作物学报 ›› 2025, Vol. 51 ›› Issue (3): 632-649.doi: 10.3724/SP.J.1006.2025.41033
所属专题: 小麦:遗传育种·种质资源·分子遗传学
        
               		张恒1( ), 冯雅岚2, 田文仲3, 郭彬彬1, 张均1, 马超1,*(
), 冯雅岚2, 田文仲3, 郭彬彬1, 张均1, 马超1,*( )
)
                  
        
        
        
        
    
        
               		ZHANG Heng1( ), FENG Ya-Lan2, TIAN Wen-Zhong3, GUO Bin-Bin1, ZHANG Jun1, MA Chao1,*(
), FENG Ya-Lan2, TIAN Wen-Zhong3, GUO Bin-Bin1, ZHANG Jun1, MA Chao1,*( )
)
			  
			
			
			
                
        
    
摘要:
蔗糖玉米非发酵-1相关蛋白激酶(Sucrose non-ferment-1-related protein kinase, SnRK)在响应非生物胁迫过程中发挥着核心调控作用。为系统分析小麦(Triticum aestivum L.) TaSnRK基因家族成员的基本理化性质、染色体分布、基因结构、系统进化关系和在局部根区干旱下的表达特性, 本研究利用生物信息学的方法在小麦全基因组进行鉴定, 并通过小麦公共表达数据库和实时荧光定量PCR (Real-time fluorescent quantitative PCR, qRT-PCR)分析了其在局部根区干旱下的表达模式。结果表明, 在小麦中共鉴定到139个SnRK基因家族成员, 并将其分为3个亚家族, 每个亚家族中分别含有15 (SnRK1)、31 (SnRK2)和93 (SnRK3)个成员, 蛋白质序列长度在154~836个氨基酸之间。通过保守基序分析发现, 3个亚家族的成员中均含Motif2和Motif4; 在SnRK1亚家族中所有成员均含Motif14和Motif15, 而在SnRK2和SnRK3亚家族中均不含这2个结构域; 在SnRK3亚家族中所有成员均含Motif10, 而在SnRK1和SnRK2亚家族中均不含Motif10。通过种内共线性分析发现, TaSnRK基因共有217个重复事件, 同源性较高且进化过程非常保守, Ka/Ks比率显示仅有4对家族成员受到了正向的自然选择压力。顺式作用元件分析发现, 小麦TaSnRK基因中的顺式作用元件大多与生长发育有关, 此外还包含多种逆境响应的结合元件。基因表达模式分析显示, 在TaSnRK家族成员中仅有20个基因在籽粒中的相对表达量较高, 而在穗、叶、芽、根中分别有85、90、92和80个基因具有较高的表达量。qRT-PCR分析表明, TaSnRK基因在抗旱性强的小麦中表达量更高, 另外SnRK2和SnRK3这2个亚族中的成员可以感受并传递干旱胁迫信号。蛋白互作分析结果表明, 35个TaSnRK蛋白和与其相关的23个功能蛋白共存在267对蛋白互作事件。上述结果为深入研究TaSnRK基因在调控小麦生长发育与干旱胁迫中的响应提供了理论依据。
| [1] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析. 作物学报, 2024, 50: 779-792. doi: 10.3724/SP.J.1006.2024.31045 | 
| Ju J H, Ma C, Wang T N, Wu Y, Dong Z, Fang M E, Chen Y S, Zhang J, Fu G Z. Genome wide identification and expression analysis of TaPOD family in wheat. Acta Agron Sin, 2024, 50: 779-792 (in Chinese with English abstract). | |
| [2] | 韦秀兰, 苏宁, 刘涛, 聂小军, 童维. 小麦SnRK2家族基因鉴定及进化分析. 麦类作物学报, 2023, 43: 1326-1334. | 
| Wei X L, Su N, Liu T, Nie X J, Tong W. Identification of SnRK2 gene family and evolution analysis in wheat. J Triticeae Crops, 2023, 43: 1326-1334 (in Chinese with English abstract). | |
| [3] | Yan J, Niu F, Liu W Z, Zhang H, Wang B, Lan W, Che Y, Yang B, Luan S, Jiang Y Q. Arabidopsis CIPK14 positively regulates glucose response. Biochem Biophys Res Commun, 2014, 450: 1679-1683. | 
| [4] | Halford N G, Hey S J. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J, 2009, 419: 247-259. doi: 10.1042/BJ20082408 pmid: 19309312 | 
| [5] | Hrabak E M, Chan C W M, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666-680. | 
| [6] | Halford N G, Hardie D G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol, 1998, 37: 735-748. doi: 10.1023/a:1006024231305 pmid: 9678569 | 
| [7] | Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G.  SnRK2 protein kinases: key regulators of plant response to abiotic stresses. OMICS, 2011, 15: 859-872. doi: 10.1089/omi.2011.0091 pmid: 22136638 | 
| [8] | Wurzinger B, Nukarinen E, Nägele T, Weckwerth W, Teige M.   The SnRK1 kinase as central mediator of energy signaling between different organelles. Plant Physiol, 2018, 176: 1085-1094. doi: 10.1104/pp.17.01404 pmid: 29311271 | 
| [9] | Dale S, Wilson W A, Edelman A M, Hardie D G. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett, 1995, 361: 191-195. doi: 10.1016/0014-5793(95)00172-6 pmid: 7698321 | 
| [10] | Sugden C, Donaghy P G, Halford N G, Hardie D G. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant Physiol, 1999, 120: 257-274. doi: 10.1104/pp.120.1.257 pmid: 10318703 | 
| [11] | Belin C, de Franco P O, Bourbousse C, Chaignepain S, Schmitter J, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S. Identification of features regulating OST1 kinase activity and OST1 function in guard Cells. Plant Physiol, 2006, 141: 1316-1327. doi: 10.1104/pp.106.079327 pmid: 16766677 | 
| [12] | Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem, 2004, 279: 41758-41766. doi: 10.1074/jbc.M405259200 pmid: 15292193 | 
| [13] | Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell, 2004, 16: 1163-1177. doi: 10.1105/tpc.019943 pmid: 15084714 | 
| [14] | Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S Y, Cutler S R, Sheen J, Rodriguez P L, Zhu J K. In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009, 462: 660-664. | 
| [15] | Szymańska K P, Polkowska-Kowalczyk L, Lichocka M, Maszkowska J, Dobrowolska G. SNF1-related protein kinases SnRK2.4 and SnRK2.10 modulate ROS homeostasis in plant response to salt stress. Int J Mol Sci, 2019, 20: 143. | 
| [16] | Zhong R L, Wang Y X, Gai R N, Xi D D, Mao C J, Ming F. Rice SnRK protein kinase OsSAPK8 acts as a positive regulator in abiotic stress responses. Plant Sci, 2020, 292: 110373. | 
| [17] | Qiu Q S, Guo Y, Dietrich M A, Schumaker K S, Zhu J K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002, 99: 8436-8441. | 
| [18] | Mazur R, Maszkowska J, Anielska-Mazur A, Garstka M, Polkowska- Kowalczyk L, Czajkowska A, Zmienko A, Dobrowolska G, Kulik A. The SnRK2.10 kinase mitigates the adverse effects of salinity by protecting photosynthetic machinery. Plant Physiol, 2021, 187: 2785-2802. doi: 10.1093/plphys/kiab438 pmid: 34632500 | 
| [19] | Li J, Long Y, Qi G N, Li J, Xu Z J, Wu W H, Wang Y. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell, 2014, 26: 3387-3402. | 
| [20] | Mohammadi R. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 2016, 211: 71-89. | 
| [21] | Berardini T Z, Reiser L, Li D H, Mezheritsky Y, Muller R, Strait E, Huala E. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis, 2015, 53: 474-485. doi: 10.1002/dvg.22877 pmid: 26201819 | 
| [22] | Hu B, Jin J P, Guo A Y, Zhang H, Luo J C, Gao G. GSDS 2.0: an upgraded gene features visualization server. Bioinformatics, 2015, 31: 1296-1297. | 
| [23] | 陈程杰, 夏瑞. TBtools: 大数据时代下的国产生物软件. 科学观察, 2022, 17(6): 33-35. doi: 10.15978/j.cnki.1673-5668.202206006 | 
| Chen C J, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Sci Focus, 2022, 17(6): 33-35 (in Chinese with English abstract). | |
| [24] | Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40: e49. | 
| [25] | Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202. doi: S1674-2052(20)30187-8 pmid: 32585190 | 
| [26] | Kang C H, Jung W Y, Kang Y H, Kim J Y, Kim D G, Jeong J C, Baek D W, Jin J B, Lee J Y, Kim M O, Chung W S, Mengiste T, Koiwa H, Kwak S S, Bahk J D, Lee S Y, Nam J S, Yun D J, Cho M J. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ, 2006, 13: 84-95. pmid: 16003391 | 
| [27] | Feng X, Meng Q, Zeng J B, Yu Q, Xu D A, Dai X H, Ge L, Ma W J, Liu W X. Genome-wide identification of sucrose non- fermenting-1-related protein kinase genes in maize and their responses to abiotic stresses. Front Plant Sci, 2022, 13: 1087839. | 
| [28] | Xiong J Y, Chen D Y, Su T T, Shen Q F, Wu D Z, Zhang G P. Genome-wide identification, expression pattern and sequence variation analysis of SnRK family genes in barley. Plants (Basel), 2022, 11: 975. | 
| [29] | Zhu W Z, Wu D Z, Jiang L X, Ye L Z. Genome-wide identification and characterization of SnRK family genes in Brassica napus. BMC Plant Biol, 2020, 20: 287. | 
| [30] | Wang L Z, Hu W, Sun J T, Liang X Y, Yang X Y, Wei S Y, Wang X T, Zhou Y, Xiao Q, Yang G X, He G Y. Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9. Plant Sci, 2015, 237: 33-45. | 
| [31] | Mishra S, Sharma P, Singh R, Tiwari R, Singh G P. Genome-wide identification and expression analysis of sucrose nonfermenting-1-related protein kinase (SnRK) genes in Triticum aestivum in response to abiotic stress. Sci Rep, 2021, 11: 22477. | 
| [32] | Ren L L, Liu Y J, Liu H J, Qian T T, Qi L W, Wang X R, Zeng Q Y. Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell, 2014, 26: 2404-2419. | 
| [33] | Chen Z, An Y Y, Wang L J. ALA reverses ABA-induced stomatal closure by modulating PP2AC and SnRK2.6 activity in apple leaves. Hortic Res, 2023, 10: uhad067. | 
| [34] | Lovas A, Bimbó A, Szabó L, Bánfalvi Z. Antisense repression of StubGAL83 affects root and Tuber development in potato. Plant J, 2003, 33: 139-147. | 
| [35] | Fan W Q, Zhao M Y, Li S X, Bai X, Li J, Meng H W, Mu Z X. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol, 2016, 16: 99. doi: 10.1186/s12870-016-0764-x pmid: 27101806 | 
| [36] | Radchuk R, Radchuk V, Weschke W, Borisjuk L, Weber H. Repressing the expression of the sucrose nonfermenting-1-related protein kinase gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype. Plant Physiol, 2006, 140: 263-278. doi: 10.1104/pp.105.071167 pmid: 16361518 | 
| [37] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究. 作物学报, 2024, 50: 1568-1583. | 
| Qiao Z X, Zhang J D, Wang Y, Guo Q F, Liu Y J, Chen R, Hu W H, Sun A Q. Difference in germination characteristics of different winter wheat cultivars under drought stress. Acta Agron Sin, 2024, 50: 1568-1583 (in Chinese with English abstract). doi: 10.3724/SP.J.1006.2024.31037 | |
| [38] | Zhang H Y, Mao X G, Wang C S, Rui L J. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One, 2010, 5: e16041. | 
| [39] | 杨艳, 黄锦雯, 夏鹏亮, 李义婷, 吴兴阳, 马东方. 小麦蔗糖非发酵相关蛋白激酶SnRK3基因的克隆与分析. 植物保护学报, 2023, 50: 161-169. | 
| Yang Y, Huang J W, Xia P L, Li Y T, Wu X Y, Ma D F. Cloning and analysis of wheat sucrose non-ferment-1-related protein kinase (SnRK3) gene. J Plant Prot, 2023, 50: 161-169. | |
| [40] | Tsai A Y L, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. Plant J, 2012, 69: 809-821. | 
| [41] | Lu Y, Sasaki Y, Li X W, Mori I C, Matsuura T, Hirayama T, Sato T, Yamaguchi J. ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis. J Exp Bot, 2015, 66: 2763-2771. | 
| [42] | Liu J, Ishitani M, Halfter U, Kim C S, Zhu J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 2000, 97: 3730-3734. doi: 10.1073/pnas.060034197 pmid: 10725382 | 
| [43] | Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA, 2000, 97: 3735-3740. doi: 10.1073/pnas.040577697 pmid: 10725350 | 
| [1] | 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386. | 
| [2] | 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484. | 
| [3] | 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466. | 
| [4] | 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398. | 
| [5] | 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284. | 
| [6] | 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219. | 
| [7] | 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203. | 
| [8] | 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189. | 
| [9] | 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086. | 
| [10] | 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032. | 
| [11] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. | 
| [12] | 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175. | 
| [13] | 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250. | 
| [14] | 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047. | 
| [15] | 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800. | 
| 
 | ||