作物学报 ›› 2025, Vol. 51 ›› Issue (3): 676-686.doi: 10.3724/SP.J.1006.2025.42031
苏畅(), 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉(
)
SU Chang(), MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui(
)
摘要:
土壤酸化和铝毒害逐渐成为危害水稻生长发育和产量的重要问题, 因此挖掘水稻耐铝相关基因, 阐明其参与耐铝的分子机制尤为重要。前期研究利用全基因组关联分析筛选出了一个耐铝相关基因OsAlR3, 通过表型和生理指标证明该基因参与水稻耐铝调控。有机酸和植物生长调节物质与铝抗性有着密切关系, 但OsAlR3如何响应该过程尚未明确。本研究探讨了野生型和osalr3敲除突变体对外源有机酸(柠檬酸(CA)、草酸(OA)和苹果酸(MA))和植物生长调节物质(芸苔素内酯(BR)和生长素(IAA))的响应。研究表明, 敲除突变体osalr3在铝处理下总根长显著缩短、地上部和地下部铝离子含量显著升高、根际pH和有机酸含量降低、丙二醛(MDA)、超氧阴离子(O2?)、过氧化氢(H2O2)含量和超氧化物歧化酶(SOD)活性显著升高, 与野生型相比表现出了对铝胁迫更敏感的表型。外施有机酸和芸苔素内酯后, 突变体总根长增加, 地上部和地下部铝离子含量减少, 柠檬酸、草酸和苹果酸含量增加, MDA、O2?、H2O2含量和SOD活性降低, 突变体遭受铝毒害减轻。而外施生长素后虽然突变体总根长较铝处理增加, 地上部铝离子含量降低, 但是地下部铝离子含量显著增加, MDA、O2?和H2O2含量均与野生型存在显著性差异。综上所述, 外施有机酸(柠檬酸、草酸和苹果酸)和芸苔素内酯对OsAlR3基因起到了积极作用, 而施用生长素对OsAlR3基因的功能起到了负向调节的作用。
[1] | Chauhan D K, Yadav V, Vaculík M, Gassmann W, Pike S, Arif N, Singh V P, Deshmukh R, Sahi S, Tripathi D K. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotechnol, 2021, 41: 715-730. |
[2] | 李晟昱, 周琪, 何汶珈, 乔景璇, 李晓琳, 包格根. 水稻铝害研究进展. 仲恺农业工程学院学报, 2023, 36(1): 55-62. |
Li S Y, Zhou Q, He W J, Qiao J X, Li X L, Bao G G. Review on aluminum toxicity in rice. J Zhongkai Univ Agric Eng, 2023, 36(1): 55-62 (in Chinese with English abstract). | |
[3] | Yokosho K, Yamaji N, Ma J F. An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J, 2011, 68: 1061-1069. |
[4] | 邓晓霞, 李月明, 姚堃姝, 乔婧文, 王竞红, 蔺吉祥. 植物适应酸铝胁迫机理的研究进展. 生物工程学报, 2022, 38: 2754-2766. |
Deng X X, Li Y M, Yao K S, Qiao J W, Wang J H, Lin J X. Advances in the mechanism of plant adaptation to acid aluminum stress. Chin J Biotechnol, 2022, 38: 2754-2766 (in Chinese with English abstract). | |
[5] | Riaz M, Yan L, Wu X W, Hussain S, Aziz O, Jiang C C. Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: a review. Ecotoxicol Environ Saf, 2018, 165: 25-35. |
[6] | Liu J M, Khan S, Hu Y, Yin L Y, Huang J Q. Physiological mechanisms of exogenous organic acids to alleviate aluminum toxicity in seedlings of mungbean, buckwheat, and rice. Plant Physiol Biochem, 2023, 203: 108031. |
[7] | An Y, Zhou P, Xiao Q, Shi D Y. Effects of foliar application of organic acids on alleviation of aluminum toxicity in alfalfa. J Plant Nutr Soil Sci, 2014, 177: 421-430. |
[8] |
毛轩雯, 王志超, 阮心依, 孙靖菲, 张雅婷, 陆锦灏, 邵甜甜, 王娴, 肖佳敏, 肖莉, 叶梦瑶, 吴玉环, 刘鹏. 外源有机酸对铝胁迫下菊芋生理响应系统的调控效应. 植物学报, 2023, 58: 573-589.
doi: 10.11983/CBB23006 |
Mao X W, Wang Z C, Ruan X Y, Sun J F, Zhang Y T, Lu J H, Shao T T, Wang X, Xiao J M, Xiao L, Ye M Y, Wu Y H, Liu P. Regulatory effects of exogenous organic acids on the physiological responses of Helianthus tuberosus under aluminium stress. Chin Bull Bot, 2023, 58: 573-589 (in Chinese with English abstract). | |
[9] | 师瑞红, 谢国生, 曾汉来, 张端品. 外源有机酸缓解水稻幼苗根系铝毒的生理机制. 中国生态农业学报, 2007, 15: 97-101. |
Shi R H, Xie G S, Zeng H L, Zhang D P. Physiological mechanism of alleviating aluminum toxicity in rice seedling root by exogenous organic acids. Chin J Eco-Agric, 2007, 15: 97-101 (in Chinese with English abstract). | |
[10] | 王月平. 有机酸对铝胁迫下油菜生长生理及缓解机制研究. 浙江师范大学硕士学位论文, 浙江金华, 2013. |
Wang Y P. Effects of Organic Acids on Growth Physiology and Alleviating Mechanism of Rape under Aluminum Stress. MS Thesis of Zhejiang Normal University, Jinhua, Zhejiang, China, 2013 (in Chinese with English abstract). | |
[11] | 孙远秀. 外源有机酸对西瓜铝毒害缓解作用的研究. 四川农业大学硕士学位论文, 四川雅安, 2016. |
Sun Y X. Study on Alleviating Effect of Exogenous Organic Acids on Aluminum Toxicity of Watermelon. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2016 (in Chinese with English abstract). | |
[12] |
Qin H, He L N, Huang R F. The coordination of ethylene and other hormones in primary root development. Front Plant Sci, 2019, 10: 874.
doi: 10.3389/fpls.2019.00874 pmid: 31354757 |
[13] | Yang Z B, Geng X Y, He C M, Zhang F, Wang R, Horst W J, Ding Z J. TAA1-regulated local auxin biosynthesis in the root- apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell, 2014, 26: 2889-2904. |
[14] |
Lyu B S, Yan Z W, Tian H Y, Zhang X S, Ding Z J. Local auxin biosynthesis mediates plant growth and development. Trends Plant Sci, 2019, 24: 6-9.
doi: S1360-1385(18)30247-4 pmid: 30448230 |
[15] | Wang Q, Nian F, Zhao L, Li F, Yang H, Yang Y. Exogenous indole-3-acetic acid could reduce the accumulation of aluminum in root apex of wheat (Triticum aestivum L.)under Al stress. J Soil Sci Plant Nutr, 2013, 13: 534-543. |
[16] | Abdullahi B A, Gu X G, Gan Q L, Yang Y H. Brassinolide amelioration of aluminum toxicity in mungbean seedling growth. J Plant Nutr, 2002, 26: 1725-1734. |
[17] |
Zhao M H, Song J Y, Wu A T, Hu T, Li J Q. Mining beneficial genes for aluminum tolerance within a core collection of rice landraces through genome-wide association mapping with high density SNPs from specific-locus amplified fragment sequencing. Front Plant Sci, 2018, 9: 1838.
doi: 10.3389/fpls.2018.01838 pmid: 30619409 |
[18] | Wang J B, Su C, Cui Z B, Huang L X, Gu S, Jiang S X, Feng J, Xu H, Zhang W Z, Jiang L L, Zhao M H. Transcriptomics and metabolomics reveal tolerance new mechanism of rice roots to Al stress. Front Genet, 2023, 13: 1063984. |
[19] |
Su C, Wang J B, Feng J, Jiang S X, Man F Y, Jiang L L, Zhao M H. OsAlR3 regulates aluminum tolerance through promoting the secretion of organic acids and the expression of antioxidant genes in rice. BMC Plant Biol, 2024, 24: 618.
doi: 10.1186/s12870-024-05298-9 pmid: 38937693 |
[20] | Zou L N, Jiang O Y, Zhang S, Duan G L, Gustave W, An X, Tang X J. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils. Environ Res, 2024, 249: 118421. |
[21] | Zhu G Y, Shi X C, Wang S Y, Wang B, Laborda P. Antifungal mechanism and efficacy of kojic acid for the control of Sclerotinia sclerotiorum in soybean. Front Plant Sci, 2022, 13: 845698. |
[22] | Chai J X, Li J W, Liu Q T, Chen Z H, Liu Z D. Differential changes in respiratory metabolism and energy status in the outer pericarp and core tissues affect the ripening of ‘Xuxiang’ kiwifruit. Postharvest Biol Technol, 2024, 212: 112876. |
[23] | 刘鹏, 应小芳, 徐根娣, 蔡妙珍, 王芳, 罗虹. 铝对大豆质膜透性和POD、CAT活性的影响. 浙江师范大学学报(自然科学版), 2005, 28: 300-303. |
Liu P, Ying X F, Xu G D, Cai M Z, Wang F, Luo H. Effect of aluminum on the permeability of plasma membrane and activities of CAT and POD of soybean. J Zhejiang Norm Univ (Nat Sci), 2005, 28: 300-303 (in Chinese with English abstract). | |
[24] | 陈钰佩, 高翠民, 任彬彬, 胡香玉, 沈其荣, 郭世伟. 水分胁迫下氮素形态影响水稻根系通气组织形成的生理机制. 南京农业大学学报, 2017, 40: 273-280. |
Chen Y P, Gao C M, Ren B B, Hu X Y, Shen Q R, Guo S W. Physiological mechanism of nitrogen forms affect aerenchyma formation of rice root under water stress. J Nanjing Agric Univ, 2017, 40: 273-280 (in Chinese with English abstract). | |
[25] | 黄晓梅, 李东玉, 范金霞, 陈秀玲, 赵红晓. 木醋液对茄子和水稻幼苗保护性酶影响研究. 东北农业大学学报, 2016, 47(12): 23-29. |
Huang X M, Li D Y, Fan J X, Chen X L, Zhao H X. Effect of pyroligneous acid on protective enzymes of eggplant and rice seedlings. J Northeast Agric Univ, 2016, 47(12): 23-29 (in Chinese with English abstract). | |
[26] | 马西亚. 硅对水稻镉的吸收与分配影响效应. 海南大学硕士学位论文, 海南海口, 2020. |
Ma X Y. Effect of Silicon on Cadmium Absorption and Distribution in Rice. MS Thesis of Hainan University, Haikou, Hainan, China, 2020 (in Chinese with English abstract). | |
[27] | 刘玉民. 酸铝环境马尾松根系分泌物特性及其缓解铝毒的根际效应. 西南大学博士学位论文, 重庆, 2018. |
Liu Y M. The Characteristics and Rhizosphere Effects in Alleviating Al-toxicity of Pinus massoniana Root Exudation in Acid- aluminum Environment. PhD Dissertation of Southwest University, Chongqing, China, 2018 (in Chinese with English abstract). | |
[28] | 闫磊. 硼对柑橘枳砧根系铝毒缓解效应及机理研究. 华中农业大学博士学位论文, 湖北武汉, 2020. |
Yan L. Alleviating Effect and Mechanism of Boron on Aluminum Toxicity in Roots of Citrus Aurantii Rootstock. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract). | |
[29] |
Yin L N, Wang S W, Eltayeb A E, Uddin M I, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta, 2010, 231: 609-621.
doi: 10.1007/s00425-009-1075-3 pmid: 19960204 |
[30] | He H, Li Y, He L F. Aluminum toxicity and tolerance in Solanaceae plants. South Afr J Bot, 2019, 123: 23-29. |
[31] | 李冰洋, 苟少校, 郭海海, 郭炎峰, 魏运民, 蒋林峰, 玉永雄. B和Si对紫花苜蓿铝毒的缓解作用. 甘肃农业大学学报, 2024, 12(6), 227-235. |
Li B Y, Gou S X, Guo H H, Guo Y F, Wei Y M, Jiang L F, Wang Y X. Detoxification of boron and silicon on aluminum toxicity of Medicago sativa L. J Gansu Agric Univ, 2024, 12(6), 227-235 (in Chinese with English abstract). | |
[32] |
Kochian L V, Piñeros M A, Liu J P, Magalhaes J V. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol, 2015, 66: 571-598.
doi: 10.1146/annurev-arplant-043014-114822 pmid: 25621514 |
[33] | 宋鑫, 徐杉, 何映辉. 植物耐铝毒机制研究进展. 安徽农业科学, 2021, 49: 31-34. |
Song X, Xu S, He Y H. Research progress on mechanisms of plant aluminum tolerance. J Anhui Agric Sci, 2021, 49: 31-34 (in Chinese with English abstract). | |
[34] | 张慧敏, 刘东华. 植物耐铝毒害机理研究. 江西农业, 2019, (6): 127-129. |
Zhang H M, Liu D H. Mechanism of aluminum tolerance in plants. Jiangxi Agric, 2019, (6): 127-129 (in Chinese). | |
[35] | 何龙飞, 王爱勤. 外源有机酸对小麦铝毒害的缓解效应. 华北农学报, 2002, 17(增刊1): 75-79. |
He L F, Wang A Q. Ameliorating effects of organic acids on aluminum toxicity in wheat. Acta Agric Boreali-Sin, 2002, 17(S1): 75-79 (in Chinese with English abstract). | |
[36] |
郭妮, 刘亚敏, 周文颖, 刘玉民, 张盛楠. 外源草酸缓解马尾松根系铝毒. 浙江农业学报, 2019, 31: 1086-1095.
doi: 10.3969/j.issn.1004-1524.2019.07.08 |
Guo N, Liu Y M, Zhou W Y, Liu Y M, Zhang S N. Alleviation of aluminum stress by exogenous oxalic acid in root system of Pinus massoniana Lamb. Acta Agric Zhejiangensis, 2019, 31: 1086-1095 (in Chinese with English abstract). | |
[37] | Kopittke P M, Blamey F P C. Theoretical and experimental assessment of nutrient solution composition in short-term studies of aluminium rhizotoxicity. Plant Soil, 2016, 406: 311-326. |
[38] | 许桂莲. 施硼提高根际pH缓解豌豆铝毒的作用. 佛山科学技术学院硕士学位论文, 广东佛山, 2017. |
Xu G L. Boron Enhances Rhizopshere pH and Alleviates Aluminum Toxicity to Pea (Pisum sativum). MS Thesis of Foshan University, Foshan, Guangdong, China, 2017 (in Chinese with English abstract). | |
[39] | Park W, Kim H S, Park T W, Lee Y H, Ahn S J. Functional characterization of plasma membrane-localized organic acid transporter (CsALMT1) involved in aluminum tolerance in Camelina sativa L. Plant Biotechnol Rep, 2017, 11: 181-192. |
[40] | 柳聚阁. 铝毒胁迫下大豆根部的生理和表达谱特征及耐铝毒相关MATE基因的功能分析. 南京农业大学博士学位论文, 江苏南京, 2017. |
Liu J G. Characteristics of Physiology and Expression Profiling of Soybean Roots under Aluminum Toxicity and Functional Study of the MATE Gene Related to Aluminum Tolerance. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract). | |
[41] | 马小伟. 橡胶树根系分泌有机酸耐铝的生理和分子机制研究. 海南大学硕士学位论文, 海南海口, 2021. |
Ma X W. The Physiological and Molecular Mechanisms of Rubber Trees Tolerating Aluminum Toxicity by Organic Acid Secretion. MS Thesis of Hainan University, Haikou, Hainan, China, 2021 (in Chinese with English abstract). | |
[42] | Guo T R, Yao P C, Zhang Z D, Wang J J, Wang M. Involvement of antioxidative defense system in rice seedlings exposed to aluminum toxicity and phosphorus deficiency. Rice Sci, 2012, 19: 207-212. |
[43] | Esmaielzadeh S, Fallah H, Niknejad Y, Mahmoudi M, Tari D B. Methyl jasmonate increases aluminum tolerance in rice by augmenting the antioxidant defense system, maintaining ion homeostasis, and increasing nonprotein thiol compounds. Environ Sci Pollut Res Int, 2022, 29: 46708-46720. |
[44] | Tahjib-Ul-Arif M, Zahan M I, Karim M M, Imran S, Hunter C T, Islam M S, Mia M A, Hannan M A, Rhaman M S, Hossain M A, Brestic M, Skalicky M, Murata Y. Citric acid-mediated abiotic stress tolerance in plants. Int J Mol Sci, 2021, 22: 7235. |
[45] | Zhang X Y, Chen J, Liu X Y, Chen X P, Liu L, Niu Y H, Wang R. The relief effects of organic acids on Scirpus triqueter L.under Pyrene-lead stress. Environ Sci Pollut Res Int, 2019, 26: 15828-15837. |
[46] | Bilal S, Khan A, Imran M, Khan A L, Asaf S, Al-Rawahi A, Al-Azri M S A, Al-Harrasi A, Lee I J. Silicon- and boron-induced physio-biochemical alteration and organic acid regulation mitigates aluminum phytotoxicity in date palm seedlings. Antioxidants (Basel), 2022, 11: 1063. |
[47] |
Jin Q F, Wang Z, Chen Y N, Luo Y P, Tian N, Liu Z H, Huang J N, Liu S Q. Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis. BMC Genomics, 2022, 23: 29.
doi: 10.1186/s12864-021-08179-9 pmid: 34991475 |
[48] | Shahid M, Javed M T, Mushtaq A, Akram M S, Mahmood F, Ahmed T, Noman M, Azeem M. Microbe-mediated mitigation of cadmium toxicity in plants. In: Cadmium Toxicity and Tolerance in Plants. Amsterdam: Elsevier, 2019. pp 427-449. |
[49] |
Wei Z Y, Li J. Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant, 2016, 9: 86-100.
doi: S1674-2052(15)00456-6 pmid: 26700030 |
[50] | Kang Y H, Breda A, Hardtke C S. Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems. Development, 2017, 144: 272-280. |
[51] | Sharma P, Kumar A, Bhardwaj R. Plant steroidal hormone epibrassinolide regulate-heavy metal stress tolerance in Oryza sativa L.by modulating antioxidant defense expression. Environ Exp Bot, 2016, 122: 1-9. |
[52] | Anfang M R, Shani E. Transport mechanisms of plant hormones. Curr Opin Plant Biol, 2021, 63: 102055. |
[53] |
Zhang M L, Lu X D, Li C L, Zhang B, Zhang C Y, Zhang X S, Ding Z J. Auxin efflux carrier ZmPGP1 mediates root growth inhibition under aluminum stress. Plant Physiol, 2018, 177: 819-832.
doi: 10.1104/pp.17.01379 pmid: 29720555 |
[54] | Liu G C, Gao S, Tian H Y, Wu W W, Robert H S, Ding Z J. Correction: local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis. PLoS Genet, 2021, 17: e1009964. |
[55] | Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor E B, Baskin T I. Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J, 2007, 50: 514-528. |
[1] | 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796. |
[2] | 刘建国, 陈冬东, 陈玉玉, 易琴琴, 李清, 徐正进, 钱前, 沈兰. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51(3): 598-608. |
[3] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
[4] | 李春梅, 陈洁, 郎兴宣, 庄海民, 朱靖, 杜梓君, 冯浩天, 金涵, 朱国林, 刘凯. 水稻矮化多分蘖基因DT1的图位克隆与功能分析[J]. 作物学报, 2025, 51(2): 347-357. |
[5] | 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417. |
[6] | 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188. |
[7] | 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322. |
[8] | 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357. |
[9] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[10] | 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038. |
[11] | 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919. |
[12] | 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947. |
[13] | 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804. |
[14] | 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698. |
[15] | 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553. |
|