欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2106-2121.doi: 10.3724/SP.J.1006.2024.34215

• 耕作栽培·生理生化 • 上一篇    下一篇

秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响

朱荣昱1(), 赵蒙杰1, 姚云凤1, 李艳红2, 李向东1, 刘兆新1,*()   

  1. 1山东农业大学农学院 / 小麦育种全国重点实验室, 山东泰安 271018
    2烟台市农业技术推广中心, 山东烟台 264001
  • 收稿日期:2023-12-30 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-05-06
  • 通讯作者: * 刘兆新, E-mail: liuxiaoxin0110@163.com
  • 作者简介:E-mail: 463372502@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目(32301953);山东省自然科学基金青年基金项目(ZR2022QC040);山东省现代农业产业技术体系创新团队项目(SDAIT-04-06)

Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut

ZHU Rong-Yu1(), ZHAO Meng-Jie1, YAO Yun-Feng1, LI Yan-Hong2, LI Xiang-Dong1, LIU Zhao-Xin1,*()   

  1. 1College of Agriculture, Shandong Agricultural University / National Key Laboratory of Wheat Improvement, Tai’an 271018, Shandong, China
    2Yantai Agricultural Technology Extension Center, Yantai 264001, Shandong, China
  • Received:2023-12-30 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-05-06
  • Contact: * E-mail: liuxiaoxin0110@163.com
  • Supported by:
    Youth Fund of National Natural Science Foundation of China(32301953);Youth Fund of Natural Science Foundation of Shandong Province(ZR2022QC040);Innovation Team Project for Modern Agricultural Industrious Technology System of Shandong Province(SDAIT-04-06)

摘要:

为探讨播种深度及不同小麦秸秆还田方式下对土壤物理性状、花生下胚轴生长动态以及出苗率的影响, 通过设置小麦-花生周年定位试验, 花生季采用裂区试验设计, 主区为小麦秸秆还田方式, 包括翻耕还田(P)、旋耕还田(R)、免耕覆盖(N); 裂区为花生品种, 试验选用大粒花生品种山花108 (B)与小粒花生品种山花106 (S); 裂裂区为播种深度, 2021年设置3 cm (3)、5 cm (5)、9 cm (9)、15 cm (15), 2022年设置3 cm (3)、6 cm (6)、9 cm (9)。结果表明, 翻耕还田和旋耕还田提高了土壤温度, 但降低了土壤含水量; 免耕覆盖处理显著增加了6 cm以下土层的土壤紧实度; 相同秸秆还田方式下, 两品种均表现为适当浅播(播深3 cm和6 cm)显著提高了出苗率, 深播(播深>9 cm)处理增加了下胚轴伸长速率, 提高了子叶脂肪酶活性, 降低了子叶干重、子叶中蔗糖与可溶性糖的含量, 与PB3相比, PB6和PB9子叶可溶性糖和蔗糖含量分别下降19.72%和39.43%和14.15%和40.23%; 与PS3相比, PS6、PS9子叶可溶性糖和蔗糖含量分别下降10.08%、24.84%和20.04%、37.08%, 说明深播增加了出苗过程中子叶养分消耗; 相同播种深度下, 翻耕还田和旋耕还田的籽粒产量显著高于免耕覆盖; 增加播种深度, 各秸秆还田方式下单位面积株数以及单株结果数均显著降低, 与PB6相比, PB3和PB9处理荚果产量分别降低7.47%和14.94%; 与PS3相比, PS6和PS9处理荚果产量分别降低11.66%和24.03%。因此, 秸秆翻耕还田处理有利于改善土壤结构, 缩短花生出苗时间, 提高出苗率以及花生荚果产量, 在此条件下大粒型花生与小粒型花生的适宜播深分别为5~6 cm与3 cm。

关键词: 花生, 秸秆还田, 播种深度, 出苗特性

Abstract:

To explore the effects of sowing depth and different wheat straw returning methods on soil physical properties, peanut hypocotyl growth dynamics and seedling emergence rate, a wheat-peanut annual positioning experiment was conducted. Peanut season was designed with a split-plot experiment. The main area was wheat straw returning methods, including moldboard plow tillage with wheat residue returning (P), rotary tillage with wheat residue returning (R), no tillage with wheat residue mulching (N). The split area was peanut varieties, which were large-seed peanut variety Shanhua 108 (B) and small-seed peanut variety Shanhua 106 (S). The split zone was the sowing depth, with 3 cm (3), 5 cm (5), 9 cm (9), 15 cm (15) in 2021 and 3 cm (3), 6 cm (6), 9 cm (9) in 2022. The results showed that moldboard plow tillage and rotary tillage increased soil temperature, but decreased soil water content. The no tillage with wheat residue mulching treatment significantly increased the soil compactness of soil layer below 6 cm. Under the same straw returning method, both varieties showed that the appropriate shallow sowing (sowing depth of 3 cm, 6 cm) significantly increased the emergence rate, deep sowing (sowing depth > 9 cm) increased hypocotyl elongation rate, increased cotyledon lipase activity, and decreased cotyledon dry weight, sucrose and soluble sugar content in cotyledons. Compared with PB3, the contents of soluble sugar and sucrose in cotyledons of PB6 and PB9 decreased by 19.72%, 39.43% and 14.15%, 40.23%, respectively. Compared with PS3, the contents of soluble sugar and sucrose in cotyledons of PS6 and PS9 decreased by 10.08%, 24.84% and 20.04%, 37.08%, respectively, indicating that deep sowing increased the nutrient consumption of cotyledons during seedling emergence. The grain yield of tillage and rotary tillage was significantly higher than that of no-tillage. With the increase of sowing depth, the number of plants per unit area and the number of pods per plant decreased significantly under different straw returning methods. Compared with PB6, the pod yield of PB3 and PB9 decreased by 7.47% and 14.94%, respectively. Compared with PS3, the pod yield of PS6 and PS9 decreased by 11.66% and 24.03%, respectively. Therefore, moldboard plow tillage with wheat residue returning treatment was conducive to improving soil structure, shortening peanut emergence time, increasing emergence rate and peanut pod yield. Under this condition, the suitable sowing depth of large-grain peanut varieties and small-small peanut varieties was 5-6 cm and 3 cm, respectively.

Key words: peanut, straw returning, sowing depth, emergence characteristics

表1

试验处理操作方式"

处理
Treatment
耕作方式
Tillage mode
PB3, PB5, PB6, PB9, PB15 小麦秸秆全量粉碎, 深翻土壤并旋耕整平地面后播种, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was completely crushed, the soil was deeply ploughed and the ground was leveled by rotary tillage and then sown. The peanut variety Shanhua 108 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
RB3, RB5, RB6, RB9, RB15 小麦秸秆全量粉碎, 旋耕还田并整平地面后播种, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was completely crushed, rotary tillage was returned to the field and the ground was leveled before sowing. The peanut variety Shanhua 108 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
NB3, NB5, NB6, NB9, NB15 小麦秸秆粉碎后移出地块, 播种后将秸秆均匀覆盖地表, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was crushed and moved out of the plot. After sowing, the straw was evenly covered on the surface, and the peanut variety Shanhua 108 was sown. The sowing depth was 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
PS3, PS5, PS6, PS9, PS15 小麦秸秆全量粉碎, 深翻土壤并旋耕整平地面后播种, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was completely crushed, the soil was deeply ploughed and the ground was leveled by rotary tillage and then sown. The peanut variety Shanhua 106 was sown at the sowing depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
RS3, RS5, RS6, RS9, RS15 小麦秸秆全量粉碎, 旋耕还田并整平地面后播种, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was fully crushed, rotary tillage and leveling the ground before sowing. The peanut variety Shanhua 106 was sown at a depth of 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.
NS3, NS5, NS6, NS9, NS15 小麦秸秆粉碎后移出地块, 播种后将秸秆均匀覆盖地表, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。
Wheat straw was crushed and moved out of the plot. After sowing, the straw was evenly covered on the surface, and the peanut variety Shanhua 106 was sown. The sowing depth was 3 cm, 5 cm, 6 cm, 9 cm, and 15 cm.

表2

秸秆还田方式对土壤温度的影响"

播种后天数
Days after sowing
处理
Treatment
土壤温度Soil temperature (℃)
3 cm 6 cm 9 cm 12 cm 15 cm
2 d 翻耕还田P 31.7 ab 31.1 b 30.7 a 30.2 ab 29.8 ab
旋耕还田R 32.4 a 31.8 a 31.0 a 30.7 a 30.5 a
免耕覆盖N 30.9 b 30.5 c 30.1 b 29.6 b 29.3 b
4 d 翻耕还田P 34.9 a 34.3 a 33.8 a 33.3 a 33.0 a
旋耕还田R 34.8 a 34.5 a 34.0 a 33.5 a 32.8 a
免耕覆盖N 33.6 b 33.3 b 32.8 b 32.2 b 31.9 b
6 d 翻耕还田P 34.8 ab 34.5 a 33.9 a 33.6 a 33.2 ab
旋耕还田R 35.0 a 34.5 a 34.1 a 33.8 a 33.0 a
免耕覆盖N 34.3 b 33.6 b 33.3 b 33.0 b 32.4 b
8 d 翻耕还田P 32.7 a 32.2 a 31.3 a 30.9 a 30.4 a
旋耕还田R 32.2 a 31.5 b 31.2 a 30.7 a 29.8 a
免耕覆盖N 30.9 b 30.0 c 29.6 b 29.1 b 28.8 b
10 d 翻耕还田P 34.4 a 34.0 a 33.3 a 32.6 a 32.3 a
旋耕还田R 34.8 a 34.0 a 33.4 a 33.1 a 32.7 a
免耕覆盖N 33.4 b 32.9 b 32.0 b 31.6 b 31.4 b
12 d 翻耕还田P 28.6 b 28.1 b 27.5 b 27.0 a 26.7 a
旋耕还田R 28.2 ab 27.8 b 27.3 b 26.8 b 26.6 a
免耕覆盖N 28.8 a 29.1 a 28.1 a 27.5 b 26.8 a

表3

秸秆还田方式对土壤含水量的影响"

播种后天数
Days after sowing
处理
Treatment
土壤含水量Soil moisture (%)
3 cm 6 cm 9 cm 12 cm 15 cm
2 d 翻耕还田P 29.8 b 30.7 b 31.1 b 31.3 b 31.7 b
旋耕还田R 30.0 b 30.6 b 30.9 b 31.2 b 31.7 b
免耕覆盖N 31.0 a 31.7 a 32.6 a 33.0 a 33.4 a
4 d 翻耕还田P 27.0 b 27.4 b 28.5 b 29.3 b 30.1 ab
旋耕还田R 26.3 c 26.8 c 28.1 b 28.9 b 29.7 b
免耕覆盖N 27.7 a 29.1 a 29.8 a 30.3 a 30.6 a
6 d 翻耕还田P 25.7 ab 26.5 a 27.6 a 28.6 ab 29.1 b
旋耕还田R 25.3 b 26.5 a 27.3 a 28.2 b 28.8 b
免耕覆盖N 26.5 a 27.5 a 28.2 a 29.0 a 29.9 a
8 d 翻耕还田P 28.4 a 29.0 ab 29.8 ab 30.3 a 30.9 a
旋耕还田R 28.2 a 28.8 b 29.5 b 30.1 a 30.7 a
免耕覆盖N 28.4 a 29.4 a 30.2 a 30.7 a 31.0 a
10 d 翻耕还田P 26.4 b 27.0 b 28.1 b 29.0 ab 29.6 b
旋耕还田R 25.8 b 26.7 b 27.7 b 28.6 b 29.3 b
免耕覆盖N 27.1 a 28.3 a 29.0 a 29.7 a 30.2 a
12 d 翻耕还田P 31.5 a 32.3 b 33.3 b 34.1 ab 34.4 ab
旋耕还田R 32.1 a 32.0 b 32.9 c 33.4 b 33.8 b
免耕覆盖N 31.4 a 33.4 a 34.0 a 34.5 a 34.8 a

表4

秸秆还田方式对土壤紧实度的影响"

播种后天数
Days after sowing
处理
Treatment
土壤紧实度 Soil compaction (kPa)
3 cm 6 cm 9 cm 12 cm 15 cm
2 d 翻耕还田P 388.6 a 497.7 a 589.7 b 698.1 b 927.0 c
旋耕还田R 426.1 a 505.2 a 623.5 b 834.5 a 1030.0 b
免耕覆盖N 265.2 b 544.3 a 801.9 a 919.4 a 1108.2 a
4 d 翻耕还田P 524.1 a 539.0 b 692.5 b 797.0 b 932.9 c
旋耕还田R 533.1 a 619.5 a 742.1 ab 912.9 a 1047.2 b
免耕覆盖N 313.7 b 662.7 a 857.7 a 992.5 a 1157.0 a
6 d 翻耕还田P 569.5 a 588.5 a 715.2 b 854.6 b 992.1 b
旋耕还田R 549.1 a 631.7 a 782.9 ab 914.2 b 1045.5 b
免耕覆盖N 317.4 b 645.2 a 817.2 a 1036.5 a 1222.1 a
8 d 翻耕还田P 360.4 ab 506.7 a 598.0 a 686.2 b 796.6 b
旋耕还田R 442.5 a 419.1 b 580.5 a 660.2 b 860.8 b
免耕覆盖N 297.3 b 397.9 b 594.6 a 785.9 a 1027.1 a
10 d 翻耕还田P 515.8 a 637.9 a 799.9 a 920.7 a 1064.3 a
旋耕还田R 477.0 a 664.3 a 819.2 a 931.3 a 1105.7 a
免耕覆盖N 381.0 b 703.5 a 826.3 a 975.3 a 1156.7 a
12 d 翻耕还田P 376.4 a 413.0 a 579.8 b 759.7 c 914.7 b
旋耕还田R 364.8 a 434.4 a 590.9 b 832.1 b 930.8 b
免耕覆盖N 280.5 b 430.5 a 659.7 a 974.8 a 1134.4 a

图1

秸秆还田方式和播深对花生子叶干重的影响 PB3、PB5、PB6、PB9、PB15处理依次为秸秆翻耕还田条件下, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。RB3、RB5、RB6、RB9、RB15处理依次为秸秆旋耕还田条件下, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。NB3、NB5、NB6、NB9、NB15处理依次为秸秆免耕覆盖条件下, 播种花生品种山花108, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。PS3、PS5、PS6、PS9、PS15处理依次为秸秆翻耕还田条件下, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。RS3、RS5、RS6、RS9、RS15处理依次为秸秆旋耕还田条件下, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。NS3、NS5、NS6、NS9、NS15处理依次为秸秆免耕覆盖条件下, 播种花生品种山花106, 播种深度为3 cm、5 cm、6 cm、9 cm、15 cm。"

图2

秸秆还田方式和播深对花生脂肪酶活性的影响 处理同图1。"

图3

秸秆还田方式和播深对花生子叶可溶性糖含量的影响 处理同图1。不同小写字母表示同一年份处理间差异显著(P < 0.05)。"

图4

秸秆还田方式和播深对花生子叶蔗糖含量的影响 处理同图1。不同小写字母表示同一年份处理间差异显著(P < 0.05)。"

图5

秸秆还田方式和播深对花生下胚轴长度的影响 处理同图1。"

表5

秸秆还田方式和播深对花生出苗率的影响(2021年)"

处理
Treatment
出苗率Emergence rate
Day 5 Day 8 Day 11 Day 14 Day 17 Day 20
PB3 34.2 64.2 79.2 87.5
PB5 20.0 51.7 81.7 85.0 85.8
PB9 13.3 40.0 70.8 77.5
PB15 19.2 50.8 74.2 76.7
RB3 10.0 30.0 51.7 89.2
RB5 4.2 26.7 45.0 79.2 85.8
RB9 15.0 37.5 70.0 80.0
RB15 10.8 38.3 60.8 60.0
NB3 22.5 53.3 82.5 90.8
NB5 19.2 47.5 67.5 75.0 77.5
NB9 11.7 35.0 50.0 51.7
NB15 1.7 2.5 2.5
PS3 16.7 38.3 74.2 85.0
PS5 4.2 10.8 17.5 26.7 48.3 50.0
PS9 9.2 23.3 45.0 51.7
PS15 11.7 35.8 44.2 46.7
RS3 22.5 36.7 72.5 82.5
RS5 13.3 23.3 52.5 80.8 81.7
RS9 3.3 15.0 46.7 50.8
RS15 8.3 35.0 48.3 48.3
NS3 20.8 46.7 65.8 82.5
NS5 15.0 30.8 52.5 66.7 70.0
NS9 5.0 30.0 51.7 55.8
NS15 2.5 5.0 5.8

表6

秸秆还田方式和播深对花生出苗率的影响(2022年)"

处理
Treatment
出苗率 Emergence rate
Day 4 Day 5 Day 6 Day 7 Day 8 Day 10 Day 12 Day 14
PB3 21.7 49.6 77.5 82.9 87.1 90.8
PB6 0 15.8 40.4 69.2 79.2 87.5 87.9
PB9 0 0 7.9 23.8 36.7 65.0 69.2 70.8
RB3 15.4 42.1 58.3 70.8 80.4 87.5
RB6 0 12.9 38.3 65.8 81.3 82.5 84.6
RB9 0 0 1.3 6.7 13.8 59.2 65.8 69.2
NB3 13.3 36.7 52.1 68.3 78.3 87.9
NB6 0 10.4 22.5 53.3 75.8 79.6 82.1
NB9 0 0 0.4 5.8 12.1 41.3 55.8 63.3
PS3 17.1 35.0 64.2 78.3 83.8 88.3
PS6 0 12.1 30.4 50.0 71.7 85.8 86.7
PS9 0 0 0.8 2.9 16.3 43.3 57.1 62.5
RS3 12.1 20 38.3 68.8 80.0
RS6 0 5.4 12.9 48.8 75.4 87.5 87.9
RS9 0 0 1.3 5.4 11.3 55.4 65.4 67.5
NS3 7.9 17.9 26.3 65.8 83.3 86.3
NS6 0 5.0 11.3 58.3 70.0 79.6 83.3
NS9 0 0 0.4 2.5 7.5 33.3 43.3 45.8

表7

山花108子叶和下胚轴生理特性的相关关系"

特性
Characteristics
子叶干重
Cotyledon dry weight
子叶脂肪酶
Cotyledon
LPS
子叶可溶性糖
Cotyledon
soluble sugar
子叶蔗糖
Cotyledon
sucrose
下胚轴长度
Hypocotyl
length
出苗率Emergence rate 0.597** -0.749** 0.698** 0.690** -0.734**
子叶干重Cotyledon dry weight -0.783** 0.858** 0.861** -0.818**
子叶脂肪酶Cotyledon LPS -0.861** -0.885** 0.881**
子叶可溶性糖Cotyledon soluble sugar 0.967** -0.944**
子叶蔗糖Cotyledon sucrose -0.968**

表8

山花106子叶和下胚轴生理特性的相关关系"

特性
Characteristics
子叶干重
Cotyledon dry weight
子叶脂肪酶
Cotyledon
LPS
子叶可溶性糖
Cotyledon soluble sugar
子叶蔗糖
Cotyledon
sucrose
下胚轴长度
Hypocotyl
length
出苗率Emergence rate 0.472** -0.814** 0.731** 0.734** -0.829**
子叶干重Cotyledon dry weight -0.691** 0.802** 0.828** -0.756**
子叶脂肪酶Cotyledon LPS -0.839** -0.852** 0.890**
子叶可溶性糖Cotyledon soluble sugar 0.924** -0.911**
子叶蔗糖Cotyledon sucrose -0.954**

表9

秸秆还田方式和播深对山花108产量及其构成因素的影响"

年份
Year
处理
Treatment
荚果产量
Pod yield
(kg hm-2)
单位面积株数
Plants per unit area (×104 hm-2)
单株结果数
Pods per plant (ind)
每千克果数
Pods per kg
(ind kg-1)
籽仁产量
Kernel yield
(kg hm-2)
出仁率
Kernel rate
(%)
2021 PB3 3259.3 bcd 22.4 ab 12.2 d 647.8 f 2147.4 cd 65.9 bc
PB5 3911.1 a 23.9 a 16.9 ab 691.1 e 2612.1 a 66.8 abc
PB9 3896.3 a 21.2 ab 16.8 ab 722.2 de 2564.8 ab 65.7 bc
PB15 3000.0 cde 21.3 ab 14.8 bc 793.3 b 2032.3 de 67.8 ab
RB3 3622.2 ab 23.4 a 14.5 bcd 732.2 cd 2437.5 ab 67.3 ab
RB5 3377.8 bc 24.3 a 13.6 cd 768.4 bc 2324.1 bc 68.8 a
RB9 2844.4 de 22.1 ab 12.6 cd 716.7 de 1896.4 de 67.1 abc
RB15 2711.1 e 17.0 bc 17.8 a 834.4 a 1827.1 e 67.4 ab
NB3 2888.9 de 22.4 ab 12.6 cd 725.6 de 1933.8 de 67.0 abc
NB5 2222.2 f 17.2 bc 13.3 cd 730.0 cde 1479.3 f 66.6 bc
NB9 2059.2 f 14.5 c 16.1 ab 780.0 b 1334.8 f 65.0 c
2022 PB3 3855.6 b 23.6 a 14.5 ab 716.0 ab 2512.0 b 65.1 a
PB6 4166.7 a 22.9 ab 14.8 ab 725.3 a 2730.3 a 65.5 a
PB9 3544.4 c 18.0 d 16.1 a 729.3 a 2312.4 c 65.2 a
RB3 3577.8 c 22.8 ab 13.9 bc 716.7 ab 2356.6 c 65.9 a
RB6 3888.9 b 21.9 b 14.4 ab 692.7 bcd 2539.8 b 65.3 a
RB9 3444.5 c 18.4 cd 13.8 bc 703.3 abc 2239.5 c 65.0 a
NB3 3044.5 d 19.9 c 13.8 bc 648.0 e 1989.3 d 65.3 a
NB6 2888.9 d 19.8 c 13.4 bc 670.0 de 1875.1 d 64.9 a
NB9 2600.0 e 15.0 e 12.3 c 683.3 cd 1695.1 e 65.2 a
方差分析ANOVA
秸秆还田方式(T) ** ** NS ** ** **
播种深度(D) ** * ** ** ** **
T×D ** ** ** * ** *

表10

秸秆还田方式和播深对山花106产量及其构成因素的影响"

年份
Year
处理
Treatment
荚果产量
Pod yield
(kg hm-2)
单位面积株数
Plants per unit area (×104 hm-2)
单株结果数
Pods per plant
(ind)
每千克果数
Pods per kg
(ind kg-1)
籽仁产量
Kernel yield
(kg hm-2)
出仁率
Kernel rate
(%)
2021 PS3 3022.2 a 24.0 a 16.3 de 945.6 efg 2175.1 a 71.9 bcd
PS5 2459.3 bc 13.9 ef 21.1 a 933.3 fg 1733.3 bc 70.5 d
PS9 2296.3 cd 14.4 ef 22.6 a 1035.6 abc 1642.1 cd 71.5 bcd
PS15 1911.1 de 12.9 f 20.1 abc 1040.0 ab 1297.9 e 67.9 e
RS3 2785.2 ab 23.3 ab 15.4 de 976.7 def 2029.6 ab 72.9 ab
RS5 2829.6 ab 22.2 abc 18.0 bcd 1014.4 bcd 2079.3 a 73.5 a
RS9 1792.6 e 11.9 f 18.0 bcd 918.9 g 1294.0 e 72.2 abc
RS15 2177.8 cde 13.5 f 20.9 ab 952.2 efg 1545.1 cde 70.8 cd
NS3 2102.2 cde 19.0 bcd 14.0 e 992.2 bcde 1498.7 cde 71.3 cd
NS5 2281.5 cd 18.1 cde 16.6 de 984.4 cdef 1614.9 cde 70.8 cd
NS9 1985.2 de 15.6 def 17.4 cd 1076.1 a 1324.6 de 66.9 e
2022 PS3 3144.4 a 22.1 a 22.3 a 920.0 c 2271.5 a 71.9 a
PS6 2777.8 bc 21.5 a 18.1 b 914.7 c 1980.2 bc 71.3 a
PS9 2388.9 d 16.6 c 19.7 ab 928.7 c 1699.3 d 71.1 ab
RS3 2944.4 b 22.2 a 21.8 a 966.7 ab 2085.0 b 70.8 ab
RS6 2700.0 c 21.8 a 20.0 ab 970.0 a 1904.9 c 70.5 abc
RS9 2111.1 ef 17.4 c 21.3 ab 963.3 ab 1483.8 ef 70.3 abc
NS3 2177.8 e 20.4 ab 19.3 ab 874.0 d 1504.0 e 69.1 c
NS6 1944.4 f 19.7 b 20.8 ab 935.3 bc 1354.3 f 69.6 bc
NS9 1622.2 g 12.3 d 18.0 b 928.7 c 1112.2 g 69.1 c
方差分析ANOVA
秸秆还田方式(T) ** ** NS ** ** **
播种深度(D) ** ** ** NS ** **
T×D * ** NS * * **
[1] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 252-272.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 252-272 (in Chinese).
[2] Sarker J R, Singh B P, Cowie A L, Fang Y Y, Collins D, Badgery W, Dalal R C. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil Tillage Res, 2018, 178: 209-223.
[3] 甄晓宇, 杨坚群, 栗鑫鑫, 刘兆新, 高芳, 赵继浩, 李颖, 钱必长, 李金融, 杨东清, 李向东. 播种深度对花生生育进程和叶片衰老的影响及其生理机制. 作物学报, 2019, 45: 1386-1397.
doi: 10.3724/SP.J.1006.2019.94074
Zhen X Y, Yang J Q, Li X X, Liu Z X, Gao F, Zhao J H, Li Y, Qian B C, Li J R, Yang D Q, Li X D. Effects and physiological mechanisms of sowing depth on the growth progress and leaf senescence of peanut. Acta Agron Sin, 2019, 45: 1386-1397 (in Chinese with English abstract).
[4] 刘娟, 汤丰收, 张俊, 臧秀旺, 董文召, 易明林, 郝西. 国内花生生产技术现状及发展趋势研究. 中国农学通报, 2017, 33(22): 13-18.
doi: 10.11924/j.issn.1000-6850.casb17050016
Liu J, Tang F S, Zhang J, Zang X W, Dong W Z, Yi M L, Hao X. Current status and development trends of peanut production technology in China. Chin Agric Sci Bull, 2017, 33(22): 13-18 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb17050016
[5] 谢明惠, 陈浩梁, 张光玲, 林璐璐, 苏卫华. 温度、土壤湿度和播种深度对花生种子萌发及幼苗生长的影响. 花生学报, 2017, 46(2): 52-59.
Xie M H, Chen H L, Zhang G L, Lin L L, Su W H. Effects of temperature, soil moisture and sowing depths on the seed germination and seedling growth of peanut. J Peanut Sci, 2017, 46(2): 52-59 (in Chinese with English abstract).
[6] 宋大利, 侯胜鹏, 王秀斌, 梁国庆, 周卫. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24: 1-21.
Song D L, Hou S P, Wang X B, Liang G Q, Zhou W. Nutrient resource quantity of crop straw and its potential of substituting. J Plant Nutr Fert, 2018, 24: 1-21 (in Chinese with English abstract).
[7] Guo L J, Zhang Z S, Wang D D, Li C F, Cao C G. Effects of short-term conservation management practices on soil organic carbon fractions and microbial community composition under a rice-wheat rotation system. Biol Fert Soils, 2015, 51: 65-75.
[8] 李逢雨, 孙锡发, 冯文强, 秦鱼生, 王昌全, 涂仕华. 麦秆、油菜秆还田腐解速率及养分释放规律研究. 植物营养与肥料学报, 2009, 15: 374-380.
Li F Y, Sun X F, Feng W Q, Qin Y S, Wang C Q, Tu S H. Nutrient release patterns and decomposing rates of wheat and rapeseed straw. Plant Nutr Fert Sci, 2009, 15: 374-380 (in Chinese with English abstract).
[9] Xu X, Pang D W, Chen J, Luo Y L, Zheng M J, Yin Y P, Li Y X, Li Y, Wang Z L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Res, 2018, 221: 71-80.
[10] 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应. 中国农业科学, 2021, 54: 596-607.
doi: 10.3864/j.issn.0578-1752.2021.03.013
Zheng F J, Wang X, Li S P, Liu X T, Liu Z P, Lu J J, Wu X P, Xi J L, Zhang J C, Li Y S. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice. Sci Agric Sin, 2021, 54: 596-607 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.013
[11] Zhao H L, Jiang Y H, Ning P, Liu J F, Zheng W, Tian X H, Shi J L, Xu M, Liang Z Y, Shar A G. Effect of different straw return modes on soil bacterial community, enzyme activities and organic carbon fractions. Soil Sci Soc Am J, 2019, 83, 638-648.
[12] Zhao J H, Liu Z X, Lai H J, Yang D Q, Li X D. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat-peanut rotation system. J Environ Manag, 2022, 306: 114468.
[13] 杨文钰, 屠乃美. 作物栽培学各论. 北京: 中国农业出版社, 2003. pp 88-90.
Yang W Y, Tu N M. On the Theory of Crop Cultivation. Beijing: China Agriculture Press, 2003. pp 88-90 (in Chinese).
[14] 岳丽杰, 文涛, 杨勤, 李卓, 李奇, 刘永红. 不同播种深度对玉米出苗的影响. 玉米科学, 2012, 20(5): 88-93.
Yue L J, Wen T, Yang Q, Li Z, Li Q, Liu Y H. Effects of different sowing depths on seeding emergence of maize. J Maize Sci, 2012, 20(5): 88-93 (in Chinese with English abstract).
[15] Amram A, Fadida-Myers A, Golan G, Nashef K, Ben-David R, Peleg Z. Effect of GA-sensitivity on wheat early vigour and yield components under deep sowing. Front Plant Sci, 2015, 6: 487.
[16] Molatudi R L, Mariga I K. The effect of maize seed size and depth of planting on seedling emergence and seedling vigour. J Appl Sci Res, 2009, 5: 2234-2237.
[17] Zhen X Y, Gao F, Li X D, Liu Z X, Zhao J H, Li Y, Wang Y, Li Y R, Wang Z Y, Lai H J, Pan X Y, Yang D Q. Responses of hypocotyl growth and seedling emergence with respect to soil sowing depth stress in peanut (Arachis hypogaea L). Arch Agron Soil Sci, 2020, 67: 519-535.
[18] 周芳, 程秋博, 金容, 杜伦静, 李小龙, 陈祥, 刘斌祥, 袁继超, 孔凡磊. 种子大小与播种深度对川中丘陵区玉米根系生长的影响. 中国生态农业学报(中英文), 2019, 27: 1799-1181.
Zhou F, Cheng Q B, Jin R, Du L J, Li X L, Chen X, Liu B X, Yuan J C, Kong F L. Effects of kernel size and sowing depth on maize root growth in the middle Sichuan hilly area. Chin J Eco- Agric, 2019, 27: 1799-1181 (in Chinese with English abstract).
[19] 江慧芳, 王雅琴, 刘春国. 三种脂肪酶活力测定方法的比较及改进. 化学与生物工程, 2007, (8): 72-75.
Jiang H F, Wang Y Q, Liu C G. Comparison and improvement of three determination methods for lipase activity. Chem Bioeng, 2007, (8): 72-75 (in Chinese with English abstract).
[20] 苏焕喜, 张改梅. 小麦种子的萌发与出苗及影响因素分析. 新农业, 2020, (22): 71-72.
Su H X, Zhang G M. Analysis of germination and emergence of wheat seeds and its influencing factors. Mod Agric, 2020, (22): 71-72 (in Chinese with English abstract).
[21] 高焕文, 李问盈, 李洪文. 中国特色保护性耕作技术. 农业工程学报, 2003, 19(3): 1-4.
Gao H W, Li W Y, Li H W. Conservation tillage technology with Chinese characteristics. Trans CSAE, 2003, 19(3): 1-4 (in Chinese with English abstract).
[22] 陈学文, 张晓平, 梁爱珍, 贾淑霞, 时秀焕, 范如芹, 魏守才. 耕作方式对黑土硬度和容重的影响. 应用生态学报, 2012, 23: 439-444.
Chen X W, Zhang X P, Liang A Z, Jia S X, Shi X H, Fan R Q, Wei S C. Effects of tillage mode on black soil’s penetration resistance and bulk density. Chin J Appl Ecol, 2012, 23: 439-444 (in Chinese with English abstract).
[23] 张丽华, 徐晨, 于江, 闫伟平, 孙宁, 谭国波, 赵洪祥, 李斐, 孟祥盟, 边少锋. 半湿润区秸秆还田对土壤水分、温度及玉米产量的影响. 水土保持学报, 2021, 35(4): 299-306.
Zhang L H, Xu C, Yu J, Yan W P, Sun N, Tan G B, Zhao H X, Li F, Meng X M, Bian S F. Effects of straw returning on soil moisture,temperature and maize yield in semi humid area. J Soil Water Conserv, 2021, 35(4): 299-306 (in Chinese with English abstract).
[24] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 秸秆还田配施氮肥对土壤性质及玉米水氮利用效率的影响. 作物学报, 2023, 49: 2820-2832.
Li R, Mian Y M, Hou X Q, Li P F, Wang X N. Effects of straw returning with nitrogen application on soil properties, water and nitrogen use efficiency of maize. Acta Agron Sin, 2023, 49: 2820-2832 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23065
[25] 焦彩强, 王益权, 刘军, 赵加瑞, 宋晓燕. 关中地区耕作方法与土壤紧实度时空变异及其效应分析. 干旱地区农业研究, 2009, 27(3): 7-12.
Jiao C Q, Wang Y Q, Liu J, Zhao J R, Song X Y. Spatial-temporal variability of soil hardness and effect of soil hardness on other soil properties in rotary tillage in Guanzhong farmland. Agric Res Arid Areas, 2009, 27(3): 7-12 (in Chinese with English abstract).
[26] 高海燕, 程庆军, 田承华, 高鹏, 张俊珍, 郭睿, 乔婧, 张福耀. 播种深度对高粱出苗和幼苗生长的影响. 中国农学通报, 2014, 30(30): 89-94.
doi: 10.11924/j.issn.1000-6850.2014-1393
Gao H Y, Cheng Q J, Tian C H, Gao P, Zhang J Z, Guo R, Qiao J, Zhang F Y. Effects of sowing depth on sorghum seedling emergence and growth. Chin Agric Sci Bull, 2014, 30(30): 89-94 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2014-1393
[27] 宋兆伟, 郝丽珍, 黄振英, 李娜, 赵清岩. 光照和温度对沙芥和斧翅沙芥植物种子萌发的影响. 生态学报, 2010, 30: 2562-2568.
Song Z W, Hao L Z, Huang Z Y, Li N, Zhao Q Y. Effects of light and temperature on the germination on of Pugionium cornutum (L.) Gaertn and Pugionium dolabratum Maxim. seeds. Acta Ecol Sin, 2010, 30: 2562-2568 (in Chinese with English abstract).
[28] Sanghera G S, Parray G A. Variation for drought tolerance in hill rice genotypes. Crop Improv, 2010, 37: 21-24.
[29] 厉广辉, 万勇善, 刘风珍, 孙爱情, 马登超. 花生不同播种深度的出苗期模拟研究. 山东农业科学, 2009, (12): 22-23.
Li G H, Wan Y S, Liu F Z, Sun A Q, Ma D C. Simulation study of peanut emergence date with different sowing depth. Shandong Agric Sci, 2009, (12): 22-23 (in Chinese with English abstract).
[30] 王庆锁. 土壤质地与播种深度对苜蓿出苗率的影响. 草地学报, 2001, 9: 239-242.
doi: 10.11733/j.issn.1007-0435.2001.03.015
Wang Q S. Effects of soil texture and sowing depth on emergence rate of alfalfa. Acta Agrestia Sin, 2001, 9: 239-242 (in Chinese with English abstract).
[31] 李朋朋, 张改梅, 王雪菁. 影响花生出苗率的原因及改善措施. 种子世界, 2013, (11): 40.
Li P P, Zhang G M, Wang X J. Causes affecting peanut seedling emergence rate and improvement measures. Seed World, 2013, (11): 40 (in Chinese with English abstract).
[32] 徐宜民, 时焦. 花生种子萌发中主要贮藏物质的变化. 中国油料, 1993, (2): 37-40.
Xu Y M, Shi J. Changes of main storage substances in peanut seed germination. Oil Crop Chin, 1993, (2): 37-40 (in Chinese with English abstract).
[33] 申琳, 张智强, 史兰, 石凤, 范蓓, 生吉萍. 花生种子萌发过程中蛋白酶, 脂肪酶及 SOD, CAT 酶活性变化. 中国食品学报, 2003, (增刊1): 24-27.
Shen L, Zhang Z Q, Shi L, Shi F, Fan B, Sheng J P. Changes of the activities of proteinase, Lipase, SOD and CAT during the germination of the peanut seed. J Chin Inst Food Sci Technol, 2003, (S1): 24-27 (in Chinese with English abstract).
[34] 李清芳, 辛天蓉, 马成仓, 王琳. pH值对小麦种子萌发和幼苗生长代谢的影响. 安徽农业科学, 2003, 31: 185-187.
Li Q F, Xin T R, Ma C C, Wang L. Effect of pH value on wheat seed germination and seedlings growth and metabolism. J Anhui Agric Sci, 2003, 31: 185-187 (in Chinese with English abstract).
[35] 孙建, 周红英, 乐美旺, 颜廷献, 饶月亮, 颜小文, 梁俊超, 叶艳英. 芝麻种子萌发动态及其代谢生理变化研究. 中国农业科技导报, 2020, 22(8): 41-48.
doi: 10.13304/j.nykjdb.2019.0452
Sun J, Zhou H Y, Le M W, Yan T X, Rao Y L, Yan X W, Liang J C, Ye Y Y. Germination dynamics and physiological changes of metabolism in sesame seed. J Agric Sci Technol, 2020, 22(8): 41-48 (in Chinese with English abstract).
[36] 曾丽, 赵梁军, 苏立峰. 一串红种子发育及内含物对种子萌发的影响. 中国农业大学学报, 2000, 5(1): 35-38.
Zeng L, Zhao L J, Su L F. Effects of seed development and inclusions on seed germination of salvia splendens. J China Agric Univ, 2000, 5(1): 35-38 (in Chinese with English abstract).
[37] 孙奎香, 于遒功, 张玉凤, 丁红, 慈敦伟, 康涛, 戴良香. 水分胁迫对花生种子萌发过程中贮藏物质降解的影响. 中国农学通报, 2012, 28(12): 60-65.
Sun K X, Yu Q G, Zhang Y F, Ding H, Ci D W, Kang T, Dai L X. The effects of water stress on the degradation of storage materials during peanut seed germination process. Chin Agric Sci Bull, 2012, 28(12): 60-65 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2011-2794
[38] 宋雨函, 张锐. 高等植物下胚轴伸长的调控机制. 生命的化学, 2021, 41: 1116-1125.
Song Y H, Zhang R. Regulation mechanism of hypocotyl elongation in higher plant. Chem Life, 2021, 41: 1116-1125 (in Chinese with English abstract).
[39] Qin F F, Xu H L, Lyu D Q, Tetsuo T. Responses of hypocotyl elongation to light and sowing depth in peanut seedlings. J Food Agric Environ, 2012, 10: 607-612.
[40] 刘斌祥, 程秋博, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 种子大小与播种深度对玉米出苗、苗期光合特性与保护酶活性的影响. 华北农学报, 2020, 35(2): 98-106.
doi: 10.7668/hbnxb.20190319
Liu B X, Cheng Q B, Zhou F, Du L J, Li X L, Kong F L, Yuan J C. Effects of seed size and sowing depth on maize seedling emergence and photosynthesis characteristics and protective enzyme activities in seedling stage. Acta Agric Boreali-Sin, 2020, 35(2): 98-106 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20190319
[41] Zuo Q S, Kuai J, Zhao L, Hu Z, Wu J, Zhou G. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Res, 2017, 203: 47-54.
[42] 郭陞垚, 陈剑洪, 王金线, 肖宇, 陈永水. 花生种子大小对产量及品质的影响. 福建农业学报, 2012, 27: 700-706.
Guo S Y, Chen J H, Wang J X, Xiao Y, Chen Y S. Effects of peanut seed size on yield and quality. Fujian J Agric Sci, 2012, 27: 700-706 (in Chinese with English abstract).
[43] 范红霞. 秸秆全量还田下不同耕作方式对小麦出苗质量及产量构成的影响. 种子科技, 2018, 36(2): 117-118.
Fan H X. Effects of different tillage methods on emergence quality and yield components of wheat under total straw returning. Seed Sci Technol, 2018, 36(2): 117-118 (in Chinese with English abstract).
[44] 于庆峰, 苗庆丰, 史海滨, 胡敏, 张俊友. 耕作方式对秸秆覆盖玉米田春播期土壤水热盐状况的影响. 水土保持研究, 2019, 26(3): 265-268.
Yu Q F, Miao Q F, Shi H B, Hu M, Zhang J Y. Effects of tillage methods on soil water, heat and salt of field maize in the period of spring sowing. Res Soil Water Conserv, 2019, 26(3): 265-268 (in Chinese with English abstract).
[45] 田姝红, 周健强, 张春梅. 播期和播种深度耦合对花生生长、产量和品质的影响. 辽宁农业科学, 2022, (1): 45-49.
Tian S H, Zhou J Q, Zhang C M. Effect of sowing date and sowing depth on the growth, yield and quality of peanut. Liaoning Agric Sci, 2022, (1): 45-49 (in Chinese with English abstract).
[46] 赵继浩, 李颖, 钱必长, 李金融, 刘兆新, 高芳, 杨坚群, 甄晓宇, 杨东清, 李向东. 秸秆还田与耕作方式对麦后复种花生田土壤性质和产量的影响. 水土保持学报, 2019, 33(5): 272-280.
Zhao J H, Li Y, Qian B Z, Li J R, Liu Z X, Gao F, Yang J Q, Zhen X Y, Yang D Q, Li X D. Effects of straw return and tillage on soil properties and yield of multi-cropping peanut after wheat. J Soil Water Conserv, 2019, 33(5): 272-280 (in Chinese with English abstract).
[47] 吴菊香, 王宝亮, 王海兰, 许婷婷, 谢宏峰, 许曼琳, 杨吉顺, 陈蕾, 李尚霞, 迟玉成. 不同耕作方式对花生田蛴螬发生及产量的影响. 湖北农业科学, 2013, 52: 1565-1566.
Wu J X, Wang B L, Wang H L, Xu T T, Xie H F, Xu M L, Yang J S, Chen L, Li S X, Chi Y C. Effects of different tillage managements on white grubs’ occurrence and yield of peanut in peanut field. Hubei Agric Sci, 2013, 52: 1565-1566 (in Chinese with English abstract).
[1] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[2] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[3] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[4] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[5] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[6] 鲁清, 刘浩, 李海芬, 王润风, 黄璐, 梁炫强, 陈小平, 洪彦彬, 刘海燕, 李少雄. 花生含油量全基因组选择及近红外光谱筛选的育种技术探究[J]. 作物学报, 2024, 50(4): 969-980.
[7] 张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展[J]. 作物学报, 2024, 50(3): 529-542.
[8] 郅晨阳, 薛晓梦, 吴洁, 李雄才, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 洪彦彬, 姜慧芳, 雷永, 廖伯寿. 花生籽仁蔗糖含量遗传模型分析[J]. 作物学报, 2024, 50(1): 32-41.
[9] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[10] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[11] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[12] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[13] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[14] 李盼, 陈桂平, 苟志文, 殷文, 樊志龙, 胡发龙, 范虹, 柴强. 绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应[J]. 作物学报, 2023, 49(5): 1316-1326.
[15] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .