欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2157-2166.doi: 10.3724/SP.J.1006.2024.44018

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析

刘永惠(), 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德*()   

  1. 江苏省农业科学院经济作物研究所, 江苏南京 210014
  • 收稿日期:2024-01-29 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-12
  • 通讯作者: *陈志德, E-mail: chen701865@aliyun.com
  • 作者简介:E-mail: yonghuiliu_126@126.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);江苏省种业振兴揭榜挂帅项目(JBGS [2021] 062)

Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.)

LIU Yong-Hui(), SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De*()   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2024-01-29 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-12
  • Contact: *E-mail: chen701865@aliyun.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-13);Open Competition Project for Seed Industry of Jiangsu Province(JBGS [2021] 062)

摘要:

干旱是严重威胁我国花生产量与品质的主要环境因素之一。为阐明干旱胁迫响应基因AhMYB44-11的调控机制, 揭示其启动子的功能, 本研究从花生基因组中扩增获得该基因的启动子序列AhMYB44-11-Pro, 分别构建全长及5°端部分缺失启动子的GUS融合表达载体, 利用农杆菌介导的遗传转化体系, 分析启动子的活性和表达模式。结果显示, 相比于同源基因AhMYB44-01的启动子, AhMYB44-11-Pro具有更多的MBS、Myb-binding sit等响应干旱胁迫的顺式作用元件; 同时其拟南芥转基因阳性植株经脱水处理后GUS染色加深, GUS酶活性显著增加; 表明启动子的活性受干旱胁迫诱导表达, 证实AhMYB44-11-Pro是一个干旱诱导型启动子。此外, AhMYB44-11-Pro含有种子胚乳特异表达元件和赤霉素响应元件, GUS染色显示在角果发育过程中其活性呈上调趋势, 由此推测AhMYB44-11可能在种子发育尤其是干物质积累过程中发挥重要作用。本研究结果将为全面解析AhMYB44的生物学功能奠定基础, 也为作物抗旱遗传改良提供参考依据。

关键词: 花生, AhMYB44, 启动子, 干旱胁迫, GUS活性

Abstract:

Drought is a significantly environmental factor that poses a serious threat to peanut yield and quality in China. Our study aims to elucidate the regulatory mechanism of the drought stress response gene AhMYB44-11 and uncover the function of its promoter. We isolated the promoter sequence AhMYB44-11-Pro from the peanut genome and constructed recombinant expression vectors comprising the full-length promoter and several 5'-terminal deletion promoters, each fused with the GUS reporter gene. These vectors were then introduced into plant tissue via Agrobacterium rhizogenes-mediated transformation to assess promoter activity and expression patterns. The results revealed that AhMYB44-11-Pro contains a higher number of drought-responsive cis-regulatory elements, including MBS and Myb-binding sites, compared to the promoter of its homologous gene AhMYB44-01. Furthermore, dehydration treatment significantly enhanced GUS staining and activity in AhMYB44-11-Pro transgenic Arabidopsis, indicating that the promoter’s activity is upregulated under drought stress. These findings confirm that AhMYB44-11-Pro functions as a drought-inducible promoter. Additionally, AhMYB44-11-Pro contains a seed endosperm-specific expression element and gibberellin response elements, demonstrating an increased expression trend during pod development, as evidenced by GUS histochemical staining. This suggests that AhMYB44-11 may play a crucial role in seed development, particularly in dry matter accumulation. This research lays the groundwork for a comprehensive analysis of the biological functions of AhMYB44 and provides a valuable reference for genetically enhancing crop drought resistance.

Key words: peanut, AhMYB44, promoter, drought stress, GUS activity

表1

启动子序列克隆及载体构建引物"

用途
Function
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
基因克隆Gene cloning Pro0-F GGCGTGCGGTCTTCTGGGGT
Pro0-R GCTACGATGCCGCTATCCAC
全长以及缺失序列载体构建
Vectors construction of full-length and several deletion sequences
Pro1-F GTCGACCTGCAGGCATGCAAGCTTGTTCTTGTAACAACTTGAGGC
Pro2-F GTCGACCTGCAGGCATGCAAGCTTAAGTTTGATAGTAAGGGTG
Pro3-F GTCGACCTGCAGGCATGCAAGCTTGTTGATTGGATTCTTTGC
Pro4-F GTCGACCTGCAGGCATGCAAGCTTATGGTCTTGTCTTCGTTA
Pro5-F GTCGACCTGCAGGCATGCAAGCTTCAGAGCAGGGATGACTTG
Pro6-F GTCGACCTGCAGGCATGCAAGCTTATCGTAACGCCCTACCTA
Pro (1-6)-R GAAATTTACCCTCAGATCTACCATGGAGTGCTTAGTTTCTTTTGTTTTG

图1

AhMYB44-01/11启动子的顺式作用元件分布示意图"

图2

AhMYB44-11启动子克隆及其5°缺失启动子片段的扩增电泳图 M: DL2000 marker; P0: 含有全长启动子序列的长片段; P1~P6: 启动子全长及5°端不同程度截短的片段。"

图3

AhMYB44-11-Pro及截短片段的GUS融合表达重组载体结构示意图 P1~P6: 启动子全长及5°端不同程度截短的片段。"

图4

AhMYB44-11-Pro系列转基因烟草GUS染色 P1~P6: 分别转化不同长度的AhMYB44-11-Pro系列表达载体的转基因烟草叶片。"

图5

AhMYB44-11-Pro系列转基因烟草GUS活性检测 P1~P6: 分别转化不同长度的AhMYB44-11-Pro系列表达载体的转基因烟草叶片。小写字母代表P < 0.05, 大写字母代表P < 0.01。"

图6

AhMYB44-11-Pro的转基因拟南芥不同生长阶段的GUS染色 A: 萌发2 d的幼苗; B: 萌发3 d的幼苗; C: 萌发7 d的幼苗; D: 茎的横切面; E: 花序; F: 茎节; G: 角果。"

图7

AhMYB44-11-Pro的转基因拟南芥干旱胁迫诱导表达分析 A: 半定量分析转基因株系Pro-21和Pro-27中AhMYB44-11-Pro的转录水平; 35S: 转化含CaMV35S启动子的空载体阳性植株; Actin2: 半定量内参基因。B和C: 转基因拟南芥幼苗在正常生长条件和脱水胁迫处理下的GUS染色和活性定量检测, **代表P < 0.01。"

[1] 万书波. 中国花生栽培学. 上海: 上海科技出版社, 2003. pp 1-4.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific & Technical Publishers, 2003. pp 1-4 (in Chinese).
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020115
[3] 张金霞, 刘艳丽, 赵治军, 董彦琪, 蒋福稳. 花生非生物胁迫响应转录因子研究进展. 中国油料作物学报, 2019, 41: 975-985.
doi: 10.19802/j.issn.1007-9084.2019067
Zhang J X, Liu Y L, Zhao Z J, Dong Y Q, Jiang F W. Research advances on abiotic stress response transcription factors in peanut. Chin J Oil Crop Sci, 2019, 41: 975-985 (in Chinese with English abstract).
[4] 任婧瑶, 王婧, 艾鑫, 赵姝丽, 李仍媛, 蒋春姬, 赵新华, 殷冬梅, 于海秋. 干旱胁迫下花生苗期耐旱生理应答特性分析. 中国油料作物学报, 2022, 44: 138-146.
doi: 10.19802/j.issn.1007-9084.2020300
Ren J Q, Wang J, Ai X, Zhao S L, Li R Y, Jiang C J, Zhao X H, Yin D M, Yu H Q. Physiological response of peanut at seedling stage under drought stress. Chin J Oil Crop Sci, 2022, 44: 138-146 (in Chinese with English abstract).
[5] 金锋, 丁莲鑫, 骆骏, 聂圣松, 方中明. 水稻MYB转录因子的研究进展. 植物遗传资源学报, 2023, 24: 917-926.
doi: 10.13430/j.cnki.jpgr.20221220001
Jin F, Ding L X, Luo J, Nie S S, Fang Z M. Research progress of MYB transcription factors in rice. J Plant Genet Resour, 2023, 24: 917-926 (in Chinese with English abstract).
[6] Xiao R X, Zhang C, Guo X R, Li H, Lu H. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. Int J Mol Sci, 2021, 22: 3560.
[7] Shin R, Burch A Y, Huppert K A, Tiwari S B, Murphy A S, Guilfoyle T J, Schachtman D P. The Arabidopsis transcription factor MYB77modulates auxin signal transduction. Plant Cell, 2007, 19: 2440-2453.
[8] Lyu B B, Li X J, Sun W W, Li L, Gao R, Zhu Q, Tian S M, Fu M Q, Yu H L, Tang X M, Zhang C L, Dong H S. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis. Plant Biol, 2013, 15: 841-850.
[9] Zou B H, Jia Z H, Tian S M, Wang X M, Gou Z H, L B B, Dong H S. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. Funct Plant Biol, 2013, 40: 304-313.
[10] Li D K, Li Y, Zhang L, Wang X Y, Zhao Z, Tao Z W, Wang J M, Wang J, Lin M, Li X F, Yang Y. Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor, AtMYB44. Int J Mol Sci, 2014, 15: 8473-8490.
[11] Qiu Z K, Yan S S, Xia B, Jiang J, Yu B W, Lei J J, Chen C M, Chen L, Yang Y, Wang Y Q, Tian S B, Cao B H. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. J Exp Bot, 2019, 70: 5343-5354.
[12] Zhou X J, Zha M R, Huang J, Li L, Imran M, Zhang C K. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot, 2017, 68: 1265-1281.
[13] Wei Z Z, Hu K D, Zhao D L, Tang J, Huang Z Q, Jin P, Li Y H, Han Z, Hu L Y, Yao G F, Zhang H. MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biol, 2020, 20: 258.
[14] Li L X, Wei Z Z, Zhou Z L, Zhao D L, Tang J, Yang F, Li Y H, Chen X Y, Han Z, Yao G F, Hu K D, Zhang H. A single amino acid mutant in the EAR motif of IbMYB44.2 reduced the inhibition of anthocyanin accumulation in the purple-fleshed sweet potato. Plant Physiol Biochem, 2021, 167: 410-419.
[15] Wei L Z, Mao W W, Jia M R, Xing S N, Ali U, Zhao Y Y, Chen Y T, Cao M L, Dai Z R, Zhang K, Dou Z C, Jia W S, Li B B. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. J Exp Bot, 2018, 69: 4805-4820.
doi: 10.1093/jxb/ery249 pmid: 30085079
[16] 沈悦, 沈一, 刘永惠, 梁满, 张旭尧, 陈志德. 花生AhGPAT9 基因启动子克隆及其功能分析. 中国油料作物学报, 2023, 45: 533-541.
doi: 10.19802/j.issn.1007-9084.2022126
Shen Y, Shen Y, Liu Y H, Liang M, Zhang X Y, Chen Z D. Cloning and functional analysis of peanut AhGPAT9 promoter. Chin J Oil Crop Sci, 2023, 45: 533-541 (in Chinese with English abstract).
[17] 石磊, 苗利娟, 齐飞艳, 张忠信, 高伟, 孙子淇, 黄冰艳, 董文召, 汤丰收, 张新友. 花生Δ9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析. 作物学报, 2016, 42: 1629-1637.
Shi L, Miao L J, Qi F Y, Zhang Z X, Gao W, Sun Z Q, Huang B Y, Dong W Z, Tang F S, Zhang X Y. Cloning and functional analysis of peanut Δ9-stearoyl-acyl carrier protein desaturase promoter. Acta Agron Sin, 2016, 42: 1629-1637 (in Chinese with English abstract).
[18] Geng L L, Duan X H, Liang C, Shu C L, Song F P, Zhang J. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing. Plant Cell Physiol, 2014, 55: 1793-1801.
[19] Tang G Y, Xu P L, Liu W, Liu Z J, Shan L. Cloning and characterization of 5' flanking regulatory sequences of AhLEC1B gene from Arachis hypogaea L. PLoS One, 2015, 10: e0139213.
[20] 孙全喜, 徐洪明, 李春娟, 闫彩霞, 赵小波, 王娟, 苑翠玲, 单世华. 花生种子特异启动子AHSSP1的克隆及功能分析. 核农学报, 2020, 34: 460-467.
doi: 10.11869/j.issn.100-8551.2020.03.0460
Sun Q X, Xu H M, Li C J, Yan C X, Zhao X B, Wang J, Yuan C L, Shan S H. Cloning and functional analysis of peanut seed-specific promoter AHSSP1. Acta Agric Nucl Sin, 2020, 34: 460-467 (in Chinese with English abstract).
[21] 万小荣, 莫爱琼, 刘帅, 梁建华, 李玲, 余土元, 郑奕雄. 粤油7号花生AhNCED1基因启动子克隆及其活性分析. 核农学报, 2011, 25: 692-699.
Wan X R, Mo A Q, Liu S, Liang J H, Li L, Yu T Y, Zheng Y X. Cloning and activity analysis of AhNCED1 gene promoter in peanut Yueyou 7. Acta Agric Nucl Sin, 2011, 25: 692-699 (in Chinese with English abstract).
[22] 王合春, 陈新利, 隋炯明, 毕英娜, 王晶珊, 乔利仙. 花生β-1,3-葡聚糖酶基因启动子的克隆及功能分析. 植物遗传资源学报, 2013, 14: 864-870.
doi: 10.13430/j.cnki.jpgr.2013.05.016
Wang H C, Chen X L, Sui J M, Bi Y N, Wang J S, Qiao L X. Cloning and functional analysis of the promoter region of β-1,3-glucanase gene in peanut. J Plant Genet Resour, 2013, 14: 864-870 (in Chinese with English abstract).
[23] Chen X L, Song R T, Yu M Y, Sui J M, Wang J S, Qiao L X. Cloning and functional analysis of the chitinase gene promoter in peanut. Genet Mol Res, 2015, 14: 12710-12722.
doi: 10.4238/2015.October.19.15 pmid: 26505422
[24] Liu Y H, Shen Y, Liang M, Zhang X Y, Xu J W, Shen Y, Chen Z D. Identification of peanut AhMYB44 transcription factors and their multiple roles in drought stress. Plants (Basel), 2022, 11: 3522.
[25] Xu Z W, Wang M P, Guo Z T, Zhu X F, Xia Z L. Identification of a 119-bp promoter of the maize sulfite oxidase gene (ZmSO) that confers high-level gene expression and ABA or drought inducibility in transgenic plants. Int J Mol Sci, 2019, 20: 3326.
[26] Wu G F, Cao A H, Wen Y H, Bao W C, She F W, Wu W Z, Zheng S, Yang N. Characteristics and Functions of MYB (v-Myb avivan myoblastsis virus oncogene homolog)-related genes in Arabidopsis thaliana. Genes (Basel), 2023, 14: 2026.
[27] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Deng Y, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Khan S A, Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z F, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zou H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51: 865-876.
doi: 10.1038/s41588-019-0402-2 pmid: 31043757
[28] Tang G Y, Xu P L, Li P X, Zhu J P, Chen G X, Shan L, Wan S B. Cloning and functional characterization of seed-specific LEC1A promoter from peanut (Arachis hypogaea L.). PLoS One, 2021, 16: e0242949.
[29] Liu H C, Zhu K Y, Tan C, Zhang J Q, Zhou J H, Jin L, Ma G Y, Zou Q C. Identification and characterization of PsDREB2 promoter involved in tissue-specific expression and abiotic stress response from Paeonia suffruticosa. PeerJ, 2019, 7: e7052.
[30] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析. 作物学报, 2024, 50: 354-362.
doi: 10.3724/SP.J.1006.2024.33013
Mao Y, Zheng M M, Mou C X, Xie W B, Tang Q. Function analysis of the promoter of natural antisense transcript cis-NATZmNAC48 in maize under osmotic stress. Acta Agron Sin, 2024, 50: 354-362 (in Chinese with English abstract).
[31] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用. 作物学报, 2022, 48: 2016-2027.
doi: 10.3724/SP.J.1006.2022.12041
Zhu C Q, Wei Q Q, Xiang X J, Hu W J, Xu Q S, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Zhang J H. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice. Acta Agron Sin, 2022, 48: 2016-2027 (in Chinese with English abstract).
[32] 周定纬, 刘佳佳, 李培培, 马倩, 巩方平, 李忠峰, 马兴立, 张幸果, 殷冬梅. 外源MeJA对花生主要农艺性状和抗氧化酶活性的影响. 山东农业科学, 2020, 52(9): 29-34.
Zhou D W, Liu J J, Li P P, Ma Q, Gong F P, Li Z F, Ma X L, Zhang X G, Yin D M. Effects of exogenous MeJA on main agronomic characters and antioxidant enzyme activities of peanut. Shandong Agric Sci, 2020, 52(9): 29-34 (in Chinese with English abstract).
[33] Zhang Z Y, Zheng X X, Yang J, Messing J, Wu Y R. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA, 2016, 113: 10842-10847.
[34] 王梦龙, 严维, 彭小群, 唐晓艳. 水稻胚乳特异性表达基因启动子的鉴定. 植物生理学报, 2022, 58: 1946-1960.
Wang M L, Yan W, Peng X Q, Tang X Y. Identification of rice endosperm-specific gene promoters. Acta Phytophysiol Sin, 2022, 58: 1946-1960 (in Chinese with English abstract).
[35] Li Q Y, Li L Q, Liu Y, Lyu Q, Zhang H, Zhu J, Li X J. Influence of TaGW2-6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Sci, 2017, 263: 226-235.
doi: S0168-9452(17)30407-7 pmid: 28818379
[1] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[2] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[3] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[4] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[5] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[6] 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980.
[7] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[8] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[9] 郅晨阳, 薛晓梦, 吴洁, 李雄才, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 洪彦彬, 姜慧芳, 雷永, 廖伯寿. 花生籽仁蔗糖含量遗传模型分析[J]. 作物学报, 2024, 50(1): 32-41.
[10] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[11] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[12] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[13] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[14] 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361.
[15] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[8] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[9] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .
[10] 刘珊珊;田福东;高丽辉;王志坤;葛玉君;刁桂珠;李文滨. 大豆7S球蛋白亚基组成对品质性状的影响[J]. 作物学报, 2008, 34(05): 909 -913 .