欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1261-1276.doi: 10.3724/SP.J.1006.2025.41064

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦新品种西农877高产稳产的遗传特性解析

孟祥宇1,刁邓超1,刘雅睿1,李云丽1,孙玉晨1,吴玮1,赵雯1,汪妤1,吴建辉1,3,李春莲1,3,曾庆东2,3,韩德俊1,3,郑炜君1,3,*   

  1. 西北农林科技大学农学院,陕西杨陵 712100; 2西北农林科技大学植物保护学院, 陕西杨陵 712100; 3作物抗逆与高效生产全国重点实验室, 陕西杨陵 712100
  • 收稿日期:2024-10-01 修回日期:2024-12-20 接受日期:2024-12-20 出版日期:2025-05-12 网络出版日期:2024-12-27
  • 基金资助:
    本研究由陕西省科技厅重点产业创新链项目(2024NC-ZDCYL-01-02)和科技创新重大专项基金(2023ZD04026)资助。

Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877

MENG Xiang-Yu1,DIAO Deng-Chao1,LIU Ya-Rui1,LI Yun-Li1,SUN Yu-Chen1,WU Wei1,ZHAO Wen1,WANG Yu1,WU Jian-Hui1,3,LI Chun-Lian1,3,ZENG Qing-Dong2,3,HAN De-Jun1,3,ZHENG Wei-Jun1,3,*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; 2 College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; 3 National Key Laboratory of Crop Stress Resistance and Efficient Production, Yangling 712100, Shaanxi, China
  • Received:2024-10-01 Revised:2024-12-20 Accepted:2024-12-20 Published:2025-05-12 Published online:2024-12-27
  • Supported by:
    This study was supported by the Shaanxi Provincial Department of Science and Technology Key Industry Innovation Chain Project (2024NC-ZDCYL-01-02) and the Major Science and Technology Innovation 2030 Project Fund (2023ZD04026).

摘要:

西农877是西北农林科技大学选育的小麦新品种,具有一定的广适性、高产和稳产特性。本研究旨在解析西农877的高产、适应性和综合抗性的遗传基础,为小麦新品种选育提供理论依据和方法指导。通过田间试验分析了西农877及部分黄淮麦区创下高产记录的小麦品种的灌浆特征和光合特性,利用16K SNP背景芯片与0.1K SNP功能芯片相结合的方法,深入解析西农877的遗传基础,明确关键染色体区段的遗传效应。结果表明,西农877在灌浆特征上表现优异,具有较长的灌浆时间、合理的灌浆各阶段分配和高灌浆速率;其旗叶叶绿素含量和光合能力较高,区域试验中平均千粒重48.60 g,田间试验中千粒重达到50.05 g,均呈现出高于对照品种周麦36号的趋势且稳定性好,为实现高产潜力奠定了基础;在区试多点试验中,高稳系数平均值89.15,较周麦36号显著增加。在遗传构成上,西农805a作为母本对西农877遗传贡献率80.23%3个亲本中最高。同时西农877聚合了来自亲本的多个优异基因/QTL,包含抗条锈病位点QYrqin.nwafu-6BSQYrsn.nwafu-1BLQYrxn.nwafu-1BLYr29Yr78抗赤霉病位点QFhb.caas-5ALQFhb.hbaas-5AL抗叶锈病位点Lr13Lr68及产量相关性状位点,粒重基因TaT6PTaGS5-A1和籽粒大小基因QGl-4A综上,西农877在大田生产中展现出较高的增产潜力和广适性。亲本材料对西农877的遗传贡献率存在差异,其中西农805a的遗传贡献率最大。西农877中聚合了多个重要性状相关优异基因/QTL,为黄淮麦区高产广适新品种培育提供了重要的遗传资源和理论支撑。

关键词: 西农877, 高产潜力, 广泛适应性, 抗病性, 小麦SNP芯片, 遗传构成

Abstract:

Xinong 877 is a newly developed wheat variety bred by Northwest A&F University, characterized by wide adaptability, high yield, and yield stability. This study aims to elucidate the genetic basis of Xinong 877’s high yield, adaptability, and comprehensive resistance, thereby providing theoretical foundations and methodological guidance for the breeding of new wheat varieties. Field experiments were conducted to analyze the grain filling characteristics and photosynthetic traits of Xinong 877, along with several high-yielding wheat varieties from the Huanghuai wheat region. A combined approach utilizing a 16K SNP background chip and a 0.1K SNP functional chip was employed to thoroughly dissect the genetic foundation of Xinong 877 and identify the genetic effects of key chromosomal regions. The results showed that, Xinong 877 exhibited superior grain filling characteristics, including an extended grain filling duration, optimal allocation across various grain filling stages, and a high grain filling rate. Additionally, its flag leaves possessed elevated chlorophyll content and enhanced photosynthetic capacity. In regional trials, the average thousand-grain weight was 48.60?g, and in field trials, it reached 50.05?g, both surpassing the control variety Zhoumai 36 and demonstrating good stability. These traits establish a foundation for realizing high yield potential. In multi-location regional trials, Xinong 877 achieved an average stability coefficient of 89.15, significantly higher than that of Zhoumai 36. Regarding genetic composition, Xinong 805a, as the female parent, contributed 80.23 percent of the genetic makeup to Xinong 877, the highest among the three parent lines. Additionally, Xinong 877 incorporated multiple superior genes/QTLs from its parents, including stripe rust resistance loci QYrqin.nwafu-6BS, QYrsn.nwafu-1BL, QYrxn.nwafu-1BL, Yr29, and Yr78; fusarium head blight resistance loci QFhb.caas-5AL and QFhb.hbaas-5AL; leaf rust resistance loci Lr13 and Lr68; as well as yield-related loci such as grain weight genes TaT6P and TaGS5-A1, and grain size gene QGl-4A. Xinong 877 exhibits significant yield potential and wide adaptability in field production. There are notable differences in the genetic contributions from the parent lines, with Xinong 805a providing the highest genetic contribution. The aggregation of multiple key genes/QTLs related to important traits in Xinong 877 offers valuable genetic resources and theoretical support for the development of high-yield, broadly adaptable wheat varieties in the Huanghuai wheat region.

Key words: Xinong 877, high yield potential, wide adaptability, disease resistance, wheat SNP Array, genetic structure.

[1] 杨丽芝, 潘春霞, 邵珊璐, 陶晨悦, 王威, 应叶青. 多效唑和干旱胁迫对毛竹实生苗活力、光合能力及非结构性碳水化合物的影响. 生态学报, 2018, 38: 2082–2091.
Yang L Z, Pan C X, Shao S L, Tao C Y, Wang W, Ying Y Q. Effects of PP333 and drought stress on the activity, photosynthetic characteristics, and non-structural carbohydrates of phyllostachys edulis seedlings. Acta Ecol Sin, 2018, 38: 2082–2091 (in Chinese with English abstract).

[2] 邓霞. 小麦灌浆期SPAD值对产量的影响研究. 新疆师范大学硕士学位论文, 新疆乌鲁木齐, 2020.
Deng X. Study on the Effect of SPAD Value on Wheat Yield at Grain Filling Stage. MS Thesis of Xinjiang Normal University, Urumqi, Xinjiang, China, 2020 (in Chinese with English abstract).

[3] Baker L A, Habershon S. Photosynthesis, pigment-protein complexes and electronic energy transport: simple models for complicated processes. Sci Prog, 2017, 100: 313–330.

[4] Coast O, Posch B C, Bramley H, Gaju O, Richards R A, Lu M Q, Ruan Y L, Trethowan R, Atkin O K. Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat. Plant Cell Environ, 2021, 44: 2331–2346.

[5] Liu H X, Si X M, Wang Z Y, Cao L J, Gao L F, Zhou X L, Wang W X, Wang K, Jiao C Z, Zhuang L, Liu Y C, Hou J, Li T, Hao C Y, Guo W L, Liu J, Zhang X Y. TaTPP-7A positively feedback regulates grain filling and wheat grain yield through T6P-SnRK1 signalling pathway and sugar-ABA interaction. Plant Biotechnol J, 2023, 21: 1159–1175.

[6] 丁位华, 冯素伟, 王丹, 孙海丽, 李婷婷, 茹振钢. 不同穗型小麦籽粒灌浆、干物质积累与转运特性及其与产量的关系. 河南农业科学, 2018, 47(6): 13–17.
Ding W H, Feng S W, Wang D, Sun H L, Li T T, Ru Z G. Grain filling, dry matter accumulation and transport characteristics of different spike types of wheat and their relationship with yield. J Henan Agric Sci, 2018, 47(6): 13–17 (in Chinese with English abstract).

[7] 甄士聪, 赵永涛, 袁谦, 张中州, 望俊森. 小麦新品种漯麦76籽粒灌浆特性及产量分析. 浙江农业科学, 2024, 65: 885–888.
Zhen S C, Zhao Y T, Yuan Q, Zhang Z Z, Wang J S. Grain filling characteristics and yield analysis of wheat new variety Luomai 76. J Zhejiang Agric Sci, 2024, 65: 885–888 (in Chinese with English abstract).

[8] Przulj N, Mladenov N. Inheritance of grain filling duration in spring wheat. Plant Breed, 1999, 118: 517–521.

[9] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354–1360.

[10] 姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 2237–2248.
Yao Q F, Chen H X, Zhou J G, Ma R Y, Deng L, Tan C, Song J H, Lyu J J, Ma J. QTL identification and genetic analysis of plant height in wheat based on 16K SNP array. Sci Agric Sin, 2023, 56: 2237–2248 (in Chinese with English abstract).

[11] 王矗, 殷岩, 王昊, 李诗慧, 赵春华, 秦冉, 孙晗, 吴永振, 慕岩君, 孔军杰, 许玲, 黄小梅, 辛庆国, 王江春, 崔法. 小麦品种烟农999高产遗传基础解析. 植物遗传资源学报, 2023, 24: 732–743.
Wang C, Yin Y, Wang H, Li S H, Zhao C H, Qin R, Sun H, Wu Y Z, Mu Y J, Kong J J, Xu L, Huang X M, Xin Q G, Wang J C, Cui F. Unlocking the genetic basis of high-yield wheat variety Yannong 999. J Plant Genet Resour, 2023, 24: 732–743 (in Chinese with English abstract).

[12] 陈晓杰, 范家霖, 程仲杰, 杨科, 杨保安, 张福彦, 王嘉欢, 张建伟, 王浩. 高产优质中强筋小麦新品种豫丰11的遗传构成及其特异区段解析. 种子, 2023, 42: 14–18.
Chen X J, Fan J L, Cheng Z J, Yang K, Yang B A, Zhang F Y, Wang J H, Zhang J W, Wang H. Analysis on genetic component and specific regions of new wheat variety Yufeng11 with high yield and good quality medium gluten. Seed, 2023, 42: 14–18 (in Chinese with English abstract).

[13] Li R, Zhang C Y, Guo J P, Liu Y C. Maize grain filling characteristics in China: response to meteorological factors. Heliyon, 2024, 10: e30791.

[14] Yin S Y, Li P C, Xu Y, Liu J, Yang T T, Wei J, Xu S H, Yu J J, Fang H M, Xue L, Hao D R, Yang Z F, Xu C W. Genetic and genomic analysis of the seed-filling process in maize based on a logistic model. Heredity, 2020, 124: 122–134.

[15] Liu S J, Xiang M J, Wang X T, Li J Q, Cheng X R, Li H Z, Singh R P, Bhavani S, Huang S, Zheng W J, Li C L, Yuan F P, Wu J H, Han D J, Kang Z S, Zeng Q D. Development and application of the GenoBaits® Wheat SNP 16K array to accelerate wheat genetic research and breeding. Plant Commun, 2024: 101138.

[16] Van B R. GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered, 2008, 99: 232–236.

[17] Xiang M J, Liu S J, Wang X T, Zhang M M, Yan W Y, Wu J H, Wang Q L, Li C L, Zheng W J, He Y L, Ge Y X, Wang C F, Kang Z S, Han D J, Zeng Q D. Development of breeder chip for gene detection and molecular-assisted selection by target sequencing in wheat. Mol Breed, 2023, 43: 13.

[18] 王贺正, 徐国伟, 吴金芝, 张均, 陈明灿, 付国占, 李友军. 不同氮素水平对豫麦49-198籽粒灌浆及淀粉合成相关酶活性的调控效应. 植物营养与肥料学报, 2013, 19: 288–296.
Wang H Z, Xu G W, Wu J Z, Zhang J, Chen M C, Fu G Z, Li Y J. Regulating effect of nitrogen fertilization on grain filling and activities of enzymes involved in starch synthesis of Yumai 49-198. Plant Nutr Fert Sci, 2013, 19: 288–296 (in Chinese with English abstract).

[19] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系. 作物学报, 2018, 44: 260–267.
Miao Y J, Yan J, Zhao D H, Tian Y B, Yan J L, Xia X C, Zhang Y, He Z H. Relationship between grain filling parameters and grain weight in leading wheat cultivars in the yellow and Huai Rivers valley. Acta Agron Sin, 2018, 44: 260–267 (in Chinese with English abstract).

[20] 信志红, 郭建平, 谭凯炎, 张利华, 刘凯文, 杨荣光, 张颖, 孙义. 不同品性冬小麦籽粒灌浆特性研究. 气象与环境科学, 2019, 42(1): 18–25.
Xin Z H, Guo J P, Tan K Y, Zhang L H, Liu K W, Yang R G, Zhang Y, Sun Y. Study on grain filling characteristics of different quality winter wheat. Meteor Environ Sci, 2019, 42(1): 18–25 (in Chinese with English abstract).

[21] 姜思彤, 苏娜, 傅兆麟. 小麦旗叶叶绿素含量的时空差异性分析. 黑龙江农业科学, 2018(10): 22–26.
Jiang S T, Su N, Fu Z L. Temporal and spatial difference analysis of chlorophyll content in wheat flag leaf. Heilongjiang Agric Sci, 2018(10): 22–26 (in Chinese with English abstract).

[22] 卓武燕, 张正茂, 刘苗苗, 刘玉秀, 刘芳亮, 孙茹. 不同类型小麦光合特性及农艺性状的差异. 西北农业学报, 2016, 25: 538–546.
Zhuo W Y, Zhang Z M, Liu M M, Liu Y X, Liu F L, Sun R. Difference of photosynthetic characteristics and agronomic traits in different types of wheat. Acta Agric Boreali-Occident Sin, 2016, 25: 538–546 (in Chinese with English abstract).

[23] 谭彩霞, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 不同品质类型小麦旗叶光合特性及其与产量的相关性研究. 扬州大学学报(农业与生命科学版), 2019, 40(6): 30–34.
Tan C X, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Photosynthetic physiological characteristics in flag leaf of different quality types of wheat and its correlation with yield. J Yangzhou Univ Agric (Life Sci Edn), 2019, 40(6): 30–34 (in Chinese with English abstract).

[24] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇. 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38: 954–961.
Gai H M, Li Y G, Wang R Y, Li Z Q, Wang S J, Gao J L, Zhang X Y. Genetic contribution of Lumai 14 to novel wheat varieties developed in Shandong Province. Acta Agron Sin, 2012, 38: 954–961 (in Chinese with English abstract).

[25] 杨子博, 王安邦, 冷苏凤, 顾正中, 周羊梅. 小麦新品种淮麦33的遗传构成分析. 中国农业科学, 2018, 51: 3237–3248.
Yang Z B, Wang A B, Leng S F, Gu Z Z, Zhou Y M. Genetic analysis of the novel high-yielding wheat cultivar Huaimai33. Sci Agric Sin, 2018, 51: 3237–3248 (in Chinese with English abstract).

[26] 吴胜男, 李英壮, 王娜, 刘录祥, 谢彦周, 王成社. 小麦新品种陕农33的遗传构成分析. 麦类作物学报, 2021, 41: 134–139.
Wu S N, Li Y Z, Wang N, Liu L X, Xie Y Z, Wang C S. Dissection of genetic components in the new high-yielding wheat cultivar Shaannong 33. J Triticeae Crops, 2021, 41: 134–139 (in Chinese with English abstract).

[27] Zeng Q D, Wu J H, Liu S J, Chen X M, Yuan F P, Su P P, Wang Q L, Huang S, Mu J M, Han D J, Kang Z S, Chen X M. Genome-wide mapping for stripe rust resistance loci in common wheat cultivar Qinnong 142. Plant Dis, 2019, 103: 439–447.

[28] Huang S, Zhang Y B, Ren H, Zhang X, Yu R, Liu S J, Zeng Q D, Wang Q L, Yuan F P, Singh R P, Bhavani S, Wu J H, Han D J, Kang Z S. High density mapping of wheat stripe rust resistance gene QYrXN3517-1BL using QTL mapping, BSE-Seq and candidate gene analysis. Theor Appl Genet, 2023, 136: 39.

[29] Huang S, Zhang Y B, Ren H, Li X, Zhang X, Zhang Z Y, Zhang C L, Liu S J, Wang X T, Zeng Q D, Wang Q L, Singh R P, Bhavani S, Wu J H, Han D J, Kang Z S. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. Theor Appl Genet, 2022, 135: 2501–2513.

[30] Zhu Z W, Xu X T, Fu L P, Wang F J, Dong Y C, Fang Z W, Wang W X, Chen Y P, Gao C B, He Z H, Xia X C, Hao Y F. Molecular mapping of quantitative trait loci for Fusarium head blight resistance in a doubled haploid population of Chinese bread wheat. Plant Dis, 2021, 105: 1339–1345.

[31] Wang S S, Zhang X F, Chen F, Cui D Q. A single-nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat. Front Plant Sci, 2015, 6: 1166.

[32] Cao P, Liang X N, Zhao H, Feng B, Xu E J, Wang L M, Hu Y X. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta, 2019, 250: 1967–1981. 

[1] 栾奕, 白岩, 卢实, 李磊鑫, 王德强, 高婷婷, 石洁, 杨洪明, 路明. “十三五”国家东华北春玉米区域试验品种抗病性评价[J]. 作物学报, 2023, 49(4): 1122-1131.
[2] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[3] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[4] 李竹, 许莉萍, 苏亚春, 吴期滨, 成伟, 孙婷婷, 高世武. 基于田间表型和Bru1基因检测分析甘蔗褐锈病抗性遗传[J]. 作物学报, 2018, 44(02): 306-312.
[5] 孙喜营,崔磊,孙蕾,孙艳玲,邱丹,邹景伟,武小菲,王晓鸣,李洪杰. 抗禾谷孢囊线虫小麦新种质H3714和H4058的培育与鉴定[J]. 作物学报, 2015, 41(06): 872-880.
[6] 李继发,邓志英,孙福来,关西贞,王延训,田纪春. 小麦新品种“山农20”抗病基因的分子检测[J]. 作物学报, 2014, 40(04): 611-621.
[7] 李洪杰,王晓鸣,陈怀谷,李伟,刘东涛,张会云. 小麦-偃麦草杂种后代及小麦种质资源对纹枯病的抗性[J]. 作物学报, 2013, 39(06): 999-1012.
[8] 代君丽,崔磊,刘珂,宗莹莹,袁虹霞,邢小萍,李洪杰,李洪连. 小麦品种太空6号对Heterodera avenae郑州群体的抗性遗传分析[J]. 作物学报, 2013, 39(04): 642-648.
[9] 李祥晓,王倩,罗生香,何云霞,朱苓华,周永力,黎志康. 黑龙江省稻瘟病菌无毒基因分析及抗病种质资源筛选[J]. 作物学报, 2012, 38(12): 2192-2197.
[10] 崔磊,高秀,王晓鸣,简恒,唐文华,李洪连,李洪杰. 不同抗性小麦根与菲利普孢囊线虫(Heterodera filipjevi)互作的表型特征[J]. 作物学报, 2012, 38(06): 1009-1017.
[11] 高秀,崔磊,李洪连,王晓鸣,唐文华,Robert L. CONNER,林小虎,李洪杰. 硬粒小麦品种Waskana和Waskowa对禾谷孢囊线虫(Heterodera filipjeviH. avenae)的抗性[J]. 作物学报, 2012, 38(04): 571-577.
[12] 袁虹霞, 张福霞, 张佳佳, 侯兴松, 李洪杰, 李洪连. CIMMYT小麦种质资源对菲利普孢囊线虫(Heterodera filipjevi)河南许昌群体的抗性[J]. 作物学报, 2011, 37(11): 1956-1966.
[13] 李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测[J]. 作物学报, 2011, 37(06): 943-954.
[14] 李余生, 黄胜东, 杨娟, 王才林. 水稻抗稻曲病数量性状座位及效应分析[J]. 作物学报, 2011, 37(05): 778-783.
[15] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望[J]. 作物学报, 2011, 37(02): 202-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .