欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 999-1012.doi: 10.3724/SP.J.1006.2013.00999

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦-偃麦草杂种后代及小麦种质资源对纹枯病的抗性

李洪杰1,*,王晓鸣1,陈怀谷2,李伟2,刘东涛3,张会云3   

  1. 1中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京 100081; 2江苏省农业科学院植物保护研究所, 江苏南京 210014; 3江苏省徐州市农业科学院, 江苏徐州 221121
  • 收稿日期:2012-12-04 修回日期:2013-03-11 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 基金资助:

    本研究由国家自然科学基金项目(30971775), 国家现代农业产业技术体系建设专项(CARS-3-1)和农业部作物种质资源保护子项目(NB2010-2130135- 25-14)资助。

Reaction of Wheat-Thinopyrum Progenies and Wheat Germplasm to Sharp Eyespot

LI Hong-Jie1,*,WANG Xiao-Ming1,CHEN Huai-Gu2,LI Wei2,LIU Dong-Tao3,ZHANG Hui-Yun3   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; 2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 3 Institute of Agricultural Sciences of Xuzhou, Xuzhou 221121, China?
  • Received:2012-12-04 Revised:2013-03-11 Published:2013-06-12 Published online:2013-03-22

摘要:

为鉴定小麦-偃麦草杂种后代以及我国小麦品种和育种中间品系对纹枯病的抗性,并且解析偃麦草染色体与纹枯病抗性的关系,在徐州和南京两个试点,采用田间病圃321份普通小麦品种或品系和56份小麦-偃麦草杂种后代材料进行了纹枯病抗性鉴定。在徐州试点没有发现高抗纹枯病的种质,但是有52份材料表现中抗反应型,包括34份普通小麦材料,其中萧农8506-1、小偃81、冀植4001、农大195、徐州8913和京东3066A-3的相对抗病指数高于0.7。在南京试点,全部普通小麦材料都不抗纹枯病,只有5份小麦-偃麦草种质表现中抗反应型。部分小麦-偃麦草种质的病情指数不但显著低于感病对照品种苏麦3号和扬麦158,而且还低于抗病对照品种安农8455和宁麦9号,如小麦-中间偃麦草4Ai#24Ai#2S附加系、代换系和易位系材料TA3513TA3516TA3517TA3519及小麦-长穗偃麦草第4部分同源群染色体代换系SS767,说明中间偃麦草4Ai#2染色体和长穗偃麦草4J染色体可能与纹枯病病情指数降低有关。基因组原位杂交分析结果表明,4Ai#2染色体属中间偃麦草的Js基因组,而长穗偃麦草与纹枯病抗性相关的第4部分同源群染色体属J基因组。虽然纹枯病与眼斑病的发病部位和症状非常相似,但抗眼斑病基因Pch1 (Madsen)Pch2 (Cappelle-Desprez)对纹枯病无效。

关键词: 小麦, 中间偃麦草, 长穗偃麦草, 纹枯病, 抗病性

Abstract:

The objectives of this study were to test reactions of wheat-Thinopyrum derivatives and wheat (Triticum aestivum L.) cultivars and breeding lines to sharp eyespot (caused by Rhizoctonia cerealis Van der Hoeven) and to understand the relationship between Thinopyrum chromosomes and sharp eyespot resistance. Using field nursery tests, 321 common wheat accessions and 56 wheat-Thinopyrum derivatives were tested in Xuzhou and Nanjing, Jiangsu Province, China. In Xuzhou, none of the accessions was highly resistant, while 52 accessions (including 34 common wheat accessions) were moderately resistant. Six common wheat cultivars, i.e., Xiaonong 8506-1, Xiaoyan 81, Jizhi 4001, Nongda 195, Xuzhou 8913, and Jingdong 3066A-3, had the relative resistance index greater than 0.7. In Nanjing, all the common wheat entries were moderately or highly susceptible. Only five accessions in wheat-Thinopyrum progenies showed moderately resistant reaction. The chromosome addition, substitution, and translocation lines TA3513, TA3516, TA351, and TA3519 involving chromosome 4Ai#2 or 4Ai#2S of Th. intermedium and the chromosome substitution line SS767 involving homoeologous group 4 chromosome of Th. ponticum had the disease indexes smaller than the susceptible controls Sumai 3 and Yangmai 158, as well the moderately resistant controls Annong 8455 and Ningmai 9. This indicated that the homoeologous group 4 chromosomes from Th. intermedium and Th. ponticum were most likely associated with the reduction of disease indexes. Genomic in situ hybridization using St genomic DNA from Pseudoroegneria strigos as a probe demonstrated that chromosome 4Ai#2 belongs to Js genome of Th. intermedium and the homoeologous group 4 chromosome of Th. ponticum belongs to J genome. Although sharp eyespot and eyespot develop similar shapes of symptoms on the basal stems of wheat, the eyespot resistance genes Pch1 and Pch2 carried by the wheat cultivars Madsen and Cappelle-Desprez, respectively, were not effective against sharp eyespot.

Key words: Triticum aestivum, Thinopyrum intermedium, Thinopyrum ponticum, Sharp eyespot, Disease resistance

[1]Hamada M S, Yin Y N, Chen H G, Ma Z H. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Manag Sci, 2011, 67: 1411–1419



[2]Pitt D. Studies on sharp eyespot disease of cereals: Effects of the disease on the wheat host and the incidence of disease in the field. Ann Appl Biol, 1966, 58: 299–308



[3]Richardson M J, Whittle A M, Jacks M. Yield loss relationships in cereals. Plant Pathol, 1976, 25: 21–30



[4]Clarkson J D S, Cook R J. Effect of sharp eyespot (Rhizoctonia cerealis) on yield loss in winter wheat. Plant Pathol, 1983, 32: 421–428



[5]Cromey M G, Butler R C, Boddington H J, Moorhead A R. Effects of sharp eyespot on yield of wheat (Triticum aestivum) in New Zealand. New Zealand J Crop Hort Sci, 2002, 30: 9–17



[6]Lemańczyk G, Kwa?na H. Effect of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur J Plant Pathol, 2012, 135: 187–200



[7]Davies W P, Price K R. Sensitivity of sharp eyespot of wheat and Rhizoctonia cerealis to fungicides. Ann Appl Biol, 1983, 102: 54–55



[8]Matthews A B, Gold K, Davies W P. Response of true eyespot and sharp eyespot of wheat to fungicides. Ann Appl Biol, 1985, 106: 76–77



[9]Chen H G, Gao Q G, Xiong G L, Li W, Zhang A X, Yu H S, Wang J S. Composition of wheat rhizosphere antagonistic bacteria and wheat sharp eyespot as affected by rice straw mulching. Pedosphere, 2010, 20: 505–514



[10]Jiang L-L(姜莉莉), Qiao K(乔康). Research status of wheat sharp eyespot resistance to fungicides. Agrochem Res Appl (农药研究与应用), 2010, 14(3): 11–14 (in Chinese with English abstract)



[11]Hamada M S, Yin Y N, Ma Z H. Sensitivity to iprodione, difenoconazole and fludioxonil of Rhizoctonia cerealis isolates collected from wheat in China. Crop Prot, 2011, 30: 1028–1033



[12]Xia X-M(夏晓明), Wang K-Y(王开运), Wang H-X(王怀训), Liu Y-H(刘英华), Hu Y(胡燕), Fan X(范昆). Studies on resistance risk forecast to validamycin against Rhizoctonia cerealis. Chin J Pestc Sci (农药学学报), 2006, 8(2): 115–120 (in Chinese with English abstract)



[13]Guo C-Q(郭春强), Liao P-A(廖平安), Ge C-B(葛昌斌), He D-X(贺德先), Zang H-Z(臧贺藏), Guo S-J(郭松景), Huang Q-M(黄全民), Chen Q(陈琦). Effects of main agronomic measures on reducing disease index of sharp eyespot in wheat (Triticum aestivum L.). J Triticeae Crops (麦类作物学报), 2008, 28(3): 537–540 (in Chinese with English abstract)



[14]Matusinsky P, Mikolasova R, Klem K, Spitzer T, Urban T. The role of organic vs. conventional farming practice, soil management and preceding crop on the incidence of stem-base pathogens on wheat. J Plant Dis Prot, 2008, 115: 17–22



[15]Wan Y-X(万映秀), Wang W-X(王文相), Zhang P-Z(张平治), Cao W-X(曹文昕), Zhao L(赵莉). Identification techniques and screening of sharp eyespot resistance of wheat. Chin Agric Sci Bull (中国农学通报), 2009, 25(7): 223–226 (in Chinese with English abstract)



[16]Li S-S(李斯深), Wang H-G(王洪刚), Liu A-X(刘爱新), Li X-B(李宪彬), Li A-F(李安飞), Liu S-B(刘树兵). Identification and genetic analysis of resistance to sharp eyespot (Rhizoctonia cerealis) in winter wheat germplasm. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(5): 1004–1008 (in Chinese with English abstract)



[17]Yang L-J(杨立军), Yang X-J(杨小军), Yu D-Z(喻大昭), Wang S-N(王绍南). Resistance evaluation of wheat cultivars (lines) to Rhizoctonia cerealis Van der Hoeven and screening of its resistance resources. Plant Prot (植物保护), 2001, 27(2): 4–7 (in Chinese with English abstract)



[18]Yan W(颜伟), Wu J-Z(吴纪中), Cai S-B(蔡士宾). Identification and innovation of resistance to sharp eyespot (Rizoctonia cerealis) in wheat germplasm. Fujian Sci Technol Rice Wheat (福建稻麦科技), 2004, 22(3): 12–16 (In Chinese with English abstract)



[19]Xing X-P(邢小萍), Yuan H-X(袁虹霞), Sun B-J(孙炳剑), Li H-L(李洪连). The resistant dynamic of wheat cultivars (lines) to wheat sharp eyespot. Henan Agric Sci (河南农业科学), 2008, (12): 85–88 (in Chinese with English abstract)



[20]Shi J-R(史建荣), Wang Y-Z(王裕中), Chen H-G(陈怀谷), Shen S-W(沈素文). Screening techniques and evaluation of wheat resistance to sharp eyespot caused by Rhizoctonia cerealis. Acta Phytophalacica Sin (植物保护学报), 2000, 27(2): 107–112 (in Chinese with English abstract)



[21]Li H-L(李洪连), Yuan H-X(袁虹霞), Diao X-G(刁晓葛), Li S-P(李锁平), Hu Y-X(胡玉欣), Wang S-Z(王守正). Evaluation on the resistance of major wheat varieties in Henan province to sharp eyespot. Acta Agric Univ Henanensis (河南农业大学学报), 1998, 32(2): 107–111 (in Chinese with English abstract)



[22]Ren L-J(任丽娟), Chen P-D(陈佩度), Chen H-G(陈怀谷), Ma H-X(马鸿翔). Screening of resistance to sharp eyespot in wheat. J Plant Genet Resour (植物遗传资源学报), 2010, 11(1): 108–111 (in Chinese with English abstract)



[23]Zhang H-Y(张会云), Feng G-H(冯国华), Liu D-T(刘东涛), Liu S-L(刘世来), Wang L-H(王来花), Wang J(王静), Wang X-J(王晓军), Chen R-Z(陈荣振). Identification and utilization of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat germplasm resources. Acta Agric Boreali-Occident Sin (西北农业学报), 2009, 18(1): 213–216 (in Chinese with English abstract)



[24]Leng S-F(冷苏凤), Zhang A-X(张爱香), Li W(李伟), Chen H-G(陈怀谷). Resistance of wheat cultivars to sharp eyespot in Jiangsu province. Jiangsu J Agric Sci (江苏农业学报), 2010, 26(6): 1176–1180 (in Chinese with English abstract)



[25]Yuan H-X(袁虹霞), Li H-L(李洪连), Wang S-Z(王守正), Li S-P(李锁平), Hu Y-X(胡玉欣). Identification of resistance to wheat sharp eyespot in wheat relatives. Acta Agric Boreali-Sin (华北农学报), 1998, 13(4): 26–29 (in Chinese with English abstract)



[26]Li H J, Conner R L, Murray T D. Resistance to soil-borne diseases of wheat: contributions from the wheatgrasses Thinopyrum intermedium and Th. ponticum. Can J Plant Sci, 2008, 88: 195–205



[27]Li H J, Wang X M. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics, 2009, 36: 557–565



[28]Wang Y-Z(王裕中), Wu Z-F(吴志凤), Shi J-R(史建荣), Chen H-G(陈怀谷). Study on occurrence of wheat sharp eyespot in Jangsu and the factors influencing its development in fields. Acta Phytophyl Sin (植物保护学报), 1994, 21(2): 109–114 (in Chinese with English abstract)



[29]Fang Z(方正), Chen H-G(陈怀谷), Chen H-D(陈厚德), Wang Y-Z(王裕中). The profile and virulence of wheat sharp eyespot pathogens in Jiangsu. J Triticeae Crops (麦类作物学报), 2006, 26(1): 117–120 (in Chinese with English abstract)



[30]Chen Y(陈莹), Li W(李伟), Zhang X-X(张晓祥), Zhang B-Q(张伯桥), Yu H-S(于汉寿), Chen H-G(陈怀谷). Composition and virulence of pathogen of wheat sharp eyespot in north latitude 33° of China. J Triticeae Crop (麦类作物学报), 2009, 29(6): 1110–1114 (in Chinese with English abstract)



[31]Yan W(颜伟), Wu J-Z(吴纪中), Cai S-B(蔡士宾), Zhang X-Y(张仙义), Wu X-Y(吴小有). Analysis of combining ability of resistance to sharp eyespot in wheat. Jiangsu J Agric Sci (江苏农业科学), 2006, (6): 46–49 (in Chinese)



[32]Wang R R C, Wei J Z. Variations of two repetitive DNA sequences in several Triticeae genomes revealed by polymerase chain reaction and sequencing. Genome, 1995, 38: 1221–1229



[33]Li H J, Arterburn M, Jones S S, Murray T D. A new source of resistance to Tapesia yallundae associated with a homoeologous group 4 chromosome in Thinopyrum ponticum. Phytopathology, 2004, 94: 932–937



[34]Li H J, Arterburn M, Jones S S, Murray T D. Resistance to eyespot of wheat, caused by Tapesia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome. Theor Appl Genet, 2005, 111: 932–940



[35]Li H J, Cui L, Li H L, Wang X M, Murray T D, Conner R L, Wang L J, Gao X, Sun Y, Sun S C, Tang W H. Effective resources in wheat and wheat-Thinopyrum derivatives for resistance to Heterodera filipjevi in China. Crop Sci, 2012, 52: 1209–1217



[36]Cox C M, Murray T D, Jones S S. Perennial wheat germplasm lines resistant to eyespot, Cephalosporium stripe, and wheat streak mosaic. Plant Dis, 2002, 86: 1043–1048



[37]Li H J, Conner R L, Chen Q, Li H Y, Laroche A, Graf R J, Kuzyk A D. The transfer and characterization of resistance to common root rot from Thinopyrum ponticum to wheat. Genome, 2004, 47: 215–223



[38]Baley G J, Talbert L E, Martin J M, Young M J, Habernicht D K, Kushnak G D, Berg J E, Lanning S P, Bruchner P L. Agronomic and end-use qualities of Wheat streak mosaic virus resistant spring wheat. Crop Sci, 2001, 41: 1779–1784



[39]Tyler J M, Webster J A, Merkle O G. Designation of genes in wheat germplasm conferring greenbug resistance. Crop Sci, 1987, 27: 526–527



[40]Friebe B, Mukai Y, Dhaliwal H S, Martin T J, Gill B S. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet, 1991, 81: 381–389



[41]Zhu F(朱凤), Yang R-M(杨荣明), Xu D-X(徐东祥), Tai D-L(邰德良). Reasons of heavy occurrence and control measures of rice sheath blight in Jiangsu Province in 2010. China Plant Protect (中国植保导刊), 2011, 31(9): 29–32 (in Chinese)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!