欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2883-2895.doi: 10.3724/SP.J.1006.2024.34211

• 研究简报 • 上一篇    下一篇

外源水杨酸对镉胁迫下大豆生理特性和抗逆基因表达的影响

王子然1(), 鲁一薇2, 杨婧怡1, 王成龙1, 宋亚萍1, 马金虎3,*()   

  1. 1山西农业大学农学院, 山西太谷 030801
    2河北省农林科学院谷子研究所 / 国家谷子改良中心 / 河北省杂粮研究实验室, 河北石家庄 050035
    3山西农业大学创新创业学院, 山西太谷 030801
  • 收稿日期:2023-12-18 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-15
  • 通讯作者: *马金虎, E-mail: mjh109@126.com
  • 作者简介:E-mail: 904596525@qq.com
  • 基金资助:
    山西省重点研发计划项目(201803D221011-5)

Effects of exogenous SA on physiological characteristics and stress-resistant gene expression of soybean under Cd stress

WANG Zi-Ran1(), LU Yi-Wei2, YANG Jing-Yi1, WANG Cheng-Long1, SONG Ya-Ping1, MA Jin-Hu3,*()   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Institute of Millet, Hebei Academy of Agricultural and Forestry Sciences / National Millet Improvement Center / Hebei Coarse Cereals Research Laboratory, Shijiazhuang 050035, Hebei, China
    3College of Innovation and Entrepreneurship, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2023-12-18 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-15
  • Contact: *E-mail: mjh109@126.com
  • Supported by:
    Key Research and Development Program of Shanxi Province(201803D221011-5)

摘要:

研究镉(Cd)对大豆种子萌发和早期幼苗生长的胁迫伤害及外源水杨酸(SA)的缓解作用。以大豆品种“中黄13”为试验材料, 采用纸间发芽法和水培法。研究Cd和外源SA对大豆种子萌发、种胚和幼苗抗氧化系统、幼苗光合特性、营养元素吸收转运和抗逆基因表达的影响。2.5 μmol L-1 CdCl2胁迫诱发大豆种胚和幼苗氧化损伤, 抑制幼苗对营养元素的吸收和转运、降低幼苗光合作用, 进而抑制大豆种子萌发和早期幼苗的生长。添加50 μmol L-1 SA可减轻Cd对种胚和幼苗的氧化胁迫伤害, 降低Cd在幼苗中的积累, 促进幼苗对营养元素的吸收和转运、增强幼苗光合作用。Cd胁迫下, 添加SA幼苗生长7 d, 幼苗叶片H2O2、O2-和MDA含量分别比Cd胁迫处理降低46.31%、29.85%和37.89%。根系H2O2、O2-和MDA含量分别比Cd胁迫处理降低59.24%、46.30%和46.84%。幼苗叶中Cd含量比Cd胁迫处理降低63.50%, 幼苗叶中Ca、Cu、Fe、Mg、Zn等元素含量比Cd胁迫处理分别增加84.45%、71.42%、192.50%、145.13%和141.20%, 幼苗根中Ca、Cu、Fe、Mg、Zn等元素含量比Cd胁迫处理分别增加186.13%、453.51%、198.05%、131.39%和112.50%, 幼苗净光合速率(Pn)、PSII最大光合效率(Fv/Fm)比Cd胁迫处理提高137.60%和24.99%。外源SA通过诱导上调大豆幼苗抗氧化系统基因表达, 下调参与Cd转运蛋白基因DMTIRTMT1表达量, 诱导抗氧化酶活性提高、降低幼苗对Cd的吸收, 促进幼苗对营养元素的吸收和转运、增强幼苗光合作用, 缓解Cd对大豆种子萌发和早期幼苗生长的胁迫伤害。

关键词: 大豆, 水杨酸, 镉胁迫, 种子萌发, 幼苗生长, 基因表达

Abstract:

This study investigated the impact of cadmium (Cd) stress on soybean seed germination and early seedling growth, and examined the potential alleviating effect of exogenous salicylic acid (SA). The experiment utilized the soybean variety ‘Zhonghuang 13’ and employed both paper germination and hydroponic methods. Various aspects including the antioxidant system, photosynthetic characteristics, nutrient absorption and transport, and stress resistance gene expression were analyzed under the influence of Cd and exogenous SA. Results showed that 2.5 μmol L-1 CdCl2 stress led to oxidative damage in soybean embryos and seedlings, hindering nutrient absorption and transport as well as reducing photosynthesis, consequently inhibiting seed germination and early seedling growth. However, the addition of 50 μmol L-1 SA mitigated the oxidative stress caused by Cd, resulting in reduced Cd accumulation, enhanced nutrient absorption, and improved photosynthesis. Specifically, under Cd stress, the application of SA decreased the levels of H2O2, O2-, and MDA in both leaves and roots, while also reducing Cd content in the leaves and increasing the contents of essential elements such as Ca, Cu, Fe, Mg, and Zn. Moreover, the net photosynthetic rate (Pn) and maximum photosynthetic efficiency of PSII (Fv/Fm) were significantly improved with SA treatment compared to Cd stress alone. Exogenous SA up-regulated the expression of antioxidant system genes in soybean seedlings while down-regulating the expression of Cd transporter genes DMT, IRT, and MT1. This led to an increase in antioxidant enzyme activity, a reduction in Cd absorption by seedlings, promotion of nutrient absorption and transport, enhancement of photosynthesis, and alleviation of stress damage caused by Cd during soybean seed germination and early seedling growth.

Key words: soybean, salicylic acid, cadmium stress, seed germination, seedling growth, gene expression

表1

qRT-PCR所用引物"

基因Gene name 正向引物Forward primer (5°-3°) 反向引物Reverse primer (5°-3°)
GmActin CAATCCCAAGGCCAACAGA ATGGCAGGCACATTGAAAGTC
GmSodb2 GCAACACAATTTGGTTCAGG AAGGAGGATTTGCTGCATTT
GmCAT1 AAGTGTGCCCATCACAACAATC AGAACGATCAGCCTGAGACC
GmPOD TGCTTTGTTCAAGGTTGTGA CTCAGGTCCAAATTGGTGAG
GmIRT TCTCCGTCACAACCCCAT CACCAGCACCCAAAAACA
GmDMT GAAGATAGTGGTGGTCGG TCTAAGTTTCCAGGGTCC
GmMT1 CGCTGAGAAGACAACCACAGAGAC CCACAGTTGCAGCCACCGTTC

图1

不同浓度Cd对大豆种子萌发的影响 0: 去离子水; 1: 1 μmol L-1 CdCl2; 2.5: 2.5 μmol L-1 CdCl2; 5: 5 μmol L-1 CdCl2; 10: 10 μmol L-1 CdCl2。"

表2

不同浓度Cd对大豆种子萌发的影响"

Cd浓度
Cd concentration
(μmol L-1)
发芽率
Germination rate
(%)
发芽势
Sprouting potential
(%)
发芽指数
Germination index
根长
Root length
(cm)
活力指数
Vitality index
0 80.00±0.03 a 42.22±0.02 a 6.88±0.30 a 6.43±0.02 a 44.31±1.98 a
1.0 75.56±0.05 a 37.78±0.02 a 6.22±0.24 a 6.13±0.03 b 38.19±1.48 b
2.5 53.33±0.03 b 22.22±0.02 b 4.05±0.38 b 4.19±0.05 c 17.01±1.63 c
5.0 40.00±0.03 b 15.56±0.02 b 2.88±0.52 c 2.31±0.06 d 6.69±1.22 d
10.0 12.33±0.03 c 6.67±0.03 c 0.83±0.16 d 1.11±0.03 e 0.93±0.18 e

图2

不同浓度SA对Cd胁迫下大豆种子萌发的影响 CK: 去离子水; 0: 2.5 μmol L-1 CdCl2; 10: 2.5 μmol L-1 CdCl2+ 10 μmol L-1 SA; 50: 50 μmol L-1 SA; 100: 2.5 μmol L-1 CdCl2+ 100 μmol L-1 SA。"

表3

不同浓度SA对Cd胁迫下大豆种子萌发的影响"

处理
Treatment (μmol L-1)
发芽率
Germination rate (%)
发芽势
Sprouting potential (%)
发芽指数
Germination index
根长
Root length (cm)
活力指数
Vitality index
CK 80.00±0.04 a 42.22±0.02 a 6.88±0.31 a 6.48±0.03 a 44.69±2.00 a
2.5 CdCl2 53.33±0.04 b 22.22±0.02 c 4.05±0.39 b 4.13±0.08 b 16.75±1.60 b
2.5 CdCl2+10 SA 48.89±0.02 b 17.18±0.02 c 3.72±0.11 b 4.22±0.06 b 15.71±0.46 b
2.5 CdCl2+50 SA 82.22±0.02 a 42.44±0.04 a 6.88±0.15 a 6.28±0.04 a 43.26±0.92 a
2.5 CdCl2+100 SA 55.56±0.06 b 26.67±0.04 b 4.11±0.40 b 3.85±0.11 c 15.83±1.54 b

图3

外源SA对Cd胁迫下大豆种胚H2O2 (A)、O2- (B)和MDA (C)含量的影响 CK: 对照; Cd: 2.5 μmol L-1 CdCl2; Cd+SA: 2.5 μmol L-1 CdCl2+50 μmol L-1 SA; SA: 50 μmol L-1 SA。同组数值不同字母表示差异性达5%概率水平差异显著。"

图4

外源SA对Cd胁迫下大豆种胚抗氧化酶SOD (A)、CAT (B)、POD (C)含量的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图5

外源SA对Cd胁迫下大豆幼苗表型(A)及干重(B)的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图6

外源SA对Cd胁迫下大豆幼苗叶面积(A)及主根长(B)的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图7

外源SA对Cd胁迫下大豆幼苗H2O2 (A)、O2- (B)和MDA (C)含量的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图8

外源SA对Cd胁迫下大豆幼苗抗氧化酶SOD (A)、CAT (B)、POD (C)的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图9

外源SA对Cd胁迫下大豆幼苗抗氧化酶基因表达SOD (A)、CAT (B)、POD (C)的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图10

外源SA对Cd胁迫下大豆根系微量元素含量的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图11

外源SA对Cd胁迫下大豆叶片微量元素含量的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图12

外源SA对Cd胁迫下大豆叶片转运蛋白基因表达的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图13

外源SA对Cd胁迫下大豆幼苗光合特性的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

图14

不同处理大豆叶片叶绿素荧光图 处理同图3。"

图15

外源SA对Cd胁迫下大豆幼苗叶绿素荧光参数的影响 处理同图3。同组数值不同字母表示在5%概率水平差异显著。"

[1] 李有宝, 王曼曼, 吕博, 于寒松. 乡村振兴背景下主产区大豆生产效率比较分析. 大豆科学, 2024, 43: 120-128.
Li Y B, Wang M M, Lyu B, Yu H S. Comparative analysis of soybean production efficiency in the main production areas in the context of rural revitalization. Soybean Sci, 2024, 43: 120-128 (in Chinese with English abstract).
[2] 陈世宝, 王萌, 李杉杉, 郑涵, 雷小琴, 孙晓艺, 王立夫. 中国农田土壤重金属污染防治现状与问题思考. 地学前缘, 2019, 26(6): 35-41.
doi: 10.13745/j.esf.sf.2019.8.6
Chen S B, Wang M, Li S S, Zheng H, Lei X Q, Sun X Y, Wang L F. Current situation and problems of prevention and control of heavy metal pollution in farmland soil in China. Geol Frontier, 2019, 26(6): 35-41 (in Chinese).
[3] Gu C S, Yang Y H, Shao Y F, Wu K W, Liu Z L. The effects of exogenous salicylic acid on alleviating cadmium toxicity in Nymphaea tetragona Georgi. S Afr N J Bot, 2018, 114: 267-271.
[4] 刘佳丽. 重金属镉对大豆种子萌发与幼苗生长的影响. 农业技术与装备, 2023, (12): 13-15.
Liu J L. Effects of cadmium on seed germination and seedling growth of soybean. Agric Technol Equip, 2023, (12): 13-15 (in Chinese with English abstract).
[5] 刘晓庆, 陈华涛, 张红梅, 张智民, 陈新. 不同品种大豆幼苗对镉胁迫的响应. 江西农业学报, 2017, 29(3): 14-17.
Liu X Q, Chen H T, Zhang H M, Zhang Z M, Chen X. Response of different varieties of soybean seedlings to cadmium stress. Jiangxi Agric J, 2017, 29(3): 14-17 (in Chinese with English abstract).
[6] Shute T, Macfie S M. Cadmium and zinc accumulation in soybean: a threat to food safety. Sci Total Environ, 2006, 371: 63-73.
[7] Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environ Exp Bot, 2020, 175: 104040.
[8] 李彩霞, 李鹏, 苏永发, 郑普勤, 张芬琴, 张勇. 水杨酸对镉胁迫下玉米幼苗质膜透性和保护酶活性的影响. 植物生理学通讯, 2006, 42(5): 84-86.
Li C X, Li P, Su Y F, Zheng P Q, Zhang F Q, Zhang Y. Effects of salicylic acid on membrane permeability and protective enzyme activities of maize seedlings under cadmium stress. Plant Physiol Commun, 2006, 42(5): 84-86 (in Chinese with English abstract).
[9] Noriega G, Caggiano E, Lecube M L, Cruz D S, Batlle A, Tomaro M, Balestrasse K B. The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals, 2012, 25: 1155-1165.
doi: 10.1007/s10534-012-9577-z pmid: 22886388
[10] Bai X, Dong Y, Kong J, Xu L, Liu S. Effects of application of salicylic acid alleviates cadmium toxicity in perennial ryegrass. Plant Growth Regul, 2015, 75: 695-706.
[11] Shakirova F M, Allagulova C R, Maslennikova D R, Klyuchnikova E O, Avalbaev A M, Bezrukova M V. Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot, 2016, 122: 19-28.
[12] Drazic G, Mihailovic N. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci, 2005, 168: 511-517.
[13] Gong H, Zhu X, Chen K, Wang S, Zhang C. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci, 2005, 169: 313-321.
[14] Yang Y, Liu Q, Wang G X, Wang X D, Guo J Y. Germination, osmotic adjustment, and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress. New For, 2010, 39: 231-243.
[15] Elstner E F, Heupel A. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta, 1976, 130: 175-180.
doi: 10.1007/BF00384416 pmid: 24424595
[16] Patterson B D, Macrae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem, 1984, 139: 487-492.
doi: 10.1016/0003-2697(84)90039-3 pmid: 6476384
[17] Gu R, Zhou Y, Song X, Xu S, Zhang X, Lin H, Xu S, Zhu S. Effects of temperature and salinity on Ruppia sinensis seed germination, seedling establishment, and seedling growth. Mar Pollut Bull, 2018, 134: 177-185.
[18] 吴鹏, 周青. 大豆种子萌发对镉胁迫响应的观察. 大豆科学, 2009, 28: 853-855.
Wu P, Zhou Q. Response of soybean seed germination to cadmium stress. Soybean Sci, 2009, 28: 853-855 (in Chinese with English abstract).
[19] 任艳芳, 何俊瑜, 黄天兴, 罗辛灵. 外源水杨酸对镉毒害下莴苣种子萌发的缓解效应. 华北农学报, 2009, 24 (增刊2): 121-125.
Ren Y F, He J Y, Huang T X, Luo X L. Mitigation effect of exogenous salicylic acid on lettuce seed germination under cadmium toxicity. Acta Agric Boreali-Sin, 2009, 24(S2) : 121-125 (in Chinese with English abstract).
[20] Xu N, Sui X, Chen Z, Niu J P, Guo Z P, Wang Q Z. Seed soaking with salicylic acid improves alfalfa (Medicago sativa L.) germination by involving the antioxidation system. Acta Physiol Plant, 2023, 45: 128.
[21] Kovacik J, Gruz J, Backor M, Strnad M, Repcak M. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep, 2009, 28: 135-143.
[22] Pasternak T, Groot E P, Kazantsev F V, Teale W, Omelyanchuk N, Kovrizhnykh V, Palme K, Mironova V V. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol, 2019, 180: 1725-1739.
doi: 10.1104/pp.19.00130 pmid: 31036755
[23] 王鹏, 杨奥军, 冯志进, 王婷, 金梓浩, 王芳, 彭云玲. 外源5-ALA对干旱胁迫下玉米幼苗生长的缓解效应及抗氧化酶基因表达的影响. 干旱地区农业研究, 2022, 40(4): 1-9.
Wang P, Yang A J, Feng Z J, Wang T, Jin Z H, Wang F, Peng Y L. Effects of exogenous 5-ALA on growth of maize seedlings and expression of antioxidant enzyme genes under drought stress. Agric Res Arid Area, 2022, 40(4): 1-9 (in Chinese with English abstract)
[24] Pawlak S, Firych A, Rymer K, Deckert J. Cu, Zn-superoxide dismutase is differently regulated by cadmium and lead in roots of soybean seedlings. Acta Physiol Plant, 2009, 31: 741-747.
[25] 胡龙兴. 草坪草抗旱生理及相关基因的分析. 上海交通大学博士学位论文, 上海, 2010.
Hu L X. Analysis of Drought Resistance Physiology and Related Genes in Turfgrass. PhD Dissertation of Shanghai Jiaotong University, Shanghai, China, 2010 (in Chinese with English abstract).
[26] Wang S, Dai H, Skuza L, Chen Y, Wei S. Difference in Cd2+ flux around the root tips of different soybean (Glycine max L.) cultivars and physiological response under mild cadmium stress. Chemosphere, 2022, 297: 134120.
[27] Faraz A, Faizan M, Sami F, Siddiqui H, Hayat S. Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J Plant Growth Regul 2020, 39: 641-655.
[28] Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol Environ Saf, 2019, 172: 317-325.
[29] Bashir W, Anwar S, Zhao Q, Hussain I, Xie F. Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicol Environ Saf, 2019, 175: 90-101.
[30] 陈镔, 谭淑端, 董方旭, 杨雨婷. 重金属对植物的毒害及植物对其毒害的解毒机制. 江苏农业科学, 2019, 47(4): 34-38.
Chen B, Tan S D, Dong F X, Yang Y T. Toxicity of heavy metals to plants and the detoxification mechanism of plants to their toxicity. Jiangsu Agric Sci, 2019, 47(4): 34-38 (in Chinese).
[31] 杨菲, 唐明凤, 朱玉兴. 水稻对镉的吸收和转运的分子机理. 杂交水稻, 2015, 30(3): 2-8.
Yang F, Tang M F, Zhu Y X. Molecular mechanism of cadmium uptake and transport in rice. Hybrid Rice, 2015, 30(3): 2-8 (in Chinese).
[32] Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa N K. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav, 2011, 6: 1813-1816.
doi: 10.4161/psb.6.11.17587 pmid: 22067109
[33] Kaiser B N, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day D A. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J, 2003, 35: 295-304.
doi: 10.1046/j.1365-313x.2003.01802.x pmid: 12887581
[34] Barberon M, Dubeaux G, Kolb C, Isono E, Zelazny E, Vert G. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci USA, 2014, 111: 8293-8298.
doi: 10.1073/pnas.1402262111 pmid: 24843126
[35] Connolly E L, Fett J P, Guerinot M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 2002, 14: 1347-1357.
doi: 10.1105/tpc.001263 pmid: 12084831
[36] Pagani M A, Tomas M, Carrillo J, Bofill R, Capdevila M, Atrian S, Andreo C S. The response of the different soybean metallothionein isoforms to cadmium intoxication. J Inorg Biochem, 2012, 117: 306-315.
doi: 10.1016/j.jinorgbio.2012.08.020 pmid: 23073037
[37] 宋雅娟, 陈斌, 冷艳, 李师翁. 外源eBL对镉胁迫下绿豆幼苗叶片矿质元素吸收及镉积累的影响. 兰州交通大学学报, 2022, 41(2): 137-142.
Song Y J, Chen B, Leng Y, Li S W. Effects of exogenous eBL on mineral element absorption and cadmium accumulation in mungbean seedlings under cadmium stress. J Lanzhou Jiaotong Univ, 2022, 41(2): 137-142 (in Chinese with English abstract).
[38] Zeng P, Guo Z, Xiao X, Peng C, Liu L, Yan D, He Y. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil. Ecotoxicol Environ Saf, 2020, 189: 109973.
[39] 王小红, 郭军康, 贾红磊, 李艳萍, 吕欣, 任倩. 外源水杨酸缓解镉对番茄毒害作用的研究. 农业环境科学学报, 2019, 38: 2705-2714.
Wang X H, Guo J K, Jia H L, Li Y P, Lyu X, Ren Q. Study on the effect of exogenous salicylic acid on alleviating cadmium toxicity to tomato. J Agric Environ Sci, 2019, 38: 2705-2714 (in Chinese with English abstract).
[40] Zhang Z W, Deng Z L, Tao Q, Peng H Q, Wu F, Fu Y F, Yang X Y, Xu P Z, Li Y, Wang C Q, Chen Y E, Yuan M, Lan T, Tang X Y, Chen G D, Zeng J, Yuan S. Salicylate and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea. Chemosphere 2022, 292: 133466.
[41] Haider F U, Cao L Q, Coulter J A, Cheema S A, Jun W, Zhang R, Ma W J, Farooq M. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf, 2021, 211: 111887.
[42] 田露丹, 樊文华, 刘奋武, 于敏敏, 王改玲, 孟庆慧. 施硅对镉胁迫下生育前期水稻生长及其植株体内抗氧化酶活性的影响. 土壤通报, 2023, 54: 1176-1185.
Tian L D, Fan W H, Liu F W, Yu M M, Wang G L, Meng Q H. Effects of silicon application on growth and antioxidant enzyme activities of rice at early growth stage under cadmium stress. Chin J Soil Bull, 2023, 54: 1176-1185 (in Chinese).
[43] 王瑞波. 水杨酸对镉胁迫小麦叶绿素荧光参数的影响. 生物技术通报, 2017, 33(7): 96-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2016-1188
Wang R B. Effect of salicylic acid on chlorophyll fluorescence parameters of wheat under cadmium stress. Bioltechnol Bull, 2017, 33(7): 96-99 (in Chinese with English abstract).
[44] Alyemeni M N, Ahanger M A, Wijaya L, Alam P, Bhardwaj R, Ahmad P. Correction to: Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma, 2018, 255: 985-986.
[45] Zhang Y, Xu S, Yang S, Chen Y. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma, 2015, 252: 911-924.
[1] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[2] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[3] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[4] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[5] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[6] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[7] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[8] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[9] 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad YOUSOF, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103.
[10] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
[11] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[12] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[13] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[14] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[15] 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!