欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (3): 667-675.doi: 10.3724/SP.J.1006.2025.44132

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析

张琴(), 戴成, 马朝芝()   

  1. 华中农业大学作物遗传改良全国重点实验室, 湖北武汉 430070
  • 收稿日期:2024-08-19 接受日期:2024-10-25 出版日期:2025-03-12 网络出版日期:2024-11-12
  • 通讯作者: *马朝芝, E-mail: yuanbeauty@mail.hzau.edu.cn
  • 作者简介:E-mail: 1963480575@qq.com
  • 基金资助:
    国家自然科学基金项目(32072105)

Auxin response reporter gene transformation of Brassica napus and dynamic signal analysis of GUS in different tissues

ZHANG Qin(), DAI Cheng, MA Chao-Zhi()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2024-08-19 Accepted:2024-10-25 Published:2025-03-12 Published online:2024-11-12
  • Contact: *E-mail: yuanbeauty@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32072105)

摘要:

为探究甘蓝型油菜中生长素在不同组织中的动态分布情况, 构建了以DR5::GUS为报告基因的生长素响应表达载体, 将其转化到甘蓝型油菜中, 获得了稳定表达GUS基因的转基因株系。GUS染色发现, 在油菜苗期, 子叶和下胚轴中都有比较强的GUS信号, 并且DR5启动子受生长素类似物NAA诱导, 而真叶和根部的GUS信号比较弱, 证明子叶中生长素含量比较高; 在油菜花蕾期, 花药以及萼片中有比较强的GUS信号, 而柱头中GUS信号比较弱, 说明生长素可能对花药的发育有比较重要的作用; 生长素在授粉后不同发育时期的种子以及角果中均表现出先升高再降低的趋势, 表明生长素可能在种子发育中发挥作用。综上所述, 本研究通过DR5::GUS生长素报告系统对甘蓝型油菜中的生长素进行可视化, 为进一步揭示生长素在油菜生长发育中的作用机制提供了新的技术手段。

关键词: 甘蓝型油菜, 生长素, DR5, 生长素分布

Abstract:

To investigate the dynamic distribution of auxin in various tissues of Brassica napus, a growth hormone-responsive expression vector with DR5::GUS as the reporter gene was constructed and transformed into B. napus. Transgenic lines stably expressing the GUS gene were obtained. GUS staining revealed that during the seedling stage, strong GUS signals were observed in the cotyledons and hypocotyl, while weaker signals were detected in the true leaves and roots, indicating higher auxin accumulation in the cotyledons. The DR5 promoter was also induced by the auxin analog NAA. At the bud stage, strong GUS signals were found in the anthers and sepals, with weaker signals in the stigma, suggesting that auxin may play a significant role in anther development. In seeds and siliques at various developmental stages after pollination, auxin levels exhibited an increase followed by a decrease, implying a role for auxin in seed development. In conclusion, this study visualized auxin distribution in B. napus using the DR5::GUS auxin reporter system, providing a valuable method for further elucidating the role of auxin in the growth and development of B. napus.

Key words: Brassica napus, auxin, DR5, auxin distribution

图1

生长素响应报告基因载体pc2300-DR5::GUS结构图"

表1

阳性转基因植株鉴定引物序列"

名称Name 序列Sequence (5′-3′)
正向引物Forward primer CTTGGATCCAAGCTTCCGACAC
反向引物Reverse primer TCTGCCAGTTCAGTTCGTTGTTCAC

表2

普通PCR体系"

组分Component 使用量Volume (μL)
正向引物Forward Primer 0.5
反向引物Reverse Primer 0.5
DNA template 1.0
Taq Plus Master Mix II (Dye plus) 5.0
ddH2O 3.0
合计Total 10.0

图2

GUS阳性植株的PCR鉴定以及GUS染色鉴定 A: 具有卡那霉素抗性的转基因油菜植株的PCR鉴定。M: marker, 目的条带大小为705 bp。No.1~8为8个转基因单株, 9为阳性对照, 10为阴性对照。B: 具有卡那霉素抗性的转基因油菜植株的GUS染色鉴定。"

图3

DR5::GUS转基因油菜幼苗在不同发育阶段GUS活性染色 A, C, E~I: 萌发1~15 d幼苗的GUS染色鉴定。B, D: 萌发1 d和2 d幼苗根尖的GUS染色鉴定。图E~I标尺: 1 cm。"

图4

DR5::GUS转基因油菜幼苗在不同发育阶段GUS与GH3.6基因表达量检测 使用t检验进行显著性分析(n ≥ 3), *和**分别表示在0.05和0.01水平差异显著。"

图5

不同浓度NAA处理下DR5::GUS转基因油菜幼苗GUS染色 标尺: 1 cm。"

图6

DR5::GUS转基因油菜在花蕾中的GUS染色 标尺: 100 μm。Bud: 花蕾; Stigma: 柱头; Sepal: 萼片; Anthers: 花药。Bar: 100 μm."

图7

DR5:: GUS转基因油菜在种子中的GUS染色 A~J: 授粉后1~20 d种子的GUS染色鉴定。标尺: 500 μm。"

图8

DR5::GUS转基因油菜在角果中的GUS染色"

[1] 黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019, 49: 1227-1281.
Li J, Li C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Sci Sin Vitae, 2019, 49: 1227-1281 (in Chinese with English abstract).
[2] Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc'h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol, 2011, 7: 508.
doi: 10.1038/msb.2011.39 pmid: 21734647
[3] Zhao Z, Andersen S U, Ljung K, Dolezal K, Miotk A, Schultheiss S J, Lohmann J U. Hormonal control of the shoot stem-cell niche. Nature, 2010, 465: 1089-1092.
[4] Dai Y Q, Luo L J, Zhao Z. Genetic robustness control of auxin output in priming organ initiation. Proc Natl Acad Sci USA, 2023, 120: e2221606120.
[5] Zhou W K, Wei L R, Xu J, Zhai Q Z, Jiang H L, Chen R, Chen Q, Sun J Q, Chu J F, Zhu L H, Liu C M, Li C Y. Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche. Plant Cell, 2010, 22: 3692-3709.
[6] Ogura T, Goeschl C, Filiault D, Mirea M, Slovak R, Wolhrab B, Satbhai S B, Busch W. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 2019, 178: 400-412.e16.
[7] Wang W, Xu B, Wang H, Li J Q, Huang H, Xu L. YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development. Plant Physiol, 2011, 157: 1805-1819.
doi: 10.1104/pp.111.186395 pmid: 22003085
[8] Zhang Z J, Runions A, Mentink R A, Kierzkowski D, Karady M, Hashemi B, Huijser P, Strauss S, Gan X C, Ljung K, Tsiantis M. A WOX/auxin biosynthesis module controls growth to shape leaf form. Curr Biol, 2020, 30: 4857-4868.e6.
[9] Zhao Y D. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu Rev Plant Biol, 2018, 69: 417-435.
doi: 10.1146/annurev-arplant-042817-040226 pmid: 29489397
[10] Balcerowicz M. Filling the grain: transcription factor OsNF-YB1 triggers auxin biosynthesis to boost rice grain size. Plant Physiol, 2021, 185: 757-758.
doi: 10.1093/plphys/kiaa099 pmid: 33822224
[11] Batista R A, Figueiredo D D, Santos-González J, Köhler C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev, 2019, 33: 466-476.
[12] Jing H W, Wilkinson E G, Sageman-Furnas K, Strader L C. Auxin and abiotic stress responses. J Exp Bot, 2023, 74: 7000-7014.
doi: 10.1093/jxb/erad325 pmid: 37591508
[13] Shi H T, Chen L, Ye T T, Liu X D, Ding K J, Chan Z L. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem, 2014, 82: 209-217.
[14] Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
[15] Chew S C. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int, 2020, 131: 108997.
[16] Pallai R, Hynes R K, Verma B, Nelson L M. Phytohormone production and colonization of canola (Brassica napus L.)roots by Pseudomonas fluorescens 6-8 under gnotobiotic conditions. Can J Microbiol, 2012, 58: 170-178.
[17] Cheng F, Liu Y F, Lu G Y, Zhang X K, Xie L L, Yuan C F, Xu B B. Graphene oxide modulates root growth of Brassica napus L.and regulates ABA and IAA concentration. J Plant Physiol, 2016, 193: 57-63.
[18] Rodríguez-Sanz H, Solís M T, López M F, Gómez-Cadenas A, Risueño M C, Testillano P S. Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant Cell Physiol, 2015, 56: 1401-1417.
doi: 10.1093/pcp/pcv058 pmid: 25907568
[19] Yuan D S, Zhang Y, Wang Z, Qu C M, Zhu D M, Wan H F, Liang Y. BnKAT2 positively regulates the main inflorescence length and silique number in Brassica napus by regulating the auxin and cytokinin signaling pathways. Plants (Basel), 2022, 11: 1679.
[20] Li H T, Li J J, Song J R, Zhao B, Guo C C, Wang B, Zhang Q H, Wang J, King G J, Liu K D. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. New Phytol, 2019, 222: 837-851.
doi: 10.1111/nph.15632 pmid: 30536633
[21] Hao M Y, Wang W X, Liu J, Wang H, Zhou R J, Mei D S, Fu L, Hu Q, Cheng H T. Auxin biosynthesis genes in allotetraploid oilseed rape are essential for plant development and response to drought stress. Int J Mol Sci, 2022, 23: 15600.
[22] Schlicht M, Strnad M, Scanlon M J, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluska F. Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav, 2006, 1: 122-133.
doi: 10.4161/psb.1.3.2759 pmid: 19521492
[23] Hellgren J M, Olofsson K, Sundberg B. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol, 2004, 135: 212-220.
doi: 10.1104/pp.104.038927 pmid: 15122024
[24] Ulmasov T, Murfett J, Hagen G, Guilfoyle T J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell, 1997, 9: 1963-1971.
doi: 10.1105/tpc.9.11.1963 pmid: 9401121
[25] Hagen G, Kleinschmidt A, Guilfoyle T. Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta, 1984, 162: 147-153.
doi: 10.1007/BF00410211 pmid: 24254049
[26] Gee M A, Hagen G, Guilfoyle T J. Tissue-specific and organ-specific expression of soybean auxin-responsive transcripts GH3 and SAURs. Plant Cell, 1991, 3: 419-430.
doi: 10.1105/tpc.3.4.419 pmid: 1840920
[27] McClure B A, Guilfoyle T. Rapid redistribution of auxin-regulated RNAs during gravitropism. Science, 1989, 243: 91-93.
pmid: 11540631
[28] Boer D R, Freire-Rios A, van den Berg W A M, Saaki T, Manfield I W, Kepinski S, López-Vidrieo I, Franco-Zorrilla J M, de Vries S C, Solano R, Weijers D, Coll M.Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell, 2014, 156: 577-589.
doi: 10.1016/j.cell.2013.12.027 pmid: 24485461
[29] Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local,efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003, 115: 591-602.
doi: 10.1016/s0092-8674(03)00924-3 pmid: 14651850
[30] Chen Y R, Yordanov Y S, Ma C, Strauss S, Busov V B. DR5 as a reporter system to study auxin response in Populus. Plant Cell Rep, 2013, 32: 453-463.
[31] 匡政成, 曾潜, 赵燕, 匡逢春, 肖才升, 陈浩东, 李庠, 李育强, 张学文. 生长素响应报告基因转化棉花及GUS检测. 棉花学报, 2014, 26: 350-355.
doi: 10.11963/cs140410
Kuang Z C, Zeng Q, Zhao Y, Kuang F C, Xiao C S, Chen H D, Li X, Li Y Q, Zhang X W. The auxin responsible reporter DR5: GUS transformation of cotton illustrates the auxin early distribution in fiber differentiation. Cotton Sci, 2014, 26: 350-355 (in Chinese with English abstract).
[32] Dai C, Li Y Q, Li L, Du Z L, Lin S L, Tian X, Li S J, Yang B, Yao W, Wang J, Guo L, Lu S P. An efficient Agrobacterium- mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breed, 2020, 40: 96.
[33] Bai F, Demason D A. Hormone interactions and regulation of PsPK2: GUS compared with DR5: GUS and PID: GUS in Arabidopsis thaliana. Am J Bot, 2008, 95: 133-145.
[34] Nakamura A, Higuchi K, Goda H, Fujiwara M T, Sawa S, Koshiba T, Shimada Y, Yoshida S. Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol, 2003, 133: 1843-1853.
pmid: 14605219
[35] Cucinotta M, Cavalleri A, Chandler J W, Colombo L. Auxin and flower development: a blossoming field. Cold Spring Harb Perspect Biol, 2021, 13: a039974.
[36] Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. Int J Mol Sci, 2017, 18: 2587.
[37] Jedličková V, Ebrahimi Naghani S, Robert H S. On the trail of auxin: reporters and sensors. Plant Cell, 2022, 34: 3200-3213.
[38] Hagen G, Guilfoyle T J. Rapid induction of selective transcription by auxins. Mol Cell Biol, 1985, 5: 1197-1203.
doi: 10.1128/mcb.5.6.1197-1203.1985 pmid: 4041007
[39] Hagen G, Martin G, Li Y, Guilfoyle T J. Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol, 1991, 17: 567-579.
doi: 10.1007/BF00040658 pmid: 1884011
[40] Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 1999, 99: 463-472.
doi: 10.1016/s0092-8674(00)81535-4 pmid: 10589675
[41] Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 2003, 426: 147-153.
[42] Gallavotti A, Yang Y, Schmidt R J, Jackson D. The Relationship between auxin transport and maize branching. Plant Physiol, 2008, 147: 1913-1923.
doi: 10.1104/pp.108.121541 pmid: 18550681
[43] Chaabouni S, Jones B, Delalande C, Wang H, Li Z G, Mila I, Frasse P, Latché A, Pech J C, Bouzayen M. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot, 2009, 60: 1349-1362.
doi: 10.1093/jxb/erp009 pmid: 19213814
[44] Spicer R, Tisdale-Orr T, Talavera C. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus. PLoS One, 2013, 8: e72499.
[1] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[2] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[3] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[4] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[5] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[6] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[7] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[8] 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513.
[9] 付佳祺, 李世宽, 谭萌慧, 罗方, 张传玲, 刘祾悦, 卢倩, 谷勇哲. 大豆GmRSM1通过调节PIN基因表达促进顶端弯钩消失[J]. 作物学报, 2024, 50(11): 2731-2741.
[10] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[11] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[12] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[13] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[14] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[15] 李邦, 刘春娟, 郭俊杰, 武宇昕, 邓志成, 张敏, 崔彤, 刘畅, 周宇飞. 低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用[J]. 作物学报, 2023, 49(5): 1372-1385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!