欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 275-284.doi: 10.3724/SP.J.1006.2021.04105

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

河南大豆新品系抗大豆疫霉根腐病基因鉴定

张雪翠1(), 孙素丽1(), 卢为国2, 李海朝2, 贾岩岩1, 段灿星1, 朱振东1,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2河南省农业科学院经济作物研究所, 河南郑州 450002
  • 收稿日期:2020-05-12 接受日期:2020-09-13 出版日期:2021-02-12 网络出版日期:2020-09-28
  • 通讯作者: 朱振东
  • 作者简介:张雪翠, E-mail: 553870151@qq.com;|孙素丽, E-mail: sunsuli@caas.cn
  • 基金资助:
    “十三五”国家重点研发计划项目(2016YFD0100201);国家公益性行业(农业)科研专项(201303018);农作物种质资源保护与利用专项(2019NWB036-12);中国农业科学院科技创新工程项目资助

Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province

ZHANG Xue-Cui1(), SUN Su-Li1(), LU Wei-Guo2, LI Hai-Chao2, JIA Yan-Yan1, DUAN Can-Xing1, ZHU Zhen-Dong1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Institute of Economic Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2020-05-12 Accepted:2020-09-13 Published:2021-02-12 Published online:2020-09-28
  • Contact: ZHU Zhen-Dong
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100201);Special Fund for Agro-scientific Research in the Public Interest(201303018);Program of Protection of Crop Germplasm Resources(2019NWB036-12);Scientific Innovation Program of Chinese Academy of Agricultural Sciences.

摘要:

大豆疫霉根腐病作为影响大豆生产的毁灭性病害之一, 对大豆生产威胁很大。种植抗疫霉根腐病的大豆品种是控制该病害最有效的途径。河南省位于我国黄淮夏大豆产区的腹地, 具有大豆疫霉根腐病发生的潜在威胁。本研究的目的是对河南省新育成的大豆品系进行抗性鉴定和抗病基因分子标记检测, 以明确大豆新品系对大豆疫霉根腐病的抗性水平和抗病基因。采用下胚轴创伤接种法对64个河南省培育的大豆新品系进行接种, 鉴定其对2个具有不同毒力的大豆疫霉分离物PsJS2和Ps41-1的抗性。结果显示, 对分离物Ps41-1和PsJS2抗病的分别有35个和16个品系, 对Ps41-1和PsJS2为中间反应型的分别有16个和10个品系, 其中对2个分离物均抗病的有16个品系, 占鉴定品系的25%。使用抗疫霉病基因RpsZheng共分离标记WZInDel11进行新品系的基因型鉴定发现, 对2个大豆疫霉分离物均抗病的16个品系中有13个含有标记WZInDel11, 对1个或2个大豆疫霉分离物表现为中间反应型的5个大豆品系, 分子检测结果表明, 其为杂合基因型, 这些品系中的纯合抗病单株可直接选育成纯合抗病品系用于抗病育种。综合系谱分析结果推测, 有2个品系可能含抗疫霉根腐病基因RpsZheng, 2个品系可能含RpsYD29, 14个品系可能含有RpsZheng或其等位基因。表明河南省培育的大豆新品系中含有优异的大豆疫霉根腐病抗源, 该研究结果将为病害防控和抗病品种的选育提供参考。

关键词: 大豆, 大豆疫霉根腐病, 品系, 抗病性, 分子标记

Abstract:

Phytophthora root rot is one of the destructive diseases affecting soybean production, which is a great threat to soybean production. Planting resistant soybean cultivars is the most effective way to control this disease. Henan province was located in the hinterland area of the summer-sowing soybean production region of Huang-Huai in China, which had the potential threat region of phytophthora root rot. The objective of this study was to screen effective resistance cultivars for disease control and resistance breeding by phenotypic identification and molecular detection of resistance gene. Sixty-four new soybean lines bred in Henan were evaluated for their resistance responses to two Phytophthora sojae isolates PsJS2 and Ps41-1 using the hypocotyls inoculation technique. The result showed that 35 lines and 16 lines were resistance to Ps41-1 and PsJS2, respectively. Sixteen lines and 10 lines were intermediate to Ps41-1 and PsJS2, respectively. And there were 16 lines resistance to both Ps41-1and PsJS2, accounting for 25% of tested lines. Sixty-four lines was detected for Phytophthora resistance gene by using molecular marker WZInDel11 co-segregating with a resistance gene RpsZheng. The results showed that, 13 of 16 lines resistant to both PsJS2 and Ps41-1 contain target band of WZInDel11, while 5 lines resistant to one of two P. sojae isolates show segregating to P. sojae produced heterozygous bands. The homozygous resistant plants of these lines segregating for resistance could be accurately detected by marker WZInDel11, and further were directly developed into homozygous resistant lines. Combining the results of pedigree analysis, it was speculated that two lines might contain the resistance gene RpsZheng, two lines might contain RpsYD29, and 14 lines might contain RpsZheng or its allele. In conclusion, the results indicated that the new soybean lines cultivated in Henan Province had excellent resistance sources to P. sojae. This study provides important information for disease control and resistance breeding.

Key words: Glycine max, phytophthora root rot, lines, resistance, molecular marker

表1

大豆新品系对2个大豆疫霉分离物Ps41-1和PsJS2的抗性及分子标记WZInDel11的鉴定结果"

图1

大豆品系对大豆疫霉分离物Ps41-1和PsJS2的抗性反应型的比例 R: 抗病; I: 中间型; S: 感病。"

图2

标记WZInDel11在部分大豆品系上的分子检测结果 Williams和郑97196分别为感病和抗病品种对照。洛豆16106、郑豆1304、洛豆16095、周豆47和郑豆1526为5个抗病品系。周豆39、洛豆1420、商豆191、濮豆103和宛黄5号为5个感病品系。郑15234、漯8825、漯豆8816、驻豆37和泛豆22为5个存在抗性分离的品系。"

图3

标记WZInDel11在大豆品系漯豆8816的10个单株上的分子检测结果 Williams和郑97196分别为感病和抗病品种对照, 漯豆8816-S为6个感病单株, 漯豆8816-R为4个抗病单株。"

[1] 查霆, 钟宣伯, 周启政, 何梦迪, 汪桂凤, 尤金华, 汪自强, 唐桂香. 我国大豆产业发展现状及振兴策略. 大豆科学, 2018,37:458-463.
Zha T, Zhong X B, Zhou Q Z, He M D, Wang G F, You J H, Wang Z Q, Tang G X. Development status of China’s soybean industry and strategies of revitalizing. Soybean Sci, 2018,37:458-463 (in Chinese with English abstract).
[2] Dorrance A E. Management of Phytophthora sojae of soybean: a review and future perspectives. Can J Plant Pathol, 2018,40:210-219.
[3] 沈崇尧, 苏彦纯. 中国大豆疫霉病菌的发现及初步研究. 植物病理学报, 1991,21:298.
Shen C Y, Su Y C. Discovery and preliminary study of Phytophthora sojae in China. Acta Phytopathol Sin, 1991,21:298 (in Chinese with English abstract).
[4] Zhu Z, Wang H, Wang X, Chang R, Wu X. Distribution and virulence diversity of Phytophthora sojae in China. Agric Sci China, 2003,3:793-799.
[5] Chen X R, Wang Y C. Phytophthora sojae. In: Wan F H, Jiang M X, Zhan A B, eds. Biological Invasions and Its Management in China. Germany: Springer, 2017. pp 199-223.
[6] Tian M, Zhao L, Li S, Huang J, Sui Z, Wen J, Li Y. Pathotypes and metalaxyl sensitivity of Phytophthora sojae and their distribution in Heilongjiang, China 2011-2015. J Gen Plant Pathol, 2016,82:132-141.
[7] Sugimoto T, Kato M, Yoshida S, Matsumoto I, Kobayashi T, Kaga A, Hajika M, Yamamoto R, Watanabe K, Aino M, Matoh T, Walker D R, Biggs A R, Ishimoto M. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci, 2012,61:511-522.
[8] Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor Appl Genet, 2018,131:525-538.
pmid: 29138903
[9] Zhong C, Sun S, Yao L, Ding J, Duan C, Zhu Z. Fine mapping and identification of a novel Phytophthora root rot resistance locus RpsZS18 on chromosome 2 in soybean. Front Plant Sci, 2018,9:44.
pmid: 29441079
[10] Zhong C, Li Y, Sun S, Duan C, Zhu Z. Genetic mapping and molecular characterization of a broad-spectrum Phytophthora sojae resistance gene in Chinese soybean. Int J Mol Sci, 2019,20:1809.
[11] Schmitthenner A F. Problems and progress in control of Phytophthora root rot of soybean. Plant Dis, 1985,69:362-368.
[12] Yang B, Wang Q Q, Jing M F, Guo B D, Wu J W, Wang H N, Wang Y, Lin L, Wang Y, Ye W W, Dong S M, Wang Y C. Distinct regions of the Phytophthora essential effector Avh238 determineits function in cell death activation and plant immunity suppression. New Phytol, 2017,214:361-375.
doi: 10.1111/nph.14430 pmid: 28134441
[13] Lee S, Mian M A R, Sneller C H, Wang H, Dorrance A E, McHale L K. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet, 2014,127:429-444.
pmid: 24247235
[14] 冯艳萍. 河南省大豆生产概况及发展建议. 河南农业, 2018, (10):49-50.
Feng Y P. Overview of soybean production in Henan province and development suggestions. J Henan Agric, 2018, (10):49-50 (in Chinese).
[15] Lohnes D G, Nickell C D, Schmitthenner A F. Origin of soybean alleles for Phytophthora resistance in China. Crop Sci, 1996,36:1689-1692.
[16] 王晓鸣, 朱振东, 王化波, 武小菲. 中国大豆疫霉根腐病和大豆种质抗病性研究. 植物病理学报, 2001,31:324-329.
Wang X M, Zhu Z D, Wang H B, Wu X F. Occurrence of soybean Phytophthora root rot and evaluation of germplasm resistance in China. Acta Phytopathol Sin, 2001,31:324-329 (in Chinese with English abstract).
[17] 朱振东, 霍云龙, 王晓鸣, 黄俊斌, 武小菲. 大豆疫霉根腐病抗源筛选. 植物遗传资源学报, 2006,7:24-30.
Zhu Z D, Huo Y L, Wang X M, Huang J B, Wu X F. Screening for resistance sources to Phytophthora root rot in soybean. J Plant Genet Resour, 2006,7:24-30 (in Chinese with English abstract).
[18] Zhang J, Xia C, Wang X, Duan C, Sun S, Wu X, Zhu Z. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor Appl Genet, 2013,126:1555-1561.
doi: 10.1007/s00122-013-2073-1 pmid: 23467992
[19] 张海鹏, 郭娜, 牛景萍, 黄婧, 彭洋, 王海棠, 赵晋铭, 邢邯. 大豆品种郑97196对疫霉根腐病的抗性遗传分析及基因定位. 大豆科学, 2016,35:373-379.
Zhang H P, Guo N, Niu J P, Huang J, Peng Y, Wang H T, Zhao J M, Xing H. Genetic analysis of resistance to Phytophthora sojae and mapping of resistance gene in soybean cultivar Zheng 97196. Soybean Sci, 2016,35:373-379 (in Chinese with English abstract).
[20] Zhang J, Sun S, Wang G, Duan C, Wang X, Wu X, Zhu Z. Characterization of Phytophthora resistance in soybean cultivars/lines bred in Henan province. Euphytica, 2014,196:375-384.
[21] 张雪翠, 钟超, 段灿星, 孙素丽, 朱振东. 大豆品种郑97196中抗疫病基因RpsZheng精细定位. 作物学报, 2020,46:997-1005.
Zhang X C, Zhong C, Duan C X, Sun S L, Zhu Z D. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196. Acta Agron Sin, 2020,46:997-1005 (in Chinese with English abstract).
[22] 叶晨晨. 河南省大豆疫霉的分离及鉴定. 安徽农业大学硕士学位论文, 安徽合肥, 2011.
Ye C C. Isolation and Identification of Phytophthora sojae from Henan Province MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2011 (in Chinese with English abstract).
[23] Dorrance A E, Berry S A, Anderson T R, Meharg C. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Prog, 2008. doi: 10.1094/PHP-2008-0118-01-DG.
pmid: 10275108
[24] Li Y, Sun S, Zhong C, Wang X, Wu X, Zhu Z. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean. Theor Appl Genet, 2017,130:1223-1233.
doi: 10.1007/s00122-017-2883-7 pmid: 28258371
[25] Zhang J, Xia C, Duan C, Sun S, Wang X, Wu X, Zhu Z. Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS One, 2013,8:e69799.
doi: 10.1371/journal.pone.0069799 pmid: 23936102
[26] 钟超, 李银萍, 孙素丽, 刘章雄, 邱丽娟, 朱振东. 野生大豆资源对大豆疫病抗病性和耐病性鉴定. 植物遗传资源学报, 2015,16:684-690.
Zhong C, Li Y P, Sun S L, Liu Z X, Qiu L J, Zhu Z D. Identification of resistance and tolerance to Phytophthora sojae in wild soybean germplasm. J Plant Genet Resour, 2015,16:684-690 (in Chinese with English abstract).
[27] Kyle D E, Nickell C D, Nelson R L, Pedersen W L. Response of soybean accessions from provinces in southern China to Phytophthora sojae. Plant Dis, 2007,82:555-559.
pmid: 30856987
[28] 李海朝, 马莹, 张辉, 文自翔, 李金英, 武永康, 卢为国. 优异大豆组合郑州135×泗豆2号的育种贡献. 植物遗传资源学报, 2012,13:1101-1107.
Li H C, Ma Y, Zhang H, Wen Z X, Li J Y, Wu Y K, Lu W G. Contribution of elite combination Zhengzhou 135 × Sidou 2 in soybean breeding. J Plant Genet Resour, 2012,13:1101-1107 (in Chinese with English abstract).
[29] 赵开兵, 沈维良, 王路路, 姜磊. 大豆新品种皖宿2156的选育及栽培技术要点. 大豆科技, 2013, (6):48-49.
Zhao K B, Shen W L, Wang L L, Jiang L. Breeding and cultivation techniques of new soybean cultivar Wansu 2156. Soybean Sci Technol, 2013, (6):48-49 (in Chinese).
[30] 李金花, 耿臻, 杨青春, 舒文涛, 李琼. 大豆新品种周豆23号. 中国种业, 2016, (11):52.
Li J H, Geng Z, Yang Q C, Shu W T, Li Q. New soybean cultivar Zhoudou 23. China Seed Ind, 2016, (11):52 (in Chinese).
[31] 张志民, 徐淑霞, 周青, 郑丽敏, 杨慧风, 王凤菊, 陈亚光. 大豆新品种安豆5156的综合性状分析. 中国种业, 2017, (11):66-67.
Zhang Z M, Xu S X, Zhou Q, Zheng L M, Yang H F, Wang F J, Chen Y G. Comprehensive character analysis of a new soybean cultivar Andou 5156. China Seed Ind, 2017, (11):66-67 (in Chinese).
[32] 陈晓玲, 朱振东, 杜青, 王晓鸣, 肖炎农, 武小菲. 大豆品种(系)抗疫霉根腐病基因的连锁SSR标记分析. 植物病理学报, 2008,38:75-82.
Chen X L, Zhu Z D, Du Q, Wang X M, Xiao Y N, Wu X F. Analysis of Phytophthora resistance loci Rps1 and Rps4 in soybean cultivars or lines using linkage SSR markers. Acta Phytopathol Sin, 2008,38:75-82 (in Chinese with English abstract).
[33] 张志民, 陈亚光, 周青, 杨慧风, 王凤菊, 郑丽敏, 郭海芳, 李明军, 徐淑霞. 安豆1498——疫霉根腐病抗性新种质. 中国油料作物学报, 2017,39:855-860.
Zhang Z M, Chen Y G, Zhou Q, Yang H F, Wang F J, Zheng L M, Guo H F, Li M J, Xu S X. Resistance identification of a new soybean germplasm Andou 1498 to Phytophthora root rot. Chin J Oil Crop Sci, 2017,39:855-860 (in Chinese with English abstract).
[34] Slaminko T L, Bowen C R, Hartman G L. Multi-year evaluation of commercial soybean cultivars for resistance to Phytophthora sojae. Plant Dis, 2010,94:368-371.
pmid: 30754241
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!