in Hunan Province. China Rice, 2022, 28(1): 72–77 (in Chinese with English abstract).

[50] 唐兴隆, 任桂英, 李英奎, 王虹, 赵平, 张生. 优质水稻工厂化育秧关键技术研究. 中国农机化学报, 2019, 40(6): 35–38.
Tang X L, Ren G Y, Li Y K, Wang H, Zhao P, Zhang S. Research on key technology of high quality rice factory seedling. J Chin Agric Mech, 2019, 40(6): 35–38 (in Chinese with English abstract).

[1] 王梦宁, 谢可冉, 高逖, 王飞, 任孝俭, 熊栋梁, 黄见良, 彭少兵, 崔克辉. 水稻幼穗分化期至抽穗期高温对籽粒形态和充实的影响及其与粒重的关系[J]. 作物学报, 2025, 51(5): 1347-1362.
[2] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[3] 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298.
[4] 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311.
[5] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[6] 朱建平, 李文奇, 许扬, 王芳权, 李霞, 蒋彦婕, 范方军, 陶亚军, 陈智慧, 吴莹莹, 杨杰. 水稻粉质胚乳突变体we2的表型分析与基因定位[J]. 作物学报, 2025, 51(4): 1110-1117.
[7] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[8] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[9] 孟孜贞, 刘陈, 盛倩男, 熊志豪, 方娅婷, 赵剑, 余秋华, 王昆昆, 李小坤, 任涛, 鲁剑巍. 氮磷钾肥施用对冬油菜增产效果及因冻害减产程度的影响[J]. 作物学报, 2025, 51(4): 1037-1049.
[10] 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004.
[11] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[12] 张晓丽, 刘晓燕, 夏雯雯, 李锦. 天山雪莲质膜水孔蛋白基因SiPIP1;3在番茄中的抗寒功能分析[J]. 作物学报, 2025, 51(4): 863-872.
[13] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[14] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[15] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!