作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1347-1362.doi: 10.3724/SP.J.1006.2025.42046
• 耕作栽培·生理生化 • 上一篇
王梦宁,谢可冉,高逖,王飞,任孝俭,熊栋梁,黄见良,彭少兵,崔克辉*
WANG Meng-Ning,XIE Ke-Ran,GAO Ti,WANG Fei,REN Xiao-Jian,XIONG Dong-Liang,HUANG Jian-Liang,PENG Shao-Bing,CUI Ke-Hui*
摘要:
以热敏感型品种两优培九(LYPJ)和晶两优华占(JLYHZ)、耐热型品种汕优63 (SY63)为材料,在盆栽条件下设置幼穗分化期至抽穗期常温和高温两种温度处理,探究幼穗分化期至抽穗期高温对穗分化期颖花和籽粒大小、灌浆期籽粒充实的影响及其与粒重的关系及内在机制。与常温处理相比,幼穗分化期至抽穗期高温导致LYPJ和JLYHZ的千粒重、每穗颖花数、结实率和产量显著降低,但对SY63无显著影响。幼穗分化期至抽穗期高温显著降低LYPJ和JLYHZ颖花和籽粒大小(长度、宽度和厚度),SY63的降幅低于热敏感品种。高温导致LYPJ颖花OsLOGL2基因表达降低、JLYHZ颖花OsCKX5基因表达增加,并显著降低两品种颖花活性细胞分裂素含量。高温对2个热敏感品种成熟期地上部干物质积累无显著影响,显著降低收获指数,降低抽穗期至成熟期单粒增重和平均灌浆速率,对SY63则无显著影响。高温显著降低了LYPJ和JLYHZ籽粒灌浆相关基因(OsFLO2、OsFLO4和OsGIF2)表达和籽粒酸性/中性转化酶、蔗糖合成酶、腺苷二磷酸葡萄糖焦磷酸化酶以及LYPJ籽粒淀粉分支酶活性,对SY63无显著影响。本研究表明幼穗分化期至抽穗期高温降低了收获指数,降低了颖花内源活性细胞分裂素含量从而降低颖花和籽粒大小,也抑制了籽粒灌浆相关基因表达和相关酶活性;因此,高温导致粒重和产量下降可能是由于同化物向籽粒分配减少和库活性受到抑制,表现出高温处理的后续效应。
[1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021. p 3949. [2] Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114: 9326–9331. [3] Zhang C X, Feng B H, Chen T T, Zhang X F, Tao L X, Fu G F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul, 2017, 83: 313–323. [4] Hu Q Q, Yan N, Cui K H, Li G H, Wang W C, Huang J L, Peng S B. Increased panicle nitrogen application improves rice yield by alleviating high-temperature damage during panicle initiation to anther development. Physiol Plant, 2024, 176: e14230. [5] Wu C, Cui K H, Wang W C, Li Q, Fahad S, Hu Q Q, Huang J L, Nie L X, Peng S B. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci Rep, 2016, 6: 34978.
[6] 刘建丰, 陈光辉, 何强, 李春庚. 不同产量水平杂交稻产量构成因素的分析. 云南农业大学学报, 2006, 21: 707–710. [7] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102–11107. [8] Ji X, Du Y X, Li F, Sun H Z, Zhang J, Li J Z, Peng T, Xin Z Y, Zhao Q Z. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice. Plant Biotechnol J, 2019, 17: 1527–1537. [9] Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J, 2020, 103: 1174–1188. [10] Li L F, Li J J, Liu K K, Jiang C L, Jin W H, Ye J K, Qin T R, Luo B J, Chen Z Y, Li J Z, et al. DGW1, encoding an hnRNP-like RNA binding protein, positively regulates grain size and weight by interacting with GW6 mRNA. Plant Biotechnol J, 2024, 22: 512–526. [11] She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22: 3280–3294. [12] He Z S, Zeng J, Ren Y, Chen D, Li W J, Gao F Y, Cao Y, Luo T, Yuan G Q, Wu X H, et al. OsGIF1 positively regulates the sizes of stems, leaves, and grains in rice. Front Plant Sci, 2017, 8: 1730. [13] Wei X J, Jiao G A, Lin H Y, Sheng Z H, Shao G N, Xie L H, Tang S Q, Xu Q G, Hu P S. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. J Integr Plant Biol, 2017, 59: 134–153. [14] Lin L S, Qiu J J, Zhang L, Wei C X. Identification and analysis of nine new flo2 allelic mutants in rice. J Plant Physiol, 2024, 301: 154300. [15] Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370–1374. [16] Huang L C, Tan H Y, Zhang C Q, Li Q F, Liu Q Q. Starch biosynthesis in cereal endosperms: an updated review over the last decade. Plant Commun, 2021, 2: 100237. [17] Morita S, Yonemaru J I, Takanashi J I. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot, 2005, 95: 695–701. [18] Wada H, Chang F Y, Hatakeyama Y, Erra-Balsells R, Araki T, Nakano H, Nonami H. Endosperm cell size reduction caused by osmotic adjustment during nighttime warming in rice. Sci Rep, 2021, 11: 4447. [19] Shi W J, Yin X Y, Struik P C, Solis C, Xie F M, Schmidt R C, Huang M, Zou Y B, Ye C R, Krishna Jagadish S V. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. J Exp Bot, 2017, 68: 5233–5245. [20] Bahuguna R N, Solis C A, Shi W J, Jagadish K S V. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiol Plant, 2017, 159: 59–73. [21] Zhang C X, Feng B H, Chen T T, Fu W M, Li H B, Li G Y, Jin Q Y, Tao L X, Fu G F. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation. Environ Exp Bot, 2018, 155: 718–733.
[22] 董文军, 田云录, 张彬, 陈金, 张卫建. 非对称性增温对水稻品种南粳44米质及关键酶活性的影响. 作物学报, 2011, 37: 832–841. [23] Meng L, Wang C Y, Zhang J Q. Heat injury risk assessment for single-cropping rice in the middle and lower reaches of the Yangtze River under climate change. J Meteor Res, 2016, 30: 426–443.
[24] 吕川根, 宗寿余, 胡凝, 邹江石, 姚克敏, 唐卫亚. 两系杂交稻两优培九粒重因子的环境模型解析及生态特征分析. 作物学报, 2008, 34: 2202–2209. [25] Zhang X Z, Zhang Q P, Yang J, Jin Y H, Wu J S, Xu H, Xiao Y, Lai Y S, Guo Z Q, Wang J L, et al. Comparative effects of heat stress at booting and grain-filling stage on yield and grain quality of high-quality hybrid rice. Foods, 2023, 12: 4093. [26] Zhen F X, Zhou J J, Mahmood A, Wang W, Chang X N, Liu B, Liu L L, Cao W X, Zhu Y, Tang L. Quantifying the effects of short-term heat stress at booting stage on nonstructural carbohydrates remobilization in rice. Crop J, 2020, 8: 194–212. [27] Wu C, Cui K H, Li Q, Li L Y, Wang W C, Hu Q Q, Ding Y F, Li G H, Fahad S, Huang J L, et al. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study. Sci Rep, 2021, 11: 13604. [28] Yoshida S. Fundamentals of rice crop science. Los Baños, Laguna, Philippines: The International Rice Research Institute, 1981.
[29] 徐建龙, 王俊敏, 骆荣挺, 张铭铣, 蒋兴村, 李金国. 空间诱变水稻大粒型突变体的遗传育种研究. 遗传, 2002, 24: 431–433.
[30] 魏颖娟, 赵杨, 邹应斌. 不同穗型超级稻品种籽粒灌浆特性. 作物学报, 2016, 42: 1516–1529.
[31] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 等. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响. 作物学报, 2024, 50: 734–746. [32] Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: 1369. [33] Liu L, Cui K H, Qi X L, Wu Y, Huang J L, Peng S B. Varietal responses of root characteristics to low nitrogen application explain the differing nitrogen uptake and grain yield in two rice varieties. Front Plant Sci, 2023, 14: 1244281. [34] Xu C S, Yang F, Tang X N, Lu B, Li Z Y, Liu Z H, Ding Y F, Ding C, Li G H. Super rice with high sink activities has superior adaptability to low filling stage temperature. Front Plant Sci, 2021, 12: 729021. [35] Zheng C K, Zhou G H, Zhang Z Z, Li W, Peng Y B, Xie X Z. Moderate salinity stress reduces rice grain yield by influencing expression of grain number- and grain filling-associated genes. J Plant Growth Regul, 2021, 40: 1111–1120. [36] Chen Y H, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Wang Z G, Zhu D F, Zhang Y P. Brassinosteroids mediate endogenous phytohormone metabolism to alleviate high temperature injury at panicle initiation stage in rice. Rice Sci, 2023, 30: 70–86. [37] Ji D L, Xiao W H, Sun Z W, Liu L J, Gu J F, Zhang H, Harrison M T, Liu K, Wang Z Q, Wang W L, et al. Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Sci, 2023, 30: 598–612.
[38] 杨连新, 王余龙, 董桂春, 张亚洁, 单玉华, 杨洪建. 栽培和环境条件对水稻饱粒重的影响. 江苏农业科学, 2002, 30(6): 9–13. [39] Zhen F X, Wang W, Wang H Y, Zhou J J, Liu B, Zhu Y, Liu L L, Cao W X, Tang L. Effects of short-term heat stress at booting stage on rice-grain quality. Crop Pasture Sci, 2019, 70: 486.
[40] 曹云英, 段骅, 杨立年, 王志琴, 周少川, 杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. 作物学报, 2008, 34: 2134–2142. [41] Schmülling T, Werner T, Riefler M, Krupková E, Manns I B Y. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res, 2003, 116: 241–252. [42] Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007, 445: 652–655.
[43] 陈燕华, 王亚梁, 朱德峰, 石庆华, 陈惠哲, 向镜, 张义凯, 张玉屏. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究. 中国水稻科学, 2019, 33: 457–466.
[44] 吴超. 生殖生长期高温对水稻产量形成的影响及其激素调控机理研究. 华中农业大学博士学位论文, 湖北武汉, 2016. [45] Jiang N, Yu P H, Fu W M, Li G Y, Feng B H, Chen T T, Li H B, Tao L X, Fu G F. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant Cell Environ, 2020, 43: 1273–1287. [46] Chen Y H, Chen H Z, Xiang J, Zhang Y K, Wang Z G, Zhu D F, Wang J K, Zhang Y P, Wang Y L. Rice spikelet formation inhibition caused by decreased sugar utilization under high temperature is associated with brassinolide decomposition. Environ Exp Bot, 2021, 190: 104585. [47] Lin G Q, Yang Y, Chen X Y, Yu X R, Wu Y F, Xiong F. Effects of high temperature during two growth stages on caryopsis development and physicochemical properties of starch in rice. Int J Biol Macromol, 2020, 145: 301–310.
[48] 胡秋倩. 氮供应对水稻幼穗分化期高温下产量形成的影响及机理研究. 华中农业大学博士学位论文, 湖北武汉, 2021. [49] Wang Y L, Zhang Y K, Shi Q H, Chen H Z, Xiang J, Hu G H, Chen Y H, Wang X D, Wang J K, Yi Z H, et al. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction. Rice Sci, 2020, 27: 44–55.
[50] 张玉屏, 王军可, 王亚梁, 陈燕华, 朱德峰, 陈惠哲, 向镜, 张义凯, 刘小军, 朱艳, 等. 水稻淀粉合成对夜温变化的响应. 中国水稻科学, 2020, 34: 525–538.
[51] 赵步洪, 张洪熙, 朱庆森, 杨建昌. 两系杂交稻籽粒充实不良的成因及其与激素含量的关系. 中国农业科学, 2006, 39: 477–486.
[52] 刘晓龙, 叶世河, 廖俊婕, 骆依菲, 龙莎, 廖婧芃, 钟歆, 谢菲, 谢子怡, 曾鹏, 等. 灌浆初期高温胁迫对水稻籽粒活性氧积累及产量形成的影响. 西北农林科技大学学报(自然科学版), 2024, 52(5): 33–47. |
[1] | 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298. |
[2] | 翁文安, 邢志鹏, 胡群, 魏海燕, 廖萍, 朱海滨, 瞿济伟, 李秀丽, 刘桂云, 高辉, 张洪程. 无人化旱直播水稻产量形成特征及其能量与经济效益研究[J]. 作物学报, 2025, 51(5): 0-. |
[3] | 朱建平, 李文奇, 许扬, 王芳权, 李霞, 蒋彦婕, 范方军, 陶亚军, 陈智慧, 吴莹莹, 杨杰. 水稻粉质胚乳突变体we2的表型分析与基因定位[J]. 作物学报, 2025, 51(4): 1110-1117. |
[4] | 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913. |
[5] | 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796. |
[6] | 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686. |
[7] | 刘建国, 陈冬东, 陈玉玉, 易琴琴, 李清, 徐正进, 钱前, 沈兰. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51(3): 598-608. |
[8] | 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323. |
[9] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
[10] | 李春梅, 陈洁, 郎兴宣, 庄海民, 朱靖, 杜梓君, 冯浩天, 金涵, 朱国林, 刘凯. 水稻矮化多分蘖基因DT1的图位克隆与功能分析[J]. 作物学报, 2025, 51(2): 347-357. |
[11] | 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417. |
[12] | 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188. |
[13] | 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322. |
[14] | 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357. |
[15] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
|