欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 778-783.doi: 10.3724/SP.J.1006.2011.00778

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻抗稻曲病数量性状座位及效应分析

李余生,黄胜东,杨娟,王才林   

  1. 江苏省农业科学院粮食作物研究所 / 江苏省优质水稻工程技术研究中心,江苏南京210014
  • 收稿日期:2010-09-21 修回日期:2011-01-06 出版日期:2011-05-12 网络出版日期:2011-02-24
  • 基金资助:

    本研究由国家自然科学基金项目(31071397),江苏省自然科学基金项目(BK2009320),国家高技术研究发展计划(863计划)项目(2010AA101302)和江苏省农业科技自主创新基金项目(CX[10]403)资助。

Analysis of Quantitative Trait Loci for Resistance to Rice False Smut

LI Yu-Sheng,HUANG Sheng-Dong,YANG Juan,WANG Cai-Lin   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu High Quality Rice Research and Development Center, Nanjing 210014, China
  • Received:2010-09-21 Revised:2011-01-06 Published:2011-05-12 Published online:2011-02-24

摘要: 利用157个家系组成的大关稻(japonica)/IR28 (indica)重组自交系(recombinant inbred lines, RIL)群体,采用高效引发稻曲病人工接种方法,以病情指数作为稻曲病的表型值。2007和2009年,鉴定亲本及RILs对水稻稻曲病的抗性。利用QTL Cartographer 软件,对水稻稻曲病抗性基因进行检测分析。两年共检测到qFsr1qFsr2qFsr4qFsr8qFsr10qFsr11qFsr12等7个QTL,分别位于第1、第2、第4、第8、第10、第11和第12染色体上,贡献率在9.8%~22.5%之间。其中,2007年检测到qFsr1qFsr4qFsr10qFsr11qFsr12等5个位点;2009年检测到qFsr2qFsr8qFsr10qFsr11等4个位点,qFsr11qFsr12在两年中均被检测到,对性状的解释率在18.0%~19.3%之间,使病情指数下降8.0%~16.3%,提高了抗病性。根据抗性位点加性效应方向,在qFsr1qFsr2qFsr8qFsr10qFsr11qFsr12位点上,亲本IR28存在抗稻曲病的增效等位基因,大关稻具有减效等位基因,而位点qFsr4的抗性效应来源正好相反。qFsr11qFsr12及其附近的标记可望在稻曲病抗性分子标记辅助选择育种中加以应用。

关键词: 水稻, 稻曲病, 抗病性, 数量性状座位

Abstract: A recombinant inbred line(RILs) population with 157 lines derived from an inter-subspecies cross of Daguandao/IR28 by the single seed descent method was used to detect quantitative trait loci (QTLs) conferring resistance to rice false smut [caused by U stilaginoidea virens (Cooke) Takahashi] in 2007 and 2009. The disease rate index of the two parents and 157 RILs caused by rice false smut were scored and the QTLs for rice false smut resistance were detected accordingly by QTL Cartographer software. Seven QTLs controlling false smut resistance were detected on chromosomes 1, 2, 4, 8, 10, 11, and 12, respectively, with the phenotypic variance of 9.8%–22.5%. There were five and four QTLs detected in 2007 and 2009, respectively, and only two QTLs were found in both two years, the phenotypic variation was explained by individual QTL ranged from 18.0% to 19.3% for these two QTLs,and the additive effects of these two QTLs contributed to the 8.0%–16.5% decrease of disease index and therefore the disease resistance increased. The direction of the additive effects at six loci qFsr1, qFsr2, qFsr8, qFsr10, qFsr11, and qFsr12 coincided with that predicted by phenotypes of the parents, and the IR28 alleles at these loci had positive effect against rice false smut while the negative effects were found in Daguandao alleles at qFsr4. Both qFsr11 and qFsr12 should be useful in rice breeding for resistance to rice false smut in marker-assisted selection (MAS) program.

Key words: Rice, Rice false smut, Disease resistance, Quantitative trait locus

[1]Ou S H. Rice Disease. Kew, Surrey, UK: CAB/CMI, 1985. pp 307–311
[2]Nakamura K I, Izumiyama N. Lupiosis in rice caused by ustiloxin and crude extract of fungal culture of Ustilaginoidea virens. Proc Jpn Assoc Mycotoxicol, 1992, 35: 41–43
[3]Dhindsa H S, Aulakh K S, Chahal S S. Incidence and assessment of losses due to false smut of rice in Punjab. Indian Phytopathol, 1991, 44: 120–121
[4]Chib H S, Tikoo M L, Kalha C S. Effect of false smut on yield of rice. Indian J Mycol Plant Pathol, 1992, 22: 278–280
[5]Sinha R K P, Sinha B B P, Singh A P. Assessment of yield loss due to false smut disease of rice. J Appl Biol, 2003, 13: 35–37
[6]Ji H-P(季宏平). Preliminary study on yield loss of rice damaged by rice false smut and chemical control to the disease. Heilongjiang Agric Sci (黑龙江农业科学), 2000, (4): 18–19 (in Chinese)
[7]Iwasaki S. Chemistry and biological activity of the mycotoxins interfering with tubulin function. Proc Jpn Assoc Mycotoxicol, 1992, 35: 1–6
[8]Koiso Y, Li Y, Iwasaki S, Hanaoka K, Kobayashi T, Sonoda R, Fujita Y, Yaegashi H, Sato Z. Ustiloxins antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J Antibiotics, 1994, 47: 765–773
[9]Li Y, Kosio Y, Hanaoka K, Yaegashi H. Ustiloxins new antimitotic cyclic peptides: interaction with porcine brain tubulin. Biochem Pharmacol, 1995, 49: 1367–1372
[10]Nakamura K I, Izumiyama N, Ohtsubo K I. “Lupinosis”-like lesions in mice caused by ustiloxin, produced by Ustilaginoidea virens: a morphological study. Nat Toxins, 1994, 2: 22–28
[11]Huang S-W(黄世文), Yu L-Q(余柳青). Present situation of studies on rice false smut (Ustilaginoidea virens) in China. Acta Agric Jiangxi (江西农业学报), 2002, 14(2): 45–51 (in Chinese with English abstract)
[12]Li X-J(李小娟), Liu E-M(刘二明), Xiao Q-M(肖启明), Su S-J(苏世杰), Zhao Z-X(赵志祥). Advances on studies about false smut of rice. Agrochemicals Research & Application (农药研究与应用), 2006, 10(2): 9–12 (in Chinese with English abstract)
[13]Liu Y-F(刘永锋), Chen Z-Y(陈志谊), Lu F(陆凡), Liu Y-Z(刘邮洲). Study on controlling rice false smut. J Jingling Inst Technol (金陵科技学院学报), 2004, 20(3): 42–45 (in Chinese with English abstract)
[14]Li Y-S(李余生), Zhu Z(朱镇), Zhang Y-D(张亚东), Zhao L(赵凌), Wang C-L(王才林). Genetic analysis of rice false smut resistance using major gene plus polygene mixed genetic model. Acta Agron Sin (作物学报), 2008, 34(10): 1728–1733
[15]Xu J-L(徐建龙), Xue Q-Z(薛庆中), Luo L-J(罗利军), Li Z-K(黎志康). Preliminary report on quantitative trait loci mapping of false smut resistance using near isogonics introgression lines in rice. Acta Agric Zhejiangensis (浙江农业学报), 2002, 14(1): 14–19 (in Chinese with English abstract)
[16]Zhang J-C(张君成), Zhang B-X(张炳欣), Chen Z-Y(陈志谊), Liu Y-F(刘永锋), Lu F(陆凡). Preliminary study on inoculation method of rice false smut and its effect. Chin Rice Sci (中国水稻科学), 2003, 17(4): 390–392 (in Chinese with English abstract)
[17]Zhang J-C(张君成), Chen Z-Y(陈志谊), Zhang B-X(张炳欣), Liu Y-F(刘永锋), Lu F(陆凡). Inoculation techniques used for inducing rice false smut efficiently. Acta Phytopathol Sin (植物病理学报), 2004, 34(5): 463–467 (in Chinese with English abstract)
[18]Tang C-S(唐春生), Gao J-Z(高家樟), Cao G-P(曹国平), Huang S-X(黄守行), Liu E-M(刘二明), Liu C-L(刘承龙), Xie W (谢伟), Luo X-Y(罗学义), Xiao Q(肖青). Research and application of classification standard of rice false smut. Hunan Agric Univ (湖南农业大学学报), 2000, 26(2): 122–125 (in Chinese with English abstract)
[19]Tang C-S(唐春生), Gao J-Z(高家樟), Cao G-P(曹国平). Research and application of classification standard of rice false smut. Plant Protect (植物保护), 2001, 27(1): 18–21 (in Chinese)
[20]Collard B C Y, Jahufer M Z Z, Brouwer J B, Pang E C K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica, 2005, 142: 169–196
[21]Mc Couch S R, Cho Y G, Yano M. Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13
[22]Kunihiro Y(国广泰史), Qian Q(钱前), Sato H(佐藤宏之), Teng S(滕胜), Zeng D-L(曾大力), Fujimoto K(藤本宽), Zhu L-H(朱立煌). QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2002, 29(1): 50–55
[23]Miao Q-M(缪巧明), Wang Y-H(王永华). Study on the technique of identification of resistance to Ustilaginoidea virens (Cooke) Tak. for rice cultivars. Southwest China J Agric Sci (西南农业学报), 1994, 7(2): 67–70 (in Chinese with English abstract)
[24]Dai G-H(代光辉), Zhao J(赵杰), He R-M(何润梅), Jin S-X(金素心), Nicole M. Histochemical observation on the resistant and susceptible varieties to Ustilaginoidea virens (Cooke) Tak. and the way of infection of conidia. Acta Phytopathol Sin (植物病理学报), 2005, 35(1): 37–42 (in Chinese with English abstract)
[25]Ansario M M, Ram T, Shama T. Yield loss assessment in promising rice cultures due to false smut. Oryza, 1988, 25: 207–209
[26]Ding X-L(丁秀兰), Jiang L(江玲), Liu S-J(刘世家), Wang C-M(王春明), Chen L-M(陈亮明), Cheng Z-B(程兆榜), Fan Y-J(范永坚), Zhou Y-J(周益军), Wan J-M(万建民). QTL analysis for rice stripe disease resistance gene using recombinant inbred lines (RILs) derived from crossing of Kinmaze and DV85. Acta Genet Sin (遗传学报), 2004, 31(3): 287–292 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!