欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2896-2907.doi: 10.3724/SP.J.1006.2024.43006

• 研究简报 • 上一篇    下一篇

玉米、花生根际土AMF群落特点及其对磷肥的响应

赵维(), 胡晓娜, 郑艳, 梁娜, 郑宾, 王笑笑, 汪江涛, 刘领, 付国占, 石兆勇, 焦念元()   

  1. 河南科技大学农学院 / 河南省旱地农业工程技术研究中心, 河南洛阳 471023
  • 收稿日期:2024-01-21 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-11
  • 通讯作者: *焦念元, E-mail: jiaony1@163.com
  • 作者简介:E-mail: 1056497038@qq.com
  • 基金资助:
    国家自然科学基金项目(32272231)

Characteristics of AMF community in maize and peanut rhizosphere soil and its response to phosphate application

ZHAO Wei(), HU Xiao-Na, ZHENG Yan, LIANG Na, ZHENG Bin, WANG Xiao-Xiao, WANG Jiang-Tao, LIU Ling, FU Guo-Zhan, SHI Zhao-Yong, JIAO Nian-Yuan()   

  1. College of Agriculture, Henan University of Science and Technology / Henan Dryland Agricultural Engineering Technology Research Center, Luoyang 471023, Henan, China
  • Received:2024-01-21 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-11
  • Contact: *E-mail: jiaony1@163.com
  • Supported by:
    National Natural Science Foundation of China(32272231)

摘要:

为了探明玉米、花生根际土丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)多样性和群落结构特点及其对磷肥的响应, 本试验基于高通量测序技术研究了不施磷与施磷时玉米和花生根际土AMF群落的多样性、组成和结构, 并结合其土壤理化因子进行相关性分析。结果表明:玉米根际土AMF群落α多样性高于花生, 施磷较不施磷降低玉米、花生根际土AMF群落α多样性; 玉米、花生AMF群落优势科(属)均集中在球囊霉科(球囊霉属), 但其优势种的组成及优势群落的相对丰度存在显著差异。玉米根际土AMF群落的近明球囊霉科、近球囊霉属、GlBb12Torrecillas12b_Glo_G5Lamellosum的相对丰度显著高于花生, 分别高17.38%、16.97%、5.90%、3.29%和7.79%; 施磷较不施磷显著降低玉米根际土近明球囊霉科、近明球囊霉属和花生根际土球囊霉科的相对丰度, 分别降低16.89%、16.88%和11.00%, 显著增加玉米根际土ViscosumYamato09_A1的相对丰度。通过冗余分析(RDA)可知, 土壤速效磷(AP)、有效铁(AFe)、有机质(OM)和全磷(TP)的含量及pH值是影响玉米、花生根际土AMF群落α多样性及其基于科、属水平AMF群落结构的主要因子。综上, 玉米、花生招募AMF群落具有偏好性, 对磷肥响应存在差别, 关键在于玉米、花生与磷肥影响了根际土中AP、AFe、OM和TP的含量及pH值。本研究为玉米、花生AMF群落结构的改善和磷肥调控高产提供理论基础。

关键词: 玉米, 花生, 根际土, 磷肥, 高通量测序, AMF群落

Abstract:

To elucidate the diversity and community structure of arbuscular mycorrhizal fungi (AMF) in the rhizosphere soil of maize and peanut, and their response to phosphate application, we utilized high-throughput sequencing technology to study the diversity, composition, and structure of AMF communities under both phosphorus application and phosphorus-deficient conditions. We also conducted correlation analysis of soil physicochemical factors and AMF community traits. The results showed that the α diversity of the AMF community in maize rhizosphere soil was higher than that in peanut rhizosphere soil. Phosphorus application reduced the α diversity of AMF communities in both maize and peanut rhizosphere soils compared to the phosphorus-deficient condition. The dominant family (genus) of AMF communities in the rhizosphere soil of both maize and peanut was Glomeraceae (Glomus), although there were significant differences in the composition of dominant species and the relative abundance of dominant communities. Specifically, the relative abundances of Claroideoglomeraceae, Claroideoglomus, GlBb12, Torrecillas12b_Glo_G5, and Lamellosum in maize rhizosphere soil were significantly higher than in peanut by 17.38%, 16.97%, 5.90%, 3.29%, and 7.79%, respectively. Compared to the phosphorus-deficient condition, phosphorus application significantly decreased the relative abundance of Claroideoglomeraceae and Claroideoglomus in maize rhizosphere soil and Glomeraceae in peanut rhizosphere soil by 16.89%, 16.88%, and 11.00%, respectively. It also significantly increased the relative abundance of Viscosum and Yamato09_A1 in maize rhizosphere soil. Redundancy analysis (RDA) indicated that available phosphorus (AP), available iron (AFe), organic matter (OM), total phosphorus (TP), and pH values were the main factors affecting the α diversity and community structure of AMF at the family and genus levels in both maize and peanut rhizosphere soils. In conclusion, maize and peanut exhibit distinct preferences for recruited AMF communities and respond differently to phosphate application. The primary factors influencing this response include the contents of AP, AFe, OM, TP, and pH value in the rhizosphere soil. This study provides a theoretical basis for improving the AMF community structure in maize and peanut, thereby enhancing high yield through phosphorus fertilizer application.

Key words: maize, peanut, rhizosphere soil, phosphorus fertilization, high-throughput sequencing, AMF community

图1

磷肥对玉米、花生侵染率(A)和孢子密度(B)的影响 P0: P2O5 0 kg hm-2; P180: P2O5 180 kg hm-2。柱上不同小写字母表示处理间在0.05概率水平差异显著。"

图2

磷肥对玉米、花生根际土AMF群落OTUs的影响 P0M: 不施磷玉米根际土; P0P: 不施磷花生根际土; P180M: 施磷玉米根际土; P180P: 施磷花生根际土。"

表1

磷肥对玉米、花生根际土AMF群落结构多样性和丰富度的影响"

磷水平
P level
作物
Crops
辛普森指数
Simpson index
香农指数
Shannon index
ACE指数
ACE index
Chao1指数
Chao1 index
P0 M 0.044 b 5.70 a 853.4 a 710.1 a
P 0.046 b 5.60 a 881.1 a 722.8 a
P180 M 0.081 a 5.08 b 837.5 a 695.8 a
P 0.084 a 5.04 b 805.5 a 683.9 a
作物Crops 0.957 0.656 0.952 0.990
磷水平P level 0.006** 0.002** 0.227 0.390
作物×磷水平Crops × P level 0.841 0.850 0.418 0.686

图3

磷肥对玉米、花生根际土AMF科水平群落结构的影响 A: 磷肥对玉米、花生根际土AMF科水平的群落组成堆积图; B: 磷肥对玉米、花生根际土AMF科水平群落物种丰度聚类图。处理同图2。"

图4

磷肥对玉米、花生根际土AMF优势科群落组成的影响 处理同图2。图上不同小写字母表示处理间在0.05概率水平差异显著。"

表2

磷肥对玉米、花生根际土AMF优势群落的双因素方差分析"

AMF优势群落
AMF dominant community
作物Crops 磷水平P level 作物 × 磷水平Crops × P level
F-value P-value F-value P-value F-value P-value
Glomeraceae 2.616 0.144 16.904 0.003** 0.222 0.650
Claroideoglomeraceae 56.164 <0.001** 54.953 <0.001** 57.537 <0.001**
Paraglomeraceae 0.055 0.821 0.083 0.780 0.232 0.643
Glomus 1.971 0.198 13.346 0.006** 0.088 0.774
Claroideoglomus 56.252 <0.001** 55.042 <0.001** 57.631 <0.001**
Paraglomus 0.083 0.781 0.086 0.777 0.237 0.639
Lamellosum 66.653 <0.001** 60.263 <0.001** 70.328 <0.001**
GlBb12 12.856 0.007** 12.916 0.007** 12.760 0.007**
Torrecillas12b_Glo_G5 11.335 0.010* 11.266 0.010* 11.375 0.010*
Viscosum 16.871 0.003** 3.804 0.087 3.966 0.082
NF13 0.014 0.907 40.726 <0.001** 0.065 0.805
Glo7 0.025 0.878 11.326 0.010* 0.026 0.876
Yamato09_A1 3.713 0.090 4.826 0.059 2.464 0.155

图5

磷肥对玉米、花生根际土AMF属水平群落结构的影响 A: 磷肥对玉米、花生根际土AMF属水平的群落组成堆积图; B: 磷肥对玉米、花生根际土AMF属水平群落物种丰度聚类图。处理同图2。"

图6

磷肥对玉米、花生根际土AMF优势属群落组成的影响 处理同图2。图上不同小写字母表示处理间在0.05概率水平差异显著。"

图7

磷肥对玉米、花生根际土AMF种水平群落结构的影响 A: 磷肥对玉米、花生根际土AMF种水平的群落组成堆积图; B: 磷肥对玉米、花生根际土AMF种水平群落物种丰度聚类图。处理同图2。"

表3

磷肥对玉米、花生根际土AMF优势种群落组成的影响"

磷水平
P level
作物
Crops
AMF优势种相对丰度Relative abundance of AMF dominant species (%)
Lamellosum Viscosum NF13 Glo7 Yamato09_A1 GlBb12 Torrecillas12b_Glo_G5
P0 M 0.0781 a 0.0083 b 0.0153 a 0.0138 a 0.0028 b 0.0586 a 0.0331 a
P 0.0005 b 0.0026 b 0.0144 a 0.0152 a 0.0012 b 0.0002 b 0.0001 b
P180 M 0.0024 b 0.0187 a 0.0007 b 0.0002 a 0.0197 a 0.0002 b 0.0002 b
P 0.0034 b 0.0025 b 0.0010 b 0.0002 a 0.0040 b 0.0001 b 0.0002 b

图8

磷肥对玉米、花生根际土AMF群落β多样性的影响 处理同图2。"

表4

磷肥对玉米、花生根际土AMF群落组成的Adonis检验"

分析对象
Analysis object
F-value r2 P-value
P0M vs P0P 8.06 0.668 0.1
P0M vs P180M 8.53 0.681 0.1
P0P vs P180P 10.90 0.732 0.1

表5

磷肥对玉米、花生根际土理化性质的影响"

磷水平
P level
作物
Crops
全磷
Total P
(mg g-1)
速效磷Available P
(mg kg-1)
全氮
Total N
(mg kg-1)
碱解氮
Available N
(mg kg-1)
全铁
Total Fe
(mg g-1)
有效铁
Available Fe
(mg kg-1)
有机质
Organic matter
(g kg-1)
pH
P0 M 0.75 b 11.09 c 1.43 b 79.80 b 21.63 a 7.62 bc 27.30 b 6.91 b
P 0.76 b 11.08 c 1.62 a 101.50 a 21.52 a 6.85 c 33.54 a 6.86 b
P180 M 1.06 a 32.48 a 1.62 a 94.30 ab 21.77 a 9.35 a 33.45 a 7.27 a
P 1.09 a 24.47 b 1.63 a 106.91 a 21.86 a 7.85 b 33.34 a 7.36 a
作物Crops (C) 0.434 0.003** 0.031* 0.001** 0.971 0.005** 0.003** 0.631
磷水平P level (P) <0.001** <0.001** 0.032* 0.019* 0.569 0.002** 0.004** <0.001**
C× P 0.711 0.003** 0.046* 0.218 0.816 0.242 0.003** 0.190

图9

玉米、花生AMF多样性和丰富度与土壤理化性状间的RDA分析 TN: 全氮; AN: 碱解氮; TP: 全磷; AP: 速效磷; TFe: 全铁; AFe: 速效铁; OM: 有机质; pH: 酸碱性。"

图10

基于科水平(A)和属水平(B)的AMF群落结构和土壤理化性状间的RDA分析 Glo: 球囊霉科/属; Cla: 近明球囊霉科/属; Par: 类球囊霉科/属; Div: 多样孢囊霉科/属; Arc: 原囊霉科/属; Aca: 无梗囊霉科/属; Gig: 巨孢囊霉科。Scu: 盾巨孢囊霉属; TN: 全氮; AN: 碱解氮; TP: 全磷; AP: 速效磷; TFe: 全铁; AFe: 速效铁; OM: 有机质; pH: 酸碱性。"

[1] 冯固, 张福锁, 李晓林, 张俊伶, 盖京苹. 丛枝菌根真菌在农业生产中的作用与调控. 土壤学报, 2010, 47: 995-1004.
Feng G, Zhang F S, Li X L, Zhang J L, Gai J P. Functions of arbuscular mycorrhizal fungi in agriculture and their manipulation. Acta Pedol Sin, 2010, 47: 995-1004 (in Chinese with English abstract).
[2] 伏云珍, 马琨, 崔慧珍, 李光文. 间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响. 生态学杂志, 2021, 40: 131-139.
Fu Y Z, Ma K, Cui H Z, Li G W. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system. Chin J Ecol, 2021, 40: 131-139 (in Chinese with English abstract).
doi: : 10.13292/j.1000-4890.202101.030
[3] Hazard C, Gosling P, van der Gast C J, Mitchell D T, Doohan F M, Bending G D. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J, 2013, 7: 498-508.
doi: 10.1038/ismej.2012.127 pmid: 23096401
[4] Bainard L D, Bainard J D, Hamel C, Gan Y. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol, 2014, 88: 333-344.
doi: 10.1111/1574-6941.12300 pmid: 24527842
[5] Song Y Y, Zeng R S, Xu J F, Li J, Shen X, Yihdego W G. Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One, 2010, 5: e13324.
[6] 田蜜, 陈应龙, 李敏, 刘润进. 丛枝菌根结构与功能研究进展. 应用生态学报, 2013, 24: 2369-2376.
pmid: 24380361
Tian M, Chen Y L, Li M, Liu R J. Structure and function of arbuscular mycorrhiza: a review. Chin J Appl Ecol, 2013, 24: 2369-2376 (in Chinese with English abstract).
pmid: 24380361
[7] 谢开云, 王玉祥, 万江春, 张树振, 隋晓青, 赵云, 张博. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29: 157-170.
doi: 10.11686/cyxb2018184
Xie K Y, Wang Y X, Wan J C, Zhang S Z, Sui X Q, Zhao Y, Zhang B. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: a review. Acta Pratac Sin, 2020, 29: 157-170 (in Chinese with English abstract).
[8] Rożek K, Rola K, Błaszkowski J, Leski T, Zubek S. How do monocultures of fourteen forest tree species affect arbuscular mycorrhizal fungi abundance and species richness and composition in soil. For Ecol Manag, 2020, 465: 118091.
[9] Szymon Z, Kaja R, Katarzyna R, Janusz B, Matgorzata S, Dominika C, Karolina C, Joanna Z G, Anna M S. Experimental assessment of forest floor geophyte and hemicryptophyte impact on arbuscular mycorrhizal fungi communities. Plant Soil, 2022, 480: 651-673.
[10] 宋亚娜, Petra M, 张福锁, 包兴国, 李隆. 小麦/蚕豆, 玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响. 生态学报, 2006, 26: 2268-2274.
Song Y N, Petra M, Zhang F S, Bao X G, Li L. Effect of intercropping on bacterial community composition in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.). Acta Ecol Sin, 2006, 26: 2268-2274 (in Chinese with English abstract).
[11] Zubek S, Rożek K, Stefanowicz A M, Błaszkowski J, Stanek M, Gielas I, Rola K. The impact of beech and riparian forest herbaceous plant species with contrasting traits on arbuscular mycorrhizal fungi abundance and diversity. For Ecol Manag, 2021, 492: 119245.
[12] Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. Beneficial services of arbuscular mycorrhizal fungi-from ecology to application. Front Plant Sci, 2018, 9: 1270.
doi: 10.3389/fpls.2018.01270 pmid: 30233616
[13] Chen Y L, Zhang X, Ye J S, Han H Y, Wan S Q, Chen B D. Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem, 2014, 69: 371-381.
[14] 王庆峰, 姜昕, 马鸣超, 关大伟, 赵百锁, 魏丹, 曹凤明, 李力, 李俊. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响. 中国农业科学, 2018, 51: 3315-3324.
doi: 10.3864/j.issn.0578-1752.2018.17.007
Wang Q F, Jiang X, Ma M C, Guan D W, Zhao B S, Wei D, Cao F M, Li L, Li J. Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in mollisols of Northeast China. Sci Agric Sin, 2018, 51: 3315-3324 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.17.007
[15] 张旭红, 朱永官, 王幼珊, 林爱军, 陈保冬, 张美庆. 不同施肥处理对丛枝菌根真菌生态分布的影响. 生态学报, 2006, 26: 3081-3087.
Zhang X H, Zhu Y G, Wang Y S, Lin A J, Chen B D, Zhang M Q. Effect of long-term fertilization on the diversity and distribution of arbuscular mycorrhiza fungi in northeast China. Acta Ecol Sin, 2006, 26: 3081-3087 (in Chinese with English abstract).
[16] 薛壮壮, 冯童禹, 王超, 沈仁芳. 磷肥对酸性红壤上玉米不同部位丛枝菌根真菌群落的影响. 土壤, 2023, 55: 1008-1015.
Xue Z Z, Feng T Y, Wang C, Shen R F. Effects of phosphorus fertilizer on arbuscular mycorrhizal fungi community in different parts of maize in acidic red soil. Soils, 2023, 55: 1008-1015 (in Chinese with English abstract).
[17] Mythili M, Ramalakshmi A. Unraveling the distribution of AMF communities and their metabolites associated with soils of minor millets. Rhizosphere, 2022, 21: 100473.
[18] 赵德强, 元晋川, 侯玉婷, 李彤, 廖允成. 玉米||大豆间作对AMF时空变化的影响. 中国生态农业学报, 2020, 28: 631-642.
Zhao D Q, Yuan J C, Hou Y T, Li T, Liao Y C. Tempo-spatial dynamics of AMF under maize soybean intercropping. Chin J Eco-Agric, 2020, 28: 631-642 (in Chinese with English abstract).
[19] Ianson D C, Allen M F. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia, 1986, 78: 164.
[20] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 7-23.
Bao S D. Agrochemical Analysis of Soil, 3rd edn. Beijing: China Agriculture Press, 2000. pp 7-23 (in Chinese).
[21] 顾嘉诚, 王文敏, 王振, 李鲁华, 蒋贵菊, 王家平, 程志博. 玉米/大豆间作对根际土壤磷素生物有效性和微生物群落结构的影响. 应用生态学报, 2023, 34: 3030-3038.
doi: 10.13287/j.1001-9332.202311.015
Gu J C, Wang W M, Wang Z, Li L H, Jiang G J, Wang J P, Cheng Z B. Effects of maize and soybean intercropping on soil phosphorus bioavailability and microbial community structure in rhizosphere. Chin J Appl Ecol, 2023, 34: 3030-3038 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202311.015
[22] Zhang Q, Tian S, Chen G, Tang Q, Zhang Y, Fleming A J, Zhu X G, Wang P. Regulatory NADH dehydrogenase-like complex optimizes C4 photosynthetic carbon flow and cellular redox in maize. New Phytol, 2024, 241: 82-101.
[23] Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res, 2013, 119: 101-117.
[24] Hetrick B A D. Mycorrhizas and root architecture. Experientia, 1991, 47: 355-362.
[25] Wilson G W T, Harnett D C. Effects of mycorrhizae on plant growth and dynamics in experimental tall grass prairie. Am J Bot, 1997, 84: 478-482.
pmid: 21708601
[26] Buade R, Chourasiya D, Prakash A, Sharma M P. Changes in arbuscular mycorrhizal fungal community structure in soybean rhizosphere soil assessed at different growth stages of soybean. Agric Res, 2021, 10: 32-43.
[27] Alguacil M M, Lumini E, Roldán A, Salinas G J R, Bonfante P, Bianciotto V. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl, 2008, 18: 527-536.
doi: 10.1890/07-0521.1 pmid: 18488613
[28] 章家恩, 高爱霞, 徐华勤, 罗明珠. 玉米/花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20: 1597-1602.
Zhang J E, Gao A X, Xu H Q, Luo M Z. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents. J Appl Ecol, 2009, 20: 1597-1602 (in Chinese with English abstract).
[29] 董艳, 汤利, 郑毅, 朱有勇, 张福锁. 小麦-蚕豆间作条件下氮肥施用量对根际微生物区系的影响. 应用生态学报, 2008, 19: 1559-1566.
pmid: 18839919
Dong Y, Tang L, Zheng Y, Zhu Y Y, Zhang F S. Effects of nitrogen application rate on rhizosphere microbial community in wheat-faba bean intercropping system. Chin J Appl Ecol, 2008, 19: 1559-1566 (in Chinese with English abstract).
pmid: 18839919
[30] 马玉颖, 张焕朝, 项兴佳, 王道中, 郭熙盛, 郭志彬, 孙瑞波, 褚海燕. 长期施肥对砂姜黑土丛枝菌根真菌群落的影响. 应用生态学报, 2018, 29: 3398-3406.
doi: 10.13287/j.1001-9332.201810.035
Ma Y Y, Zhang H C, Xiang X J, Wang D Z, Guo X S, Guo Z B, Sun R B, Chu H Y. Effects of long-term fertilization on arbuscular mycorrhizal fungal community in lime concretion black soil. Chin J Appl Ecol, 2018, 29: 3398-3406 (in Chinese with English abstract).
[31] Jiang Y, Luan L, Hu K, Liu M, Chen Z, Geisen S, Chen X, Li H, Xu Q, Bonkowski M, Sun B. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome, 2020, 8: 142.
doi: 10.1186/s40168-020-00918-6 pmid: 33008469
[32] Beauregard M S, Hamel C, Atul N, St-Arnaud M. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microb Ecol, 2010, 59: 379-389.
doi: 10.1007/s00248-009-9583-z pmid: 19756847
[33] Joner E J, van Aarle I M, Vosatka M. Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil, 2000, 226: 199-210.
[34] Shi J, Zhao B, Zheng S, Zhang X, Wang X, Dong W, Xie Q, Wang G, Xiao Y, Chen F, Yu N, Wang E. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell, 2021, 184: 5527-5540.
doi: 10.1016/j.cell.2021.09.030 pmid: 34644527
[35] Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam H M, Zhang J, Chen M, Gutjahr C. Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis. Nat Commun, 2022, 13: 477.
doi: 10.1038/s41467-022-27976-8 pmid: 35078978
[36] Tang F, White J A, Charvat I. The effect of phosphorus availability on arbuscular mycorrhizal colonization of Typha angustifolia. Mycologia 2001, 93: 1042.
[37] Raven J A, Lambers H, Smith S E, Westoby M. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytol, 2018, 217: 1420-1427.
doi: 10.1111/nph.14967 pmid: 29292829
[38] 李锋, 潘晓华, 刘水英, 李木英, 杨福孙. 低磷胁迫对不同水稻品种根系形态和养分吸收的影响. 作物学报, 2004, 30: 438-442.
Li F, Pan X H, Liu S Y, Li M Y, Yang F S. Effect of phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars. Acta Agron Sin, 2004, 30: 438-442 (in Chinese with English abstract).
[39] Jin J, Tang C X, Sale P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann Bot, 2015, 116: 987-999.
[40] Johansen A, Jakobsen I, Jensen E S. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III: Hyphal transport of 32P and 15N. New Phytol, 1993, 124: 61-68.
[41] Anika L, Rillig M C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops: a meta-analysis. Soil Biol Biochem, 2015, 81: 147-158.
[42] 芦美, 范茂攀, 李永梅, 杨继芬, 杨春怀, 罗志章, 赵吉霞. 玉米与马铃薯间作对作物根际土壤丛枝菌根真菌群落的影响. 土壤通报, 2023, 54: 1392-1400.
Lu M, Fan M P, Li Y M, Yang J F, Yang C H, Luo Z Z, Zhao J X. Effects of intercropping maize and potato on arbuscular mycorrhizal fungi community in crop rhizosphere soil. Chin J Soil Sci, 2023, 54: 1392-1400 (in Chinese with English abstract).
[43] Zhu C, Ling N, Guo J, Wang M, Guo S, Shen Q. Impacts of fertilization regimes on arbuscular mycorrhizal fungal (AMF) community composition were correlated with organic matter composition in maize rhizosphere soil. Front Microbiol, 2016: 1840.
[44] Leff J W, Jones S E, Prober S M, Barberán A, Borer E T, Firn J L, Harpole W S, Hobbie S E, Hofmockel K S, Knops J M H, McCulley R L, Pierre K L, Risch A C, Seabloom E W, Schütz M, Steenbock C, Stevens C J, Fierer N. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA, 2015, 112: 10967-10972.
doi: 10.1073/pnas.1508382112 pmid: 26283343
[45] Bongoua D A J, Cebron A, Kassin K E, Yoro G R, Mustin C, Berthelin J. Microbial communities involved in Fe reduction and mobility during soil organic matter (SOM) mineralization in two contrasted paddy soils. Geomicrobiol J, 2013, 30: 347-361.
[46] Rajapitamahuni S, Kang B, Lee T K. Exploring the roles of arbuscular mycorrhizal fungi in plant-iron homeostasis. Agriculture, 2023, 13: 1918.
[47] 孙博雅, 程永毅, 肖广全, 王彦琴, 王明霞, 周志峰. 典型气田土壤铁还原活性与微生物群落关系研究. 环境科学学报, 2021, 41: 4170-4178.
Sun B Y, Cheng Y Y, Xiao G Q, Wang Y Q, Wang M X, Zhou Z F. Relationship between iron reducing potential of soil and microbial community structure in a typical shale gas field. Acta Sci Circumst, 2021, 41: 4170-4178 (in Chinese with English abstract).
[48] Pan Y Y, Yang X N, Sun G P, Xu M Y.Functional response of sediment bacterial community to iron-reducing bioaugmentation with Shewanella decolorationis S12. Appl Microbiol Biotechnol, 2019, 103: 4997-5005.
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[3] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[4] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[5] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[6] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[7] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[8] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[9] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[10] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[11] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[12] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[13] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[14] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[15] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!