作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1875-1883.doi: 10.3724/SP.J.1006.2012.01875
王后苗,黄家权,雷永,晏立英,王圣玉,姜慧芳,任小平,娄庆任,廖伯寿*
WANG Hou-Miao,HUANG Jia-Quan,LEI Yong,YAN Li-Ying,WANG Sheng-Yu,JIANG Hui-Fang,REN Xiao-Ping,LOU Qing-Ren, LIAO Bo-Shou*
摘要:
选用抗黄曲霉产毒的花生品种(系)和高产毒品种(系), 采用强产毒菌株AF2202人工接种水分吸涨的花生种子, 培养7 d后,测定接种和未接种的花生种子中白藜芦醇及黄曲霉毒素含量,探讨白藜芦醇与花生种子黄曲霉产毒抗性之间的关系。结果表明,抗黄曲霉产毒花生品种(系)的白藜芦醇含量较高,平均为37.3 µg kg–1,高产毒品种含量相对较低,平均为13.3 µg kg–1,抗、感品种之间存在显著差异。吸胀处理后抗产毒花生品种(系)白藜芦醇含量提高2.0倍,感病品种(系)仅提高1.6倍,对不同品种(系)处理后的种子二次接种,令黄曲霉毒素含量下降37.6%~75.8%,但吸胀处理后抗产毒品种(系)的黄曲霉毒素含量仍低于感病品种(系)。相关分析表明,花生白藜芦醇含量与黄曲霉毒素含量呈显著负相关,并且在离体培养基中添加浓度大于3.0 μg mL–1的白藜芦醇可导致黄曲霉菌产毒量大幅下降,说明白藜芦醇对黄曲霉产毒具有抑制作用。
[1]http://faostat.fao.org/site/339/default.aspx [2012-4-01][2]Yu S-L(禹山林). Peanut Breeding in China (中国花生遗传育种学). Shanghai: Shanghai Science and Technology Press, 2011 (in Chinese)[3]Wicklow D T. Toxigenic Fungi-Their Toxins and Health Hazard. Samuels GL: Toxigenic fungi as Ascomycetes, 1984[4]Rensburg S J, Cook-Mozaffari P, Schalkwyk D J, Watt J J, Vincent T J. Hepatocellular carcinoma and dietary aflatoxin in Mozambique and Transkei. J Cancer, 1985, 51: 713-726[5]Williams J H, Phillips T D, Jolly P E, Stiles J K, Jolly C M, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr, 2004, 80: 1106-1122[6]Payne G A, Brown M P. Genetics and physiology of aflatoxin biosynthesis. Annu Rev Phytopathol, 1998, 36: 329-362[7]Keen N T. Isolation of phytoalexins from germination seeds of peanut. Phytopathol, 1975, 65: 91-92[8]Ingham J L. 3,5,4-Trihydroxystibene as a phytoalexin from groundnut (Arachis hypogaea L.). Phytochem, 1976, 15: 1791-1793[9]Basa S M. A phytoalexin and aflatoxin producing peanut seed culture system. Peanut Sci, 1994, 21: 103-134[10]Hen S-L(何水林), Zheng J-G(郑金贵), Lin M(林明). Advances of biological function, regulatory mechanism of biosynthesis and genetic engineering of stilbenes in plant. J Agric Biotechnol (农业生物技术学报), 2004, 12(1): 102-108 (in Chinese with English abstract)[11]Schroder G, Brown J W, Schroder J. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem, 1988, 172: 161-169[12]Stark L, Nelke B, Hanbler G. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep, 1997, 16: 668-673[13]Fettig S, Hess D. Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res, 1999, 8: 179-189[14]Thomzik J E, Stenzel K, Stocker R. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum M.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol, 1997, 51: 265-278[15]Hain R, Bieseler B, Kindl H. Expression of a stilbene gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol, 1990, 15: 325-335[16]Chung I M, Park M R, Chun J C, Yun S J. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Sci, 2003, 164: 103-109[17]Jeandet P, Bessis R, Maume B F, Meunier P, Peyron D, Trollat P. Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem, 1995, 43: 316-319[18]Holme A L, Pervaiz S. Resveratrol in cell fate decisions. J Bioenerget Biomembranes, 2007, 39: 59-63[19]Chun M M. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem Pharmacol, 2002, 63: 99-104[20]Nicholson S K, Tucker G A, Brameld J M. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc, 2008, 67: 42-47[21]Kerry N L, Abbey M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis, 1997, 135: 93-102[22]Wang Z, Huang Y, Zou J. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Intl J Mol Med, 2002, 9: 77-79[23]Heilbronn L K, Jonge L, Frisard M I, DeLany J P, Larson Meyer D E, Rood J, Nguyen T, Martin C K, Volaufova J, Most M M, Greenway F L. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. Am Med Assoc, 2006, 295: 1539-1548[24]Bertelli A A, Das D K. Grapes, resveratrol, and heart health. J Cardiovascular Pharmacol, 2009, 54: 468[25]Sanders T H, McMichael R W, Hendrix K W .Occurrence of resveratrol in edible peanuts. J Agric Food Chem, 2000, 48: 1243-1246[26]Sobolev V S, Cole R J. Trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem, 1999, 47: 1435-1439[27]Chen R S, Wu P L, Robin Y Y. Peanut roots as a source of resveratrol. J Agric Food Chem, 2002, 50: 1665-1667[28]Fajardo J E, Waniska R D, Cuero R G, Pettit R E. Phenolic compounds in peanut seed enhanced elicitation by chitosan and effects of growth and aflatoxin B1 producing by Aspergillus flavus. Food Biotechnol, 1994, 8: 191-211[29]Amaya F J, Young C T, Norden A J. Chemical screening for Aspergillus flavus resistance in peanut. Oleagineux, 1990, 35: 255-259[30]Guo B Z, Russin J S, Brown R L, Cleveland T E, Widstrom N W. Resistance to aflatoxin contamination in corn as influenced by relative humidity and kernel germination. J Food Protect, 1996, 59: 276-281[31]Guo B Z, Brown R L, Lax A L, Cleveland T E, Russin J S, Widstrom N W. Protein profiles and antifungal activities of kernel extracts from corn genotypes resistant and susceptible to Aspergillus flavus. J Food Protect, 1998, 61: 98-102[32]Guo B Z, Chen Z Y, Brown R L, Lax A R, Cleveland T E, Russin J S, Mehta A D, Selitrennikoff C P, Widstrom N W. Germination induces accumulation of specific proteins and antifungal activities in corn kernels. Phytopathol, 1997, 87: 1174-1178[33]Dorner J W, Cole R J, Sanders T H, Blankenship P D. Interrelationship of kernel water activity, soil temperature, maturity and phytoalexin production in preharvest aflatoxin contamination of drought-stressed peanuts. Mycopathologia, 1989, 105: 117-128[34]Liao B S, Zhuang W J, Tang R H, Zhang X Y, Shan S H, Jiang H F, Huang J Q. Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Sci, 2009, 36: 21-28[35]Chen Z Y, Brown R L, Damann K E, Cleveland T E. Identification of a maize kernel stress-related protein and its effect on aflatoxin accumulation. Phytopathol, 2004, 94: 938-945[36]Wang, M L, Pittman R N. Resveratrol content in seeds of peanut germlasm quantified by HPLC. Plant Genet Resour: Characterization and Utilization, 2008, 7: 80-83[37]Xiao D-R(肖达人), Wang S-Y(王圣玉), Zhang H-L(张洪玲). Rapid identifying method for resistance to aflatoxin production in peanut. Chin J Oil Crop Sci (中国油料作物学报), 1999, 21(3): 72-76 (in Chinese with English abstract)[38]Tian L-R(田立荣), Liao B-S(廖伯寿), Wang S-Y(王圣玉), Lei Y(雷永), Yan L-Y(晏立英), Huang J-Q(黄家权), Li D(李栋), Ren X-P(任小平), Xiao Y(肖洋). Evaluation of resistance to aflatoxin formation in peanut RILs. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(4): 455-459 (in Chinese with English abstract)[39]Liao B-S(廖伯寿), Lei Y(雷永), Li D(李栋),Wang S-Y(王圣玉), Huang J-Q(黄家权), Ren X-P(任小平), Jiang H-F(姜慧芳), Yan L-Y(晏立英). Novel high oil germplasm with resistance to Aspergillus flavus and bacterial wilt Developed from recombinant inbred lines. Acta Agron Sin (作物学报), 2010, 36(8): 1296-1301 (in Chinese with English abstract)[40]Holmes R A, Boston R S, Payne G A. Diverse inhibitors of aflatoxin biosynthesis. Appl Microbio Biot, 2008, 78: 559-572[41]Norton R A. Inhibition of aflatoxin B1 biosynthesis in Aspergillus flavus by anthocyanidins and related flavonoids. J Agric Food Chem, 1999, 47: 1230-1235[42]DeLucca A M, Daigle D. Depression of aflatoxin production by flavonoid-type compounds from peanut shells. Phytopathol, 1987, 77: 1560-1563 [43]Azaizeh H A, Pettit R E, Sarr B A, Phillips T. Effect of peanut tannin extracts on growth of Aspergillus parasiticus and aflatoxin production. Mycopathologia, 1990, 110(3): 125-132[44]Liang X-Q(梁炫强), Zhou G-Y(周桂元), Zou S-C(邹世春). Differential induction of resveratrol in susceptible and resistant peanut seeds infected by Aspergillus flavus. Chin J Oil Crop Sci (中国油料作物学报), 2006, 28(1): 59-62 (in Chinese with English abstract)[45]Gehm B D, McAndrews J M, Chien P Y, Jameson J L. Resveratrol, a polyphenolic compound found in and grapes wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA, 1997, 94: 14138-14143 |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[5] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[6] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[7] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[8] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[9] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[10] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[11] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[12] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[13] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[14] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[15] | 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108. |
|