作物学报 ›› 2025, Vol. 51 ›› Issue (3): 650-666.doi: 10.3724/SP.J.1006.2025.44082
霍如雪1,2(), 葛祥菡1, 石嘉1, 李雪蕊1, 戴圣杰1, 刘振宁1,*(
), 李宗芸2,*(
)
HUO Ru-Xue1,2(), GE Xiang-Han1, SHI Jia1, LI Xue-Rui1, DAI Sheng-Jie1, LIU Zhen-Ning1,*(
), LI Zong-Yun2,*(
)
摘要:
组氨酸激酶是植物双组分信号系统中的一类重要元件, 参与了植物生长发育、逆境响应等多种生物学功能。本研究在甘薯中鉴定到一个与拟南芥AHK5同源的基因IbHK5。亚细胞定位研究表明, IbHK5蛋白主要定位于细胞质和细胞核中。利用拟南芥异源超表达和甘薯发状根遗传转化技术研究了IbHK5参与干旱胁迫和盐胁迫的生物学功能。结果表明, IbHK5在拟南芥中的异源超表达能够增强拟南芥的耐旱性和耐盐性, 超表达株系中表现出较高的POD、SOD和CAT酶活, 较少的H2O2和O2-的积累, 以及相对表达量较高的POD、SOD、CAT和GPX等ROS清除系统相关基因。同样, IbHK5在甘薯中的超表达也能增强甘薯的耐旱性和耐盐性, 甘薯发状根也表现出较高的POD、SOD和CAT酶活, 较少的H2O2和O2-的积累。酵母双杂交试验表明, IbHK5能与拟南芥AHP1、AHP2、AHP3和AHP5蛋白互作。上述结果证实IbHK5是参与干旱胁迫和盐胁迫的一个正调控因子。研究结果有助于解析甘薯抵御干旱胁迫和盐胁迫的生理机制与分子机制, 也能够为耐干旱、耐盐的甘薯定向改良和品种选育提供一定的理论依据。
[1] |
Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res, 2010, 17: 303-324.
doi: 10.1093/dnares/dsq021 pmid: 20817745 |
[2] | Tran L S, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 20623-20628. |
[3] | Mason M G, Jha D, Salt D E, Tester M, Hill K, Kieber J J, Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant J, 2010, 64: 753-763. |
[4] |
Jain M, Tyagi A K, Khurana J P. Molecular characterization and differential expression of cytokinin-responsive type-a response regulators in rice (Oryza sativa). BMC Plant Biol, 2006, 6: 1.
pmid: 16472405 |
[5] |
Le D T, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi- Shinozaki K, Shinozaki K, Tran L S. Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res, 2011, 18: 17-29.
doi: 10.1093/dnares/dsq032 pmid: 21208938 |
[6] |
Jeon J, Kim J. Arabidopsis response regulator1 and Arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol, 2013, 161: 408-424.
doi: 10.1104/pp.112.207621 pmid: 23124324 |
[7] |
Nishiyama R, Watanabe Y, Leyva-Gonzalez M A, Ha C V, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L S P. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci USA, 2013, 110: 4840-4845.
doi: 10.1073/pnas.1302265110 pmid: 23487796 |
[8] | 潘雅姣, 王迪, 朱苓华, 傅彬英, 黎志康. 水稻双组分系统基因干旱胁迫表达谱分析. 作物学报, 2009, 35: 1628-1636. |
Pan Y J, Wang D, Zhu L H, Fu B Y, Li Z K. Differential expressions of two-component element genes in rice under drought stress. Acta Agron Sin, 2009, 35: 1628-1636 (in Chinese with English abstract). | |
[9] |
Jeon J, Kim N Y, Kim S, Kang N Y, Novák O, Ku S J, Cho C, Lee D J, Lee E J, Strnad M, Kim J. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem, 2010, 285: 23371-23386.
doi: 10.1074/jbc.M109.096644 pmid: 20463025 |
[10] | Karan R, Singla-Pareek S L, Pareek A. Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics, 2009, 9: 411-417. |
[11] | Schaller G E, Kieber J J, Shiu S H. Two-component signaling elements and histidyl-aspartyl phosphorelays. Arabidopsis Book, 2008, 6: e0112. |
[12] | Pareek A, Singh A, Kumar M, Kushwaha H R, Lynn A M, Singla-Pareek S L. Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol, 2006, 142: 380-397. |
[13] | Zameer R, Sadaqat M, Fatima K, Fiaz S, Rasul S, Zafar H, Qayyum A, Nashat N, Raza A, Shah A N, Batool R, Azeem F, Sun S M, Chung G. Two-component system genes in Sorghum bicolor: genome-wide identification and expression profiling in response to environmental stresses. Front Genet, 2021, 12: 794305. |
[14] |
Chu Z X, Ma Q, Lin Y X, Tang X L, Zhou Y Q, Zhu S W, Fan J, Cheng B J. Genome-wide identification, classification, and analysis of two-component signal system genes in maize. Genet Mol Res, 2011, 10: 3316-3330.
doi: 10.4238/2011.December.8.3 pmid: 22194197 |
[15] | Liu Z N, Zhang M, Kong L J, Lv Y X, Zou M H, Lu G, Cao J S, Yu X L. Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis). DNA Res, 2014, 21: 379-396. |
[16] | Gahlaut V, Mathur S, Dhariwal R, Khurana J P, Tyagi A K, Balyan H S, Gupta P K. A multi-step phosphorelay two-component system impacts on tolerance against dehydration stress in common wheat. Funct Integr Genomics, 2014, 14: 707-716. |
[17] | He Y J, Liu X, Ye L, Pan C T, Chen L F, Zou T, Lu G. Genome- wide identification and expression analysis of two-component system genes in tomato. Int J Mol Sci, 2016, 17: 1204. |
[18] | Ahmad B, Azeem F, Ali M A, Nawaz M A, Nadeem H, Abbas A, Batool R, Atif R M, Ijaz U, Nieves-Cordones M, Chung G. Genome-wide identification and expression analysis of two component system genes in Cicer arietinum. Genomics, 2020, 112: 1371-1383. |
[19] | Huo R X, Liu Z N, Yu X L, Li Z Y. The interaction network and signaling specificity of two-component system in Arabidopsis. Int J Mol Sci, 2020, 21: 4898. |
[20] |
Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science, 1996, 274: 982-985.
pmid: 8875940 |
[21] | Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung M K, Meixner A J, Hooley R, Neill S J, Hancock J T, Harter K. The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One, 2008, 3: e2491. |
[22] | Mira-Rodado V. New insights into multistep-phosphorelay (MSP)/two-component system (TCS) regulation: are plants and bacteria that different? Plants (Basel), 2019, 8: 590. |
[23] | Iwama A, Yamashino T, Tanaka Y, Sakakibara H, Kakimoto T, Sato S, Kato T, Tabata S, Nagatani A, Mizuno T. AHK5 histidine kinase regulates root elongation through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana. Plant Cell Physiol, 2007, 48: 375-380. |
[24] | Pham J, Liu J, Bennett M H, Mansfield J W, Desikan R. Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. New Phytol, 2012, 194: 168-180. |
[25] |
Pham J, Desikan R. Modulation of ROS production and hormone levels by AHK5 during abiotic and biotic stress signaling. Plant Signal Behav, 2012, 7: 893-897.
doi: 10.4161/psb.20692 pmid: 22827948 |
[26] | Huo R X, Zhao Y S, Liu T X, Xu M, Wang X H, Xu P, Dai S J, Cui X Y, Han Y H, Liu Z N, Li Z Y. Genome-wide identification and expression analysis of two-component system genes in sweet potato (Ipomoea batatas L.). Front Plant Sci, 2023, 13: 1091620. |
[27] | Yu Y C, Xuan Y, Bian X F, Zhang L, Pan Z Y, Kou M, Cao Q H, Tang Z H, Li Q, Ma D F, Li Z Y, Sun J. Overexpression of phosphatidylserine synthase IbPSS1 affords cellular Na+ homeostasis and salt tolerance by activating plasma membrane Na+/H+ antiport activity in sweet potato roots. Hortic Res, 2020, 7: 131. |
[28] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[29] | Zhang X R, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc, 2006, 1: 641-646. |
[30] | Yu H J, Hogan P, Sundaresan V. Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol, 2005, 139: 1853-1869. |
[31] | Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502. |
[32] | Szmitkowska A, Cuyacot A R, Pekaérovaé B, Žd'árská M, Houser J, Komárek J, Jaseňáková Z, Jayasree A, Heunemann M, Ubogoeva E, Spyroglou I, Trtílek M, Mironova V, Harter K, Zemlyanskaya E, Žídek L, Wimmerová M, Hejátko J. AHK5 mediates ETR1-initiated multistep phosphorelay in Arabidopsis. bioRxiv, 2021, DOI: 10.1101/2021.09.16.460643. |
[33] |
He Y J, Liu X, Zou T, Pan C T, Qin L, Chen L F, Lu G. Genome-wide identification of two-component system genes in Cucurbitaceae crops and expression profiling analyses in cucumber. Front Plant Sci, 2016, 7: 899.
doi: 10.3389/fpls.2016.00899 pmid: 27446129 |
[1] | 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754. |
[2] | 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311. |
[3] | 孟凡花, 刘敏, 沈傲, 刘炜. 脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J]. 作物学报, 2025, 51(1): 58-67. |
[4] | 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166. |
[5] | 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761. |
[6] | 孙一鸣, 田侠, 王少霞, 刘庆. 不同施磷水平对甘薯硒吸收、分配和转化的影响[J]. 作物学报, 2024, 50(6): 1608-1615. |
[7] | 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434. |
[8] | 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607. |
[9] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583. |
[10] | 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350. |
[11] | 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746. |
[12] | 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393. |
[13] | 张锦辉, 肖姿仪, 李旭华, 张明, 贾春兰, 潘振远, 邱法展. 玉米突变体caspl2b2的耐盐特性评价及转录组分析[J]. 作物学报, 2024, 50(12): 3144-3154. |
[14] | 蒋杨影, 唐铭均, 张林茜, 吕长文, 唐道彬, 王季春. 生长前期光照强度对甘薯叶片光合生理和结薯的影响[J]. 作物学报, 2024, 50(10): 2575-2585. |
[15] | 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236. |
|