欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2091-2105.doi: 10.3724/SP.J.1006.2024.34166

• 耕作栽培·生理生化 • 上一篇    下一篇

长江流域迟播甘蓝型油菜播种期和播种量优化配置研究

娄洪祥1(), 黄肖玉1, 江萌2, 宁宁1, 卞孟磊1, 张磊1, 罗东旭1, 秦梦倩1, 蒯婕1, 汪波1, 王晶1, 赵杰1, 徐正华1,*(), 周广生1   

  1. 1华中农业大学植物科学技术学院 / 湖北洪山实验室 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2湖北省现代农业展示中心, 湖北武汉 430070
  • 收稿日期:2023-10-14 接受日期:2024-01-12 出版日期:2024-08-12 网络出版日期:2024-03-09
  • 通讯作者: * 徐正华, E-mail: xzh@mail.hzau.edu.cn
  • 作者简介:E-mail: davidlou@webmail.hzau.edu.cn
  • 基金资助:
    湖北省重点研发计划项目(2023BBB028)

Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin

LOU Hong-Xiang1(), HUANG Xiao-Yu1, JIANG Meng2, NING Ning1, BIAN Meng-Lei1, ZHANG Lei1, LUO Dong-Xu1, QIN Meng-Qian1, KUAI Jie1, WANG Bo1, WANG Jing1, ZHAO Jie1, XU Zheng-Hua1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Hubei Hongshan Laboratory / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Hubei Modern Agriculture Exhibition Center, Wuhan 430070, Hubei, China
  • Received:2023-10-14 Accepted:2024-01-12 Published:2024-08-12 Published online:2024-03-09
  • Contact: * E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    Key Research and Development Program of Hubei Province(2023BBB028)

摘要:

为解决长江流域稻油茬口矛盾, 提高冬闲田利用率, 亟须迟播油菜(10月25日之后播种)配套技术研究。本研究以早熟品种‘华油杂137’为材料, 在湖北武汉进行2年播种期(10月25日至11月15日间, 各播种期间隔3 d, 用S1~S8表示)和播种量(2.5、5.0、7.5、10.0和12.5 kg hm-2, 用R1~R5表示)单因素试验, 考察生育期、成苗动态、农艺性状、产量和倒伏指标, 统计有效积温, 通过线性回归和平滑曲线拟合分析, 优化播种期和播种量的配置参数, 为迟播油菜生产提供技术支撑。结果表明, (1) 播种期推迟, 迟播油菜的生育期缩短、根颈粗降低、分枝数减少、产量降低且茎秆倒伏指数增加; 4个生育期中, 苗期和花期有效积温与产量呈极显著正相关。(2) 播种量增加, 各生育期成苗数和收获密度提高, 但生育期缩短、有效积温减少, 角果层厚度降低、倒伏指数先降后增、产量呈先增后降趋势。(3) 2年不同播种期产量数据回归分析表明, 播种期推迟至S3~S4时, 越冬前有效积温保持在317.1℃以上, 苗期有效积温达401.1℃, 终花35 d收获产量可达2700.0 kg hm-2, 倒伏指数为1.5左右; 2年不同播种量产量数据平滑曲线拟合分析表明, 不同播种量下收获密度与产量呈抛物线关系, 收获密度为64.2×104株 hm-2时终花35 d收获产量达峰值, 为2948.5 kg hm-2, 而倒伏指数为1.6。综上, 配置7.5~10.0 kg hm-2的播种量确保收获密度达64.2×104株 hm-2, 抢时播种确保冬前有效积温达317.1℃, 可显著提高迟播油菜产量与抗倒性。

关键词: 迟播油菜, 播种期, 播种量, 产量, 抗倒性, 有效积温

Abstract:

To solve rice-rapeseed-stubble contradiction in the Yangtze River Basin and to improve the utilization rate of wintering idle field, it is urgent to carry out the research on supporting technologies for late-sowing rapeseed (sown after October 25). In this study, the early-maturing variety ‘Huayouza 137’ was used as the material, while two one-way experiment on sowing date (S1-S8, each sowing date was delayed by three days from October 25 to November 15) and sowing rate (R1-R5, 2.5, 5.0, 7.5, 10.0, and 12.5 kg hm-2) was set in Wuhan, Hubei, in two years. The growth period, seedling dynamics, agronomic traits, the yield, and lodging related indexes were investigated. The effective accumulated temperature was counted. Linear regression and smooth curve fitting analysis were carried out. The allocation parameters of sowing date and sowing rate at late-sowing stage rapeseed were optimized, which provided technical support for the production of late-sowing rapeseed. The results showed as follows: (1) With the sowing date delaying, the growth period was shortened, the root neck diameter, the number of branches and yield was reduced, the lodging index was increased at late-sowing stage in rapeseed. Among the four growth periods of rapeseed, the effective accumulated temperature during seedling and flowering stage was positively correlated with the actual yield. (2) With the sowing rate increasing at late-sowing stage in rapeseed, the number of seedlings and the harvest density was increased, but the growth period was shortened, the total effective accumulated temperature and silique-layer thickness were decreased, lodging index was first decreased and then increased, and the yield showed a trend of the first increasing and then decreasing. (3) Regression analysis on the yield data of different sowing dates in two years was carried out. The results showed that the effective accumulated temperature before wintering and at seedling stage could be maintained above 317.1℃ and 401.1℃, respectively, when the sowing date was postponed to S3-S4, and the yield of 35 days after final flowing reached 2700.0 kg hm-2, while lodging index was above 1.5. The smooth-curve-fitting analysis on the yield data of different sowing rates in two years was carried out. The results showed that the harvest density was parabolic with yield under different sowing rates, and the average peak yield of 35 days after final flowing was 2948.5 kg hm-2 under harvest density of 64.2×104 plants hm-2, while lodging index was 1.6. In summary, the sowing rate of 7.5-10.0 kg hm-2 (harvest density of 64.2×104 plants hm-2) and sowing against the clock (the average effective accumulated temperature before wintering of 317.1℃) could improve the yield and lodging index of late-sowing rapeseed.

Key words: late-sowing rapeseed, sowing date, sowing rate, yield, lodging resistance, the effective accumulated temperature

表1

两个生长季试验原始土壤状况"

年份
Year
全氮
Total nitrogen
(g kg-1)
碱解氮
Alkaline nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
pH
2021-2022 2.02 99.23 29.29 156.30 6.55
2022-2023 1.74 89.83 29.05 131.25 6.68

图1

两个生长季的主要气象因子 Ta-max、Ta-avg、Ta-min、Raintotal和RHavg分别代表月均最高地表气温、月均地表气温、月均最低地表气温、月总降雨量和月均湿度。"

图2

播种量和播种期对迟播油菜成株率的影响 R1、R2、R3、R4和R5表示播种量分别为2.5、5、7.5、10.0和12.5 kg hm-2。S1、S2、S3、S4、S5、S6、S7和S8表示播种期分别为10月25日、10月28日、10月31日、11月3日、11月6日、11月9日、11月12日和11月15日。S和R分别表示播种期和播种量, 不同小写字母表示处理间多重比较差异达显著水平(P < 0.05)。在单因素方差分析(ANOVA)中, **表示在0.01概率水平差异显著。"

图3

播种期对生育期和有效积温动态的影响 不同播种期下2021-2022 (A)和2022-2023 (B) 2个生长季的有效积温变化和越冬期苗情状态(C)。处理同图2。折线图最上方数字(保留1位小数)分别为苗期(越冬前和越冬后)、蕾薹期、花期和角果发育期的有效积温, 图中数字(单位: 天, d)分别为苗期、蕾薹期、花期和角果发育期的持续天数, X坐标轴数字为生育期。"

表2

播种量对全生长季有效积温和各生育期天数的影响"

年份
Year
播种量
Sowing rate
有效积温
Effective
accumulated
temperature (℃)
苗期
Seedling stage (d)
蕾薹期
Bolting
stage (d)
花期
Flowering stage (d)
角果发育期
Silique
development stage (d)
生育期
Growth
period (d)
2021-2022 R1 1421.3 112 19 21 40 192
R2 1399.9 111 18 21 39 189
R3 1399.9 110 18 20 38 186
R4 1378.4 110 17 19 38 184
R5 1358.2 108 18 19 37 182
2022-2023 R1 1399.7 116 18 21 37 192
R2 1354.3 114 17 21 37 189
R3 1299.4 112 17 20 37 186
R4 1256.3 109 18 20 36 183
R5 1226.6 109 17 20 35 181

图4

在不同收获期下播种期和播种量对实际产量的影响 处理同图2。收获期分别为4月20日、终花后35 d (35 DAF)和完全成熟期(FM)。H、S和R分别表示收获期、播种期和播种量, 不同小写字母表示同一收获期处理间多重比较差异达显著水平(P < 0.05)。在二因素方差分析中, *和**分别表示在0.05和0.01概率水平差异显著。"

表3

播种期对迟播油菜产量相关性状的影响"

年份
Year
播种期
Sowing date
单株角果数
Siliques
per plant
千粒重
1000-seed weight (g)
每角粒数
Seeds per silique
理论产量
Theoretical yield (kg hm-2)
地上部生物量
Above-ground biomass (t hm-2)
收获指数
Harvest index
2021-2022 S1 164.3 a 4.264 a 17.4 a 3380.2 a 11.4 a 0.298 a
S2 153.5 b 4.253 a 17.0 ab 3335.7 a 11.2 a 0.297 a
S3 133.7 c 4.234 a 17.0 ab 3118.0 b 10.4 ab 0.303 a
S4 123.8 d 4.074 b 16.9 ab 2827.3 c 9.7 b 0.292 a
S5 94.5 ef 4.086 b 16.5 ab 2405.9 d 8.2 c 0.293 a
S6 99.0 e 4.064 bc 16.1 b 2408.0 d 8.2 c 0.295 a
S7 92.0 f 4.061 bc 16.2 b 2340.6 d 7.6 c 0.310 a
S8 82.7 g 3.963 c 16.2 b 2108.0 e 7.1 c 0.299 a
2022-2023 S1 167.7 a 4.488 a 15.7 a 3425.2 a 12.0 a 0.286 abc
S2 159.3 a 4.477 a 15.5 a 3343.3 ab 11.3 a 0.296 ab
S3 135.0 b 4.457 a 14.8 ab 3267.0 b 11.0 a 0.300 ab
S4 123.7 b 4.289 b 14.8 ab 2434.1 c 9.6 b 0.255 c
S5 101.7 c 4.301 b 14.8 ab 2187.4 d 7.6 c 0.288 abc
S6 85.7 d 4.024 c 14.3 ab 1513.0 e 4.8 d 0.316 a
S7 79.0 d 4.020 c 14.0 b 983.3 f 3.7 de 0.267 bc
S8 77.3 d 3.924 c 13.5 b 947.8 f 3.3 e 0.291 abc
F 年份Year (Y) 1.316 55.423** 105.813** 452.764** 43.321** 3.514
F-value 播种期Sowing date (S) 228.576** 51.011** 3.056* 566.007** 86.620** 1.304
年份×播期Y×S 3.359** 8.352** 0.536 84.606** 12.852** 1.466

表4

播种量对迟播油菜产量相关性状的影响"

年份
Year
播种量
Sowing rate
单株角果数
Siliques per plant
千粒重
1000-seed weight (g)
每角果粒数
Seeds per
silique
理论产量
Theoretical yield
(kg hm-2)
地上部生物量
Aboveground biomass (t hm-2)
收获指数
Harvest
index
2021-2022 R1 157.6 a 4.105 d 20.8 a 2325.1 d 7.1 d 0.329 a
R2 125.2 b 4.191 c 20.6 a 2579.0 c 8.6 c 0.300 b
R3 98.0 c 4.295 b 19.6 ab 3096.8 b 11.0 b 0.282 b
R4 66.6 d 4.387 a 18.0 bc 3452.5 a 12.3 a 0.282 b
R5 58.1 d 4.233 c 16.0 c 3226.3 b 12.9 a 0.251 c
2022-2023 R1 173.7 a 4.024 d 17.0 a 2734.8 b 8.6 b 0.321 a
R2 145.0 b 4.109 c 14.8 b 3152.2 a 10.7 a 0.295 b
R3 106.0 c 4.211 b 13.8 b 3199.6 a 11.1 a 0.290 b
R4 56.0 d 4.301 a 14.4 b 2538.9 bc 8.9 b 0.286 b
R5 47.3 d 4.150 c 14.4 b 2338.5 c 8.2 b 0.284 b
F
F-value
年Year (Y) 2.601 63.435** 97.607** 17.564** 24.121** 2.826
播种期Sowing date (S) 236.923** 81.635** 9.256** 37.097** 41.470** 25.997**
年×播种期Y×S 5.403** 0.008 3.620* 86.909** 56.428** 3.902*

表5

播种期对迟播油菜成熟期农艺性状的影响"

年份
Year
播种期
Sowing date
根颈粗
Root neck
diameter (mm)
有效分枝高度
Effective branch height (cm)
角果层厚度
Silique-layer
thickness (cm)
株高
Plant height (cm)
有效分枝数
Effective branch number
2021-2022 S1 11.8 ab 82.0 d 43.3 c 147.5 a 4.4 ab
S2 12.6 ab 82.7 d 48.0 a 147.0 ab 4.3 abc
S3 12.1 ab 88.0 c 48.7 a 148.5 a 4.8 a
S4 12.9 a 94.5 b 46.8 ab 148.5 a 4.5 ab
S5 11.7 ab 93.7 b 44.2 bc 143.2 bc 4.2 abc
S6 11.4 b 95.5 b 43.3 c 139.7 c 3.8 bc
S7 10.1 c 103.3 a 34.5 d 141.2 c 3.7 c
S8 8.0 d 104.8 a 31.3 e 140.7 c 2.8 d
2022-2023 S1 14.0 a 90.0 c 57.3 a 164.0 a 6.3 a
S2 12.9 b 90.3 c 54.7 ab 162.0 ab 5.7 a
S3 10.2 c 96.3 bc 52.3 bc 159.3 b 4.5 b
S4 9.9 cd 97.3 b 48.7 d 154.0 c 4.3 b
S5 9.1 d 99.3 ab 50.0 cd 145.3 d 3.8 bc
S6 6.1 ef 102.0 ab 49.0 cd 132.3 e 3.3 c
S7 6.5 e 104.7 a 43.7 e 132.0 e 3.7 bc
S8 5.6 f 104.0 a 42.7 e 130.0 e 3.3 c
F
F-value
年份Year (Y) 140.820** 26.314** 196.898** 18.343** 4.812*
播种期Sowing date (S) 80.423** 26.664** 53.309** 90.559** 16.237**
年份×播期Y×S 22.969** 1.581 7.512** 33.614** 5.173**

表6

播种量对迟播油菜成熟期农艺性状的影响"

年份
Year
播种量
Sowing rate
根颈粗
Root neck
diameter (mm)
有效分枝高度
Effective branch height (cm)
角果层厚度
Silique-layer thickness (cm)
株高
Plant height
(cm)
有效分枝数
Effective branch number
2021-2022 R1 11.6 a 95.1 b 49.9 a 156.3 a 5.0 a
R2 10.7 b 95.9 b 48.1 a 155.5 a 4.2 b
R3 10.8 b 97.1 b 47.7 a 155.5 a 4.0 b
R4 9.0 c 99.3 b 42.9 b 145.1 b 3.0 c
R5 6.7 d 105.7 a 41.9 b 143.3 b 2.5 c
2022-2023 R1 12.8 a 77.0 c 59.0 a 154.0 b 5.9 a
R2 9.9 b 92.0 b 47.7 b 158.7 a 5.1 a
R3 9.3 bc 93.0 b 42.3 c 155.3 ab 4.8 a
R4 8.6 c 95.7 b 37.0 d 138.3 c 1.3 b
R5 4.7 d 103.3 a 30.0 e 137.3 c 1.0 b
F
F-value
年份Year (Y) 28.622** 62.592** 24.684** 10.526** 0.204
播种期Sowing date (S) 259.382** 53.705** 119.241** 97.089** 38.293**
年份×播期Y×S 16.290** 13.209** 36.136** 6.074** 6.680**

图5

播种期和播种量对迟播油菜倒伏性状的影响 处理同图2。S和R分别表示播种期和播种量, 不同小写字母表示处理间多重比较差异达显著水平(P < 0.05)。单因素方差分析中, **表示在0.01概率水平差异显著, NS表示差异不显著。"

图6

迟播油菜的播种期和播种量优化配置综合分析 播种期(A)和播种量(B)试验中各指标的一般线性回归分析, 各生育期有效积温和产量的一般线性回归分析(C)。播种期试验中苗期有效积温(D)和播种量试验中收获密度(E)同实际产量的平滑曲线拟合分析。迟播油菜播种期和播种量优化配置机理图(F)。图中缩写如下: S (播种期)、R (播种量)、RND (根颈粗)、BH (有效分枝高度)、SLT (角果层厚度)、PH (株高)、BN (分枝数)、LI (倒伏指数)、BS (断裂强度)、SPP (单株角果数)、TSW (千粒重)、SPS (每角果粒数)、YPP (单株产量)、AY (实际产量)、GP (生育期)、EAT (总有效积温)、HD (收获密度)、EAT-S (苗期有效积温)、EAT-B (蕾薹期有效积温)、EAT-F (花期有效积温)、EAT-M (角果发育期有效积温)。相关性系数临界值r值, * P < 0.05, ** P < 0.01, *** P < 0.001。"

[1] FAO. Statistical Databases. Food and Agriculture Organization of the United Nations, 2021, http://www.fao.org/.
[2] 甘国渝, 邹家龙, 陈曦, 朱海, 金慧芳, 李继福. 中国油菜生产格局与施肥研究现状. 湖北农业科学, 2022, 61(1): 5-11.
Gan G Y, Zou J L, Chen X, Zhu H, Jin H F, Li J F. Research status of rape production pattern and fertilization in China. Hubei Agric Sci, 2022, 61(1): 5-11 (in Chinese with English abstract).
[3] 叶鹏, 贺继奎, 何泽威, 许本波, 张学昆, 徐劲松. 不同类型甘蓝型油菜耐迟播生长能力差异分析. 中国油料作物学报, 2023, https://doi.org/10.19802/j.issn.1007-9084.2023014.
Ye P, He J K, He Z W, Xu B B, Zhang X K, Xu J S. Growth ability of rapeseed (Brassica napus L.) seedlings under late-sowing condition. Chin J Oil Crop Sci, 2023, https://doi.org/10.19802/j. issn.1007-9084.2023014 (in Chinese with English abstract).
[4] 马霓, 张春雷, 李俊, 余利平, 刘丹, 李光明. 播期和密度对免耕直播油菜生长及产量的影响. 湖北农业科学, 2010, 49: 1580-1583.
Ma N, Zhang C L, Li J, Yu L P, Liu D, Li G M. Effects of sowing date and plant density on growth and yield of direct seeding rapeseed (Brassica napus L.) under no tillage cultivation condition. Hubei Agric Sci, 2010, 49: 1580-1583 (in Chinese with English abstract).
[5] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Bai C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.34017
[6] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.08.004
[7] 邵科, 朋文欢. 长江流域冬闲田油菜种植的现状趋势、服务支撑和产业链拓展情况报告:基于632份农民合作社和家庭农场的数据分析. 中国农民合作社, 2023, 15(1): 10-11.
Shao K, Peng W H. Report on the current situation and trend, service support and industrial chain expansion of rapeseed planting in winter idle fields in the Yangtze River Basin:based on the data analysis of 632 farmer cooperatives and family farms. Chin Farm Coop, 2023, 15(1): 10-11 (in Chinese with English abstract).
[8] 张杏燕, 宋波, 李德富, 郭永华, 董军刚. 晚播和播量对油菜农艺性状及产量的影响. 西北农业学报, 2020, 29: 1364-1371.
Zhang X Y, Song B, Li D F, Guo Y H, Dong J G. Effect of late sowing and seeding rates on the agronomic traits and yield of rapeseed. Acta Agric Boreali-Occident Sin, 2020, 29: 1364-1371 (in Chinese with English abstract).
[9] 蒋美艳, 李秋红, 李延莉, 江建霞, 杨立勇, 周德平, 吴淑杭, 王伟荣. 播种量和播种期对上海绿肥油菜生物产量及养分积累的影响. 上海农业学报, 2021, 37(1): 35-38.
Jiang M Y, Li Q H, Li Y L, Jiang J X, Yang L Y, Zhou D P, Wu S H, Wang W R. Effects of sowing rate and sowing date on biomass and nutrient accumulation of green manure rape in Shanghai. Acta Agric Shanghai, 2021, 37(1): 35-38 (in Chinese with English abstract).
[10] Rahimitanha S, Woodcock T, Spink J, Forristal P D, Berry P M. The impact of sowing date on soil mineral nitrogen uptake efficiency and fertilizer N uptake efficiency for winter oilseed rape (Brassica napus L.) in Ireland. Agronomy (Basel), 2022, 12: 1551.
[11] Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97-105.
[12] 官春云, 王国槐, 赵均田. 油菜生态特性的研究: I. 甘蓝型油菜(B. napus)光温生态特性的初步研究. 作物学报, 1985, 11: 115-120.
Guan C Y, Wang G H, Zhao J T. Research on the ecological characteristics of rapeseed: I. A preliminary study on the light- temperature ecological characteristics of rapeseed (B. napus). Acta Agron Sin, 1985, 11: 115-120 (in Chinese with English abstract).
[13] 李小勇, 顾炽明, 刘康, 廖星, 黄威, 杨志远, 秦璐. 施氮量对迟播油菜氮素利用和产量品质的影响. 中国农业科学, 2021, 54: 3726-3736.
doi: 10.3864/j.issn.0578-1752.2021.17.014
Li X Y, Gu C M, Liu K, Liao X, Huang W, Yang Z Y, Qin L. Effects of nitrogen application rate on nitrogen use efficiency, yield and quality of late sowing rapeseed. Sci Agric Sin, 2021, 54: 3726-3736 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.17.014
[14] Ozer H. Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. Eur J Agron, 2003, 19: 453-463.
[15] Dingkuhn M, De Datta S K, Pamplona R, Javellana C, Schnier H F. Effect of late-season N fertilization on photosynthesis and yield of transplanted and direct-seeded tropical flooded rice: II. A canopy stratification study. Field Crops Res, 1992, 28: 235-249.
[16] 巩若琳, 宋波, 杨志叶, 路丽静, 董军刚. 迟播和密度对不同油菜品种抗倒伏及产量的影响. 作物学报, 2023, 49: 1-16.
Gong R L, Song B, Yang Z Y, Lu L J, Dong J G. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars. Acta Agron Sin, 2023, 49: 1-16 (in Chinese with English abstract).
[17] 朱庆洋, 周祥宇, 冷锁虎, 陆俊瑶, 左青松, 杨光. 播种量对油菜毯苗生长的影响. 中国油料作物学报, 2020, 42: 216-222.
Zhu Q Y, Zhou X Y, Leng S H, Lu J Y, Zuo Q S, Yang G. Effect of seeding amount on rapeseed blanket seedling growth. Chin J Oil Crop Sci, 2020, 42: 216-222 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020042
[18] 雷海霞, 陈爱武, 张长生, 罗凯世, 陈新国, 夏起昕, 周广生, 吴江生, 田新初. 共生期与播种量对水稻套播油菜生长及产量的影响. 作物学报, 2011, 37: 1449-1456.
doi: 10.3724/SP.J.1006.2011.01449
Lei H X, Chen A W, Zhang C S, Luo K S, Chen X G, Xia Q X, Zhou G S, Wu J S, Tian X C. Effect of symbiosis period and seeding amount on growth and yield of rape-seed under sowing rice. Acta Agron Sin, 2011, 37: 1449-1456 (in Chinese with English abstract).
[19] 蒯婕, 李真, 汪波, 刘芳, 叶俊, 周广生. 密度和行距配置对油菜苗期性状及产量形成的影响. 中国农业科学, 2021, 54: 2319-2332.
doi: 10.3864/j.issn.0578-1752.2021.11.006
Kuai J, Li Z, Wang B, Liu F, Ye J, Zhou G S. Effects of density and row spacing on seedling traits of rapeseed and seed yield. Sci Agric Sin, 2021, 54: 2319-2332 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.11.006
[20] Wang C Y, Yan Z K, Wang Z K, Batool M, El-Badri A M, Bai F, Li Z, Wang B, Zhou G S, Kuai J. Subsoil tillage promotes root and shoot growth of rapeseed in paddy fields and dryland in Yangtze River Basin soils. Eur J Agron, 2021, 130: 126351.
[21] 陈杨, 王磊, 白由路, 卢艳丽, 倪露, 王玉红, 徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系. 中国农业科学, 2021, 54: 4761-4777.
doi: 10.3864/j.issn.0578-1752.2021.22.005
Chen Y, Wang L, Bai Y L, Lu Y L, Ni L, Wang Y H, Xu M Z. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels. Sci Agric Sin, 2021, 54: 4761-4777 (in Chinese with English abstract).
[22] Ookawa T, Ishihara K. Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice. Jpn J Crop Sci, 1992, 61: 419-425.
[23] 余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制. 作物学报, 2023, 49: 1601-1615.
doi: 10.3724/SP.J.1006.2023.24115
Yu X Y, Wang C Y, Li D S, Wang Z K, Kuai J, Wang B, Wang J, Xu Z H, Zhou G S. Formation mechanism of yield stability in high-yielding rapeseed varieties. Acta Agron Sin, 2023, 49: 1601-1615 (in Chinese with English abstract).
[24] 赵佩欧, 郑可助, 王春猜. 迟播对机收油菜浙油18生育期和产量的影响. 浙江农业科学, 2011, 48: 333-334.
Zhao P O, Zheng K Z, Wang C C. Effects of late sowing on growth period and yield of machine-harvested rapeseed Zheyou 18. J Zhejiang Agric Sci, 2011, 48: 333-334 (in Chinese with English abstract).
[25] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量. 作物学报, 2022, 48: 667-681.
Yuan J Q, Liu Y Y, Xu K, Li G H, Chen T Y, Zhou H Y, Guo B W, Huo Z Y, Dai Q G, Zhang H C. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice. Acta Agron Sin, 2022, 48: 667-681 (in Chinese with English abstract).
[26] 董明辉, 陈培峰, 江贻, 曹鹏辉, 宋云生, 顾俊荣, 谢裕林, 乔中英, 张文地, 黄丽芬. 江苏太湖地区不同生育类型粳稻品种产量对不同播期气候因子的响应. 作物学报, 2021, 47: 952-963.
doi: 10.3724/SP.J.1006.2021.02031
Dong M H, Chen P F, Jiang Y, Cao P H, Song Y S, Gu J R, Xie Y L, Qiao Z Y, Zhang W D, Huang L F. Response of yield of different growth types of japonica rice varieties to climatic factors at different sowing dates in Taihu of Jiangsu province. Acta Agron Sin, 2021, 47: 952-963 (in Chinese with English abstract).
[27] 姜海杨, 孙万仓, 曾秀存, 方彦, 陈姣荣, 史鹏辉, 赵彩霞, 何丽. 播期对北方白菜型冬油菜生长发育及产量的影响. 中国油料作物学报, 2012, 34: 620-626.
Jiang H Y, Sun W C, Zeng X C, Fang Y, Chen J R, Shi P H, Zhao C X, He L. Effect of sowing date on Brassica rapa growth and yield in northern China. Chin J Oil Crop Sci, 2012, 34: 620-626 (in Chinese with English abstract).
[28] Kuai J, Sun Y Y, Zuo Q S, Huang H D, Liao Q X, Wu C Y, Lu J W, Wu J S, Zhou G S. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015, 5: 18835.
doi: 10.1038/srep18835 pmid: 26686007
[29] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响. 作物学报, 2021, 47: 1724-1740.
doi: 10.3724/SP.J.1006.2021.04253
Lou H X, Ji J L, Kuai J, Wang B, Xu L, Li Z, Liu F, Huang W, Liu S Y, Yin Y F, Wang J, Zhou G S. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. Acta Agron Sin, 2021, 47: 1724-1740 (in Chinese with English abstract).
[30] 胡敏, 鲁剑巍, 王振, 游秋香. 晚播油菜绿肥适宜播种量研究. 作物杂志, 2016, (6): 120-123.
Hu M, Lu J W, Wang Z, You Q X. Study on the appropriate seeding rate of late sowing oilseed rape as green manure. Crops, 2016, (6): 120-123 (in Chinese with English abstract).
[31] 蒋小宏. 播种量与播种方式对免耕直播油菜产量和抗性的影响分析. 农业与技术, 2019, 39(4): 8-9.
Jiang X H. Analysis of effects of sowing rate and sowing method on yield and resistance of no-tillage direct-sowing rapeseed. Agric Technol, 2019, 39(4): 8-9 (in Chinese with English abstract).
[32] 郑伟, 肖国滨, 吕伟生, 李亚贞, 陈明, 黄天宝, 肖小军, 吴艳, 叶川. 播种量对双季稻套播油菜群体生长的影响. 中国油料作物学报, 2018, 40: 227-232.
doi: 10.7505/j.issn.1007-9084.2018.02.008
Zheng W, Xiao G B, Lyu W S, Li Y Z, Chen M, Huang T B, Xiao X J, Wu Y, Ye C. Effects of sowing rate on population growth of interplanting rapeseed in double-cropping rice. Chin J Oil Crop Sci, 2018, 40: 227-232 (in Chinese with English abstract).
[33] 章卓梁, 朱满庭, 华丰, 徐力恒. 播种量与播种方式对免耕直播油菜产量和抗性的影响. 浙江农业科学, 2016, 57: 20-21.
Zhang Z L, Zhu M T, Hua F, Xu L H. Effects of sowing rate and sowing method on yield and resistance of no-tillage direct broadcast rape. J Zhejiang Agric Sci, 2016, 57: 20-21 (in Chinese with English abstract).
[34] Li Y S, Yu C B, Zhu S, Xie L H, Hu X J, Liao X, Liao X S, Che Z. High planting density benefits to mechanized harvest and nitrogen application rates of oilseed rape (Brassica napus L.). Soil Sci Plant Nutr, 2014, 60: 384-392.
[35] 王晗, 向友珍, 李汪洋, 史鸿棹, 王辛, 赵笑. 基于无人机多光谱遥感的冬油菜地上部生物量估算. 农业机械学报, 2023, 54(8): 218-229.
Wang H, Xiang Y Z, Li W Y, Shi H Z, Wang X, Zhao X. Estimation of winter rapeseed above-ground biomass based on UAV multispectral remote sensing. Trans CSAM, 2023, 54(8): 218-229 (in Chinese with English abstract).
[36] 翟丙年, 孙春梅, 王俊儒, 李生秀. 氮素亏缺对冬小麦根系生长发育的影响. 作物学报, 2003, 30: 913-918.
Zhai B N, Sun C M, Wang J R, Li S X. Effects of nitrogen deficiency on the growth and development of winter wheat roots. Acta Agron Sin, 2003, 30: 913-918 (in Chinese with English abstract).
[37] 付永强, 张永霞, 龙再俊, 冉辉, 艾麦尔艾力·吐合提. 果园套种油菜绿肥适宜播期播量分析. 新疆农业科学, 2022, 59: 1864-1870.
doi: 10.6048/j.issn.1001-4330.2022.08.006
Fu Y Q, Zhang Y X, Long Z J, Ran H, Aimaieraili T. Study on suitable sowing date and rate of interplanting rape with green manure in orchards. Xinjiang Agric Sci, 2022, 59: 1864-1870 (in Chinese with English abstract).
doi: 10.6048/j.issn.1001-4330.2022.08.006
[1] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[2] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[3] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[4] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[5] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[6] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[7] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[8] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[9] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[10] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[11] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[12] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[13] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[14] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[15] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .