欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (3): 687-895.doi: 10.3724/SP.J.1006.2025.44087

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价

晋高锐1(), 吴小丽2(), 邓丽3, 陈玉宁1, 喻博伦1, 郭建斌1, 丁膺宾1, 刘念1, 罗怀勇1, 陈伟刚1, 黄莉1, 周小静1, 淮东欣1, 谭家壮2, 姜慧芳1, 任丽3, 雷永1, 廖伯寿1,*()   

  1. 1中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
    2湛江市农业科学研究院, 广东湛江 524094
    3开封市农林科学研究院, 河南开封 475004
  • 收稿日期:2024-05-27 接受日期:2024-09-18 出版日期:2025-03-12 网络出版日期:2024-10-08
  • 通讯作者: *廖伯寿, E-mail: lboshou@hotmail.com
  • 作者简介:晋高锐, E-mail: jgr0315@163.com;
    吴小丽, E-mail: 95573962@qq.com

    **同等贡献

  • 基金资助:
    国家重点研发计划项目(2023YFD1202800);国家自然科学基金项目(32101708);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);国家科技资源共享服务平台项目(NCGRC-2023-036)

Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production

JIN Gao-Rui1(), WU Xiao-Li2(), DENG Li3, CHEN Yu-Ning1, YU Bo-Lun1, GUO Jian-Bin1, DING Ying-Bin1, LIU Nian1, LUO Huai-Yong1, CHEN Wei-Gang1, HUANG Li1, ZHOU Xiao-Jing1, HUAI Dong-Xin1, TAN Jia-Zhuang2, JIANG Hui-Fang1, REN Li3, LEI Yong1, LIAO Bo-Shou1,*()   

  1. 1Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Zhanjiang Academy of Agricultural Sciences, Zhanjiang 524094, Guangdong, China
    3Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng 475004, Henan, China
  • Received:2024-05-27 Accepted:2024-09-18 Published:2025-03-12 Published online:2024-10-08
  • Contact: *E-mail: lboshou@hotmail.com
  • About author:

    **Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2023YFD1202800);National Natural Science Foundation of China(32101708);China Agriculture Research System of MOF and MARA(CARS-13);National Crop Germplasm Resources Center(NCGRC-2023-036)

摘要:

高油酸花生可延长产品货架期和更有利于人体健康, 推进高油酸化是国内外花生育种和产业发展的重要方向。然而, 花生是易受黄曲霉菌侵染和产毒污染的农产品, 在推进高油酸化的进程中非常有必要提高花生对黄曲霉的抗性以保障食品安全性。本研究以高油酸花生种质开农H03-3与高产品种中花16为亲本构建的重组自交系群体(recombined inbreed line, RIL)为材料, 对油酸含量以及黄曲霉抗性在内的多性状进行了综合鉴定评价。研究发现, 亲本开农H03-3具有对黄曲霉菌侵染和产毒的双重抗性, 从该RIL群体分离的53份高油酸家系中鉴定出4份抗黄曲霉侵染、3份抗黄曲霉产毒材料, 其中2份高油酸家系(QT0790和QT0918)同时兼备籽仁抗黄曲霉菌侵染和抗产毒的特性。进一步比较发现, QT0790和QT0918不仅黄曲霉抗性优于2个亲本, 并且侵染抗性优于国际公认的抗侵染种质J11、产毒抗性优于抗产毒对照中花6号, 表明花生黄曲霉侵染和产毒抗性均存在微效基因的互补机制。经在5个不同生态区种植和测试, QT0790和QT0918油酸含量均在80%以上, 而且农艺性状总体较好。所发现的花生黄曲霉抗性遗传特性和创制的兼抗黄曲霉侵染与产毒的高油酸新种质, 为深化相关遗传机制研究和抗黄曲霉高油酸品种培育提供了材料基础。

关键词: 花生品种, 高油酸, 黄曲霉侵染抗性, 黄曲霉产毒抗性

Abstract:

High oleate peanut is a key focus for both varietal improvement and industry development worldwide due to its extended shelf life and potential health benefits. However, peanuts are highly susceptible to Aspergillus infection, leading to aflatoxin contamination, making it critical to enhance aflatoxin resistance in the development of the high oleate peanut industry to ensure food safety. In this study, a recombinant inbred line (RIL) population was developed by crossing the high oleic acid peanut genotype Kainong H03-3 with the high-yielding variety Zhonghua 16. The RILs were evaluated for oleic acid content and other traits, including their response to Aspergillus flavus infection and aflatoxin formation. Notably, Kainong H03-3 exhibited resistance to both fungal infection and toxin production. Additionally, four lines resistant to fungal infection and three lines resistant to toxin formation were identified among the 53 high oleate lines segregated from the RILs. Of these, two high oleate lines, QT0790 and QT0918, demonstrated resistance to both fungal infection and aflatoxin production. Further analysis revealed that the aflatoxin resistance in QT0790 and QT0918 was not only superior to that of both parental genotypes, but also exceeded that of the well-known fungal infection-resistant genotype J11 and the toxin production-resistant variety Zhonghua 6. This suggests the presence of complementary effects among certain minor-effect genes/loci for both fungal infection and toxin production resistance, which could be valuable for improving or integrating resistance traits. Both QT0790 and QT0918 maintained stable oleic acid contents above 80% in samples harvested from five diverse ecological locations. The genetic effects observed in this study for minor genes/loci associated with aflatoxin resistance, along with the identification of resistant high oleate lines, provide valuable insights for further research into the underlying genetic mechanisms and for the development of peanut varieties with both high oleic acid content and enhanced resistance to aflatoxin contamination.

Key words: peanut genotypes, high oleic acid, Aspergillus flavus infection resistance, aflatoxin production resistance

图1

RIL群体油酸含量分布图 2020WH: 2020武汉; 2021WH: 2021武汉; 2021QZ: 2021泉州。"

图2

RIL群体侵染指数和产毒值分布图 2020WH: 2020武汉; 2021WH: 2021武汉; 2021QZ: 2021泉州。PSII: 侵染指数; AFT: 产毒值。"

表1

RIL群体油酸含量、侵染指数与产毒值之间的相关性分析"

环境
Environment
性状
Trait
油酸含量
Oleic acid content
侵染指数
PSII
产毒值
AFT
2020WH Oleic acid content 1.000
PSII 0.078 1.000
AFT -0.040 0.431** 1.000
2021WH Oleic acid content 1.000
PSII 0.035 1.000
AFT -0.187** 0.628** 1.000
2021QZ Oleic acid content 1.000
PSII -0.003 1.000
AFT -0.104 0.318** 1.000

表2

高油酸与非高油酸花生材料不同侵染指数和产毒值分布情况"

性状
Trait
分类
Classification
数量
Quantity
I级
Level I
II级
Level II
III级
Level III
IV级
Level IV
V级
Level V
侵染指数PSII 非高油酸Non-high oleic 247 0 44 136 61 6
高油酸High-oleic 53 0 8 21 23 1
产毒值AFT 非高油酸Non-high oleic 247 34 147 95 17 8
高油酸High-oleic 53 8 27 13 3 2

表3

油酸含量和侵染指数线性趋势卡方检验"

项目
Item

Value
自由度
DF
渐进显著性(双侧)
Asymptotic significance (two-side)
皮尔逊卡方Pearson chi-square 7.678 3 0.053
似然比Likelihood ratio 7.222 3 0.065
线性关联Linear-by-linear association 3.437 1 0.064
有效个案数Number of valid cases 300

表4

油酸含量和产毒值线性趋势卡方检验"

项目
Item

Value
自由度
DF
渐进显著性(双侧)
Asymptotic significance (two-side)
皮尔逊卡方Pearson chi-square 1.518 4 0.823
似然比Likelihood ratio 1.510 4 0.825
线性关联Linear-by-linear association 0.331 1 0.565
有效个案数Number of valid cases 354

图3

高油酸家系侵染指数分布图 2020WH: 2020武汉; 2021WH: 2021武汉; 2021QZ: 2021泉州。PSII: 侵染指数。"

图4

高油酸家系黄曲霉产毒值分布图 2020WH: 2020武汉; 2021WH: 2021武汉; 2021QZ: 2021泉州。AFT: 产毒值。"

表5

抗黄曲霉侵染和产毒的高油酸家系"

家系
Line
油酸含量
Oleic acid
content (%)
侵染指数PSII (%) 产毒值AFT (μg g-1)
2020武汉
2020WH
2021武汉
2021WH
2021泉州
2021QZ
2020武汉
2020WH
2021武汉
2021WH
2021泉州
2021QZ
QT0722 81.01 16.23 35.12 45.28 21.00 58.06 96.43
QT0790 80.18 42.33 34.96 56.31 14.04 18.34 28.48
QT0903 80.22 41.42 42.88 78.37 17.73 36.84 44.18
QT0918 79.91 14.27 31.72 57.19 8.49 25.18 33.15
QT1008 79.41 30.67 33.91 41.67 50.29 66.72 31.95
ZH16 46.81 79.56 76.35 88.33 110.43 129.67 123.67
KNH03-3 79.59 43.86 35.23 57.99 18.58 37.35 43.55
J11 42.58 45.12 36.33 59.42 35.45 53.11 62.98
ZH6 45.40 85.97 87.29 84.12 20.83 42.77 50.12

图5

不同生态区QT0790、QT0918和NJSU2007之间PSII和AFT的显著性差异 ***表示在0.001概率水平相关性显著; **表示在0.01概率水平相关性显著。NY: 南阳; TZ: 泰州; NC: 南充; HF: 合肥; TR: 铜仁。PSII: 侵染指数; AFT: 产毒值。"

表6

QT0790和QT0918不同生态区的农艺性状"

家系
Line
性状
Trait
南阳
Nanyang
泰州
Taizhou
南充Nanchong 合肥
Hefei
铜仁
Tongren
平均
Average
QT0790 主茎高 HMS (cm) 41.8 42.2 41.4 42.3 28.0 39.1
总分枝数 TBN 9.8 11.4 14.7 16.0 13.7 13.1
饱果数 FFN 33.3 15.8 15.4 29.1 18.1 22.3
百果重 HPW (g) 162.4 147.6 142.3 153.2 115.5 144.2
百粒重 HSW (g) 63.5 65.8 52.5 63.3 45.7 58.2
出仁率 SP (%) 62.3 70.4 70.6 72.9 66.6 68.6
QT0918 主茎高 HMS (cm) 45.0 33.7 37.0 54.1 28.8 39.7
总分枝数 TBN 9.8 8.4 9.6 9.8 9.6 9.4
饱果数 FFN 25.8 10.6 16.4 26.4 17.3 19.3
百果重 HPW (g) 165.3 131.0 129.4 132.3 123.8 136.4
百粒重 HSW (g) 64.5 59.9 50.6 54.8 46.0 55.2
出仁率 SP (%) 71.3 75.3 75.2 75.7 67.2 72.9
[1] Janila P, Pandey M K, Shasidhar Y, Variath M T, Sriswathi M, Khera P, Manohar S S, Nagesh P, Vishwakarma M K, Mishra G P, Radhakrishnan T, Manivannan N, Dobariya K L, Vasanthi R P, Varshney R K. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci, 2016, 242: 203-213.
[2] Braddock J C, Sims C A, O’Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995, 60: 489-493.
[3] Terés S, Barceló-Coblijn G, Alemany R, Benet M, Escribá P V. Oleic acid is responsible for the blood pressure reduction induced by olive oil through its “membrane-lipid therapy” action. Chem Phys Lipds, 2007, 149: S71-S72.
[4] Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding Program1. Peanut Sci, 1987, 14: 7-11.
[5] Gorbet D W, Knauft D A. Registration of ‘SunOleic 95R’ peanut. Crop Sci, 1997, 37: 1392.
[6] Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. J Hered, 1989, 80: 252-253.
[7] 禹山林, TGIsleib. 美国大花生脂肪酸的遗传分析. 中国油料作物学报, 2000, 22: 34-37.
Yu S L, TGIsleib. The inheritance of high oleic acid content in peanut of Virginia type in USA. Chin J Oil Crop Sci, 2000, 22: 34-37 (in Chinese with English abstract).
[8] 王传堂, 朱立贵. 高油酸花生. 上海: 上海科学技术出版社, 2017. pp 189-190.
Wang C T, Zhu L G. High Oleic Acid Peanuts. Shanghai: Shanghai Scientific & Technical Publishers, 2017. pp 189-190 (in Chinese).
[9] Rao K S, Tulpule P G. Varietal differences of groundnut in the production of aflatoxin. Nature, 1967, 214: 738-739.
[10] Mixon A C, Rogers K M. Peanut accessions resistant to seed infection by Aspergillus flavus. Agron J, 1973, 65: 560-562.
[11] 肖达人, 王圣玉, 瞿桢, 张洪玲. 花生抗黄曲霉毒素污染研究进展. 花生科技, 1999, 28(增刊1): 124-129.
Xiao D R, Wang S Y, Qu Z, Zhang H L. Research progress of peanut resistance to aflatoxin pollution. J Peanut Sci, 1999, 28(S1): 124-129 (in Chinese with English abstract).
[12] 姜慧芳, 任小平, 王圣玉, 张晓杰, 黄家权, 廖伯寿, Holbrooka C, Upadhyaya H. 利用核心种质发掘及评价花生抗黄曲霉资源. 作物学报, 2010, 36: 428-434.
doi: 10.3724/SP.J.1006.2010.00428
Jiang H F, Ren X P, Wang S Y, Zhang X J, Huang J Q, Liao B S, Holbrooka C, Upadhyaya H. Development and evaluation of peanut germplasm with resistance to Aspergillus flavus from core collection. Acta Agron Sin, 2010, 36: 428-434 (in Chinese with English abstract).
[13] 王后苗. 花生抗黄曲霉菌产毒机制的研究. 中国农业科学院博士学位论文, 北京, 2016.
Wang H M. Mechanism of Resistance to Aflatoxin Production in Peanut (Arachis hypogaea L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[14] Yu B L, Huai D X, Huang L, Kang Y P, Ren X P, Chen Y N, Zhou X J, Luo H Y, Liu N, Chen W G, Lei Y, Pandey M K, Sudini H, Varshney R K, Liao B S, Jiang H F. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet, 2019, 20: 32.
[15] 晋高锐, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 雷永, 廖伯寿, 姜慧芳. 花生籽仁抗黄曲霉菌侵染评价方法的优化及应用. 中国油料作物学报, 2024, 46: 1405-1411.
doi: 10.19802/j.issn.1007-9084.2023178
Jin G R, Yu B L, Guo J B, Ding Y B, Liu N, Luo H Y, Chen W G, Huang L, Zhou X J, Lei Y, Liao B S, Jiang H F. Improvement and utilization for scoring of the Aspergillus flavus infection to peanut seed. Chin J Oil Crop Sci, 2024, 46: 1405-1411 (in Chinese with English abstract).
[16] Davis J P, Dean L O, Faircloth W H, Sanders T H. Physical and chemical characterizations of normal and high-oleic oils from nine commercial cultivars of peanut. J Am Oil Chem Soc, 2008, 85: 235-243.
[17] 赵志浩, 石爱民, 王强. 高油酸花生的研究进展与发展趋势. 粮食与油脂, 2019, 32(9): 1-4.
Zhao Z H, Shi A M, Wang Q. Research progress and development trend of high-oleic acid peanuts. Cereals Oils, 2019, 32(9): 1-4 (in Chinese with English abstract).
[18] 刘芳, 王积军, 汤松. 我国高油酸花生品种选育与推广应用. 中国农技推广, 2017, 33(1): 14-15.
Liu F, Wang J J, Tang S. Breeding, popularization and application of peanut varieties with high oleic acid in China. China Agric Technol Ext, 2017, 33(1): 14-15 (in Chinese).
[19] 巩鹏涛. 基于SSR标记锚定策略的大豆分子连锁图的整合. 广西大学硕士学位论文, 广西南宁, 2006.
Gong P T. An Integrated Soybean Genetic Linkage Map Based on SSR Anchor Marker Strategies. MS Thesis of Guangxi University, Nanning, Guangxi, China, 2006 (in Chinese with English abstract).
[20] Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maize. Genetics, 1988, 118: 519-526.
doi: 10.1093/genetics/118.3.519 pmid: 3366363
[21] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008, 34: 999-1004.
doi: 10.3724/SP.J.1006.2008.00999
Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008, 34: 999-1004 (in Chinese with English abstract).
[22] 李威涛, 徐志军, 蔡岩, 郭建斌, 喻博伦, 黄莉, 陈玉宁, 周小静, 罗怀勇, 刘念, 陈伟刚, 任小平, 姜慧芳. 抗青枯病兼大果和高出仁率的花生新种质创制. 作物学报, 2020, 46: 484-490.
doi: 10.3724/SP.J.1006.2020.94112
Li W T, Xu Z J, Cai Y, Guo J B, Yu B L, Huang L, Chen Y N, Zhou X J, Luo H Y, Liu N, Chen W G, Ren X P, Jiang H F. Development of novel peanut genotypes with resistance to bacterial wilt disease, large pod, and high shelling percentage. Acta Agron Sin, 2020, 46: 484-490 (in Chinese with English abstract).
[23] 蒋艺飞, 喻博伦, 丁膺宾, 陈伟刚, 郭建斌, 陈海文, 罗怀勇, 刘念, 黄莉, 周小静, 姜慧芳, 雷永, 晏立英, 康彦平, 姜成红, 廖伯寿. 花生抗黄曲霉大果种质的创制与鉴定. 中国油料作物学报, 2022, 44: 72-77.
doi: 10.19802/j.issn.1007-9084.2020304
Jiang Y F, Yu B L, Ding Y B, Chen W G, Guo J B, Chen H W, Luo H Y, Liu N, Huang L, Zhou X J, Jiang H F, Lei Y, Yan L Y, Kang Y P, Jiang C H, Liao B S. Development and characterization of novel large-podded peanut genotypes with resistance to aflatoxin contamination. Chin J Oil Crop Sci, 2022, 44: 72-77 (in Chinese with English abstract).
[1] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[2] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[3] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[4] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[5] 李建国,薛晓梦,张照华,王志慧,晏立英,陈玉宁,万丽云,康彦平,淮东欣,姜慧芳,雷永,廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用[J]. 作物学报, 2019, 45(12): 1891-1898.
[6] 刘浩,鲁清,李海芬,李少雄,陈小平,梁炫强,洪彦彬. 花生硬脂酰-ACP酸脱饱和基因FAB2表达的分子机制[J]. 作物学报, 2019, 45(11): 1638-1648.
[7] 于明洋,孙明明,郭悦,姜平平,雷永,黄冰艳,冯素萍,郭宝珠,隋炯明,王晶珊,乔利仙. 利用回交法快速选育高油酸花生新品系[J]. 作物学报, 2017, 43(06): 855-861.
[8] 孙子淇,张新友,徐静,张忠信,刘华,严玫,董文召,黄冰艳,韩锁义,汤丰收,刘志勇. 河南省审定花生品种的指纹图谱构建[J]. 作物学报, 2016, 42(10): 1448-1461.
[9] 厉广辉,万勇善,刘风珍,张昆. 不同抗旱性花生品种根系形态及生理特性[J]. 作物学报, 2014, 40(03): 531-541.
[10] 张智猛,戴良香,宋文武,丁红,慈敦伟,康涛,宁堂原,万书波. 干旱处理迫对花生品种叶片保护酶活性和渗透物质含量的影响[J]. 作物学报, 2013, 39(01): 133-141.
[11] 王后苗,黄家权,雷永,晏立英,王圣玉,姜慧芳,任小平,娄庆任,廖伯寿. 花生种子白藜芦醇含量与黄曲霉产毒抗性的关系[J]. 作物学报, 2012, 38(10): 1875-1883.
[12] 韩仲志, 赵友刚. 利用花生荚果图像特征识别品种与检验种子[J]. 作物学报, 2012, 38(03): 535-540.
[13] 张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价[J]. 作物学报, 2012, 38(03): 495-504.
[14] 官春云;刘春林;陈社员;彭琦;李栒;官梅. 辐射育种获得油菜(Brassica napus)高油酸材料[J]. 作物学报, 2006, 32(11): 1625-1629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!